- 相關(guān)推薦
高三數(shù)學(xué)說(shuō)課稿
作為一名無(wú)私奉獻(xiàn)的老師,時(shí)常需要編寫(xiě)說(shuō)課稿,說(shuō)課稿有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。那要怎么寫(xiě)好說(shuō)課稿呢?以下是小編整理的高三數(shù)學(xué)說(shuō)課稿,歡迎閱讀,希望大家能夠喜歡。
高三數(shù)學(xué)說(shuō)課稿1
一、關(guān)于教材分析
1.教材的地位和作用
“曲線(xiàn)和方程”是高中數(shù)學(xué)第二冊(cè)(上)第七章《直線(xiàn)和圓的方程》的重點(diǎn)內(nèi)容之一,是在介紹了“直線(xiàn)的方程”之后,對(duì)一般曲線(xiàn)(也包括直線(xiàn))與二元方程的關(guān)系作進(jìn)一步的研究。這部分內(nèi)容從理論上揭示了幾何中的“形”與代數(shù)中的“數(shù)”相統(tǒng)一的關(guān)系,為“形”與“數(shù)”的相互轉(zhuǎn)化開(kāi)辟了途徑,同時(shí)也體現(xiàn)了解析幾何的基本思想,為解析幾何的教學(xué)奠定了一個(gè)理論基礎(chǔ)。
2.教學(xué)內(nèi)容的選擇和處理
本節(jié)教材主要講解曲線(xiàn)的方程和方程的曲線(xiàn)、坐標(biāo)法、解析幾何等概念,討論怎樣求曲線(xiàn)的方程以及曲線(xiàn)的交點(diǎn)等問(wèn)題。共分四課時(shí)完成,這是第一課時(shí)。此課時(shí)的主要內(nèi)容是建立“曲線(xiàn)的方程”和“方程的曲線(xiàn)”這兩個(gè)概念,并對(duì)概念進(jìn)行初步運(yùn)用。我在處理教材時(shí),不拘泥于教材,敢于大膽進(jìn)行調(diào)整。主要體現(xiàn)在對(duì)曲線(xiàn)的方程和方程的曲線(xiàn)的定義進(jìn)行歸納上,通過(guò)構(gòu)造反例,引導(dǎo)學(xué)生進(jìn)行觀(guān)察、討論、分析、正反對(duì)比,逐步揭示其內(nèi)涵,然后在此基礎(chǔ)上歸納定義;再一點(diǎn)就是在得出定義之后,引導(dǎo)學(xué)生用集合觀(guān)點(diǎn)來(lái)理解概念。
3.教學(xué)目標(biāo)的確定
根據(jù)教學(xué)大綱的要求以及本節(jié)教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn),我認(rèn)為,通過(guò)本節(jié)課的教學(xué),應(yīng)使學(xué)生理解曲線(xiàn)和方程的概念;會(huì)用定義來(lái)判斷點(diǎn)是否在方程的曲線(xiàn)上、證明曲線(xiàn)的方程;培養(yǎng)學(xué)生分析、判斷、歸納的邏輯思維能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想;并借用曲線(xiàn)與方程的關(guān)系進(jìn)行辯證唯物主義觀(guān)點(diǎn)的教育;通過(guò)對(duì)問(wèn)題的不斷探討,培養(yǎng)學(xué)生勇于探索的精神。
4.關(guān)于教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵
由于曲線(xiàn)和方程的概念體現(xiàn)了解析幾何的基本思想,學(xué)生只有透徹理解了這個(gè)概念,才能用解析法去研究幾何圖形,才算是踏上解析幾何的入門(mén)之徑。因此,我把曲線(xiàn)和方程的概念確定為本節(jié)課的教學(xué)重點(diǎn)。另外,由于曲線(xiàn)和方程的概念比較抽象,加之剛剛進(jìn)入高二的學(xué)生抽象思維能力還不是很強(qiáng),因此,他們對(duì)曲線(xiàn)和方程關(guān)系的“純粹性”與“完備性”不易理解,弄不清它們之間的區(qū)別與聯(lián)系,易產(chǎn)生“為什么要規(guī)定這樣兩個(gè)關(guān)系”的疑問(wèn)。所以,對(duì)概念的理解,尤其是對(duì)“兩個(gè)關(guān)系”的認(rèn)識(shí)是本節(jié)課的難點(diǎn)。
如何突破這一難點(diǎn)呢?由于學(xué)生在學(xué)習(xí)本節(jié)之前,已經(jīng)有了用方程表示幾何圖形的感性認(rèn)識(shí)(比如用方程表示直線(xiàn)、拋物線(xiàn)、雙曲線(xiàn)等)。因此,突破這一難點(diǎn)的關(guān)鍵在于利用學(xué)生積累的這些感性認(rèn)識(shí),通過(guò)分析反例,來(lái)揭示“兩個(gè)關(guān)系”中缺少任何一個(gè)都將破壞曲線(xiàn)與方程的統(tǒng)一性(即擴(kuò)大概念的外延)。
二、關(guān)于教學(xué)方法與教學(xué)手段的選用
根據(jù)本節(jié)課的教學(xué)內(nèi)容和學(xué)生的實(shí)際水平,我采用的是引導(dǎo)發(fā)現(xiàn)法和CAI輔助教學(xué)。
。1)引導(dǎo)發(fā)現(xiàn)法是通過(guò)教師的引導(dǎo)、啟發(fā),調(diào)動(dòng)學(xué)生參與教學(xué)活動(dòng)的積極性,充分發(fā)揮教師的主導(dǎo)作用和學(xué)生的主體作用。在教學(xué)中通過(guò)設(shè)置疑問(wèn),創(chuàng)造出思維情境,然后引導(dǎo)學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口,使學(xué)生在開(kāi)放、民主、和諧的教學(xué)氛圍中獲取知識(shí),提高能力,促進(jìn)思維的發(fā)展。
。2)借助CAI輔助教學(xué),增大教學(xué)的容量和直觀(guān)性,增強(qiáng)學(xué)習(xí)興趣,從而達(dá)到提高教學(xué)效果和教學(xué)質(zhì)量的目的。(這也符合教學(xué)論中的直觀(guān)性原則和可接受性原則。)
。3)教具:三角板、多媒體。
三、關(guān)于學(xué)法指導(dǎo)
古人說(shuō)得好,“授人以魚(yú),只供一飯;教人以漁,終身受用。”我們?cè)谙驅(qū)W生傳授知識(shí)的同時(shí),必須教給他們好的學(xué)習(xí)方法,讓他們學(xué)會(huì)學(xué)習(xí)、享受學(xué)習(xí)。因此,在本節(jié)課的教學(xué)中,引導(dǎo)學(xué)生開(kāi)展“仔細(xì)看、動(dòng)腦想、多交流、細(xì)比較、勤練習(xí)”的研討式學(xué)習(xí),加大學(xué)生的參與機(jī)會(huì),增強(qiáng)參與意識(shí),讓他們體驗(yàn)獲取知識(shí)的歷程,掌握思考問(wèn)題的方法,逐漸培養(yǎng)他們“會(huì)觀(guān)察”、“會(huì)類(lèi)比”、“會(huì)分析”、“會(huì)歸納”的能力。
四、關(guān)于教學(xué)程序的設(shè)計(jì)
首先是“復(fù)習(xí)引入”。我先引導(dǎo)學(xué)生回顧本章第二節(jié)中直線(xiàn)與二元一次方程的關(guān)系,并讓學(xué)生指出二者能互相表示時(shí)滿(mǎn)足的條件。然后,在此基礎(chǔ)上提出“平面直角坐標(biāo)系中一般曲線(xiàn)和二元方程之間要建立這樣的'對(duì)應(yīng)關(guān)系,也就是能互相完整地表示時(shí),需具備什么樣的條件呢?”從而引出將要學(xué)習(xí)的課題――曲線(xiàn)和方程。這樣引入課題顯得比較自然,也符合由特殊到一般的思維認(rèn)知規(guī)律。同時(shí),直線(xiàn)與二元一次方程的關(guān)系也為下面研究一般曲線(xiàn)與二元方程的關(guān)系提供了一個(gè)實(shí)際模型。(本環(huán)節(jié)用時(shí)約分鐘。)
第二個(gè)環(huán)節(jié)“設(shè)疑導(dǎo)思”。在課題引出之后,我把剛才引入課題時(shí)的問(wèn)題(即:一個(gè)二元方程f(x,y)=0的解與平面直角坐標(biāo)系中一般的曲線(xiàn)C上的點(diǎn)需滿(mǎn)足什么樣的條件,就可以用方程f(x,y)=0來(lái)表示曲線(xiàn)C,同時(shí)曲線(xiàn)C也可以來(lái)表示這個(gè)方程f(x,y)=0?)再次交給學(xué)生,讓他們進(jìn)行思考、討論,然后請(qǐng)學(xué)生代表發(fā)表意見(jiàn),我適當(dāng)?shù)丶袑W(xué)生的觀(guān)點(diǎn),并逐步將其歸結(jié)為兩點(diǎn):①曲線(xiàn)上點(diǎn)的坐標(biāo)滿(mǎn)足方程f(x,y)=0,②以方程f(x,y)=0的解為坐標(biāo)點(diǎn)在曲線(xiàn)上(學(xué)生用類(lèi)比的方法和積累的用方程表示曲線(xiàn)的感性認(rèn)識(shí),是可以猜想出這一條件的),但我對(duì)學(xué)生的觀(guān)點(diǎn)不作評(píng)判(這樣就留下了懸念)。這樣設(shè)計(jì)的意圖在于:此思考題是本節(jié)課的核心問(wèn)題,在這里提出來(lái)是為了給學(xué)生一個(gè)明確的學(xué)習(xí)目標(biāo);同時(shí),也是為了通過(guò)問(wèn)題給學(xué)生營(yíng)造出思維情境,調(diào)動(dòng)起他們的思維。給學(xué)生留下懸念,是為了激發(fā)他們的學(xué)習(xí)熱情和求知欲望,從而使他們主動(dòng)參與到后面的教學(xué)活動(dòng)中來(lái)。(本環(huán)節(jié)用時(shí)約分鐘。)
接下來(lái)我就引導(dǎo)他們進(jìn)行“實(shí)例探究”。首先用電腦投影例題1,讓學(xué)生對(duì)例題進(jìn)行分析、討論,并動(dòng)手畫(huà)圖,然后口答二者的關(guān)系。最后,由我給予訂正,同時(shí)用電腦顯示相關(guān)結(jié)果。設(shè)計(jì)此例的目的是讓學(xué)生從正面認(rèn)識(shí)曲線(xiàn)和方程互相完整表示時(shí)所具有的兩個(gè)關(guān)系,即“(1)如果點(diǎn)M(x0,y0)是C1上的點(diǎn),那么(x0,y0)一定是方程的解;反過(guò)來(lái),(2)如果(x0,y0)方程的解,那么以(x0,y0)為坐標(biāo)的點(diǎn)必在C1上!憋@然,它滿(mǎn)足剛才學(xué)生自己所提出的兩個(gè)條件。(也就是拋物線(xiàn)上的點(diǎn)與方程的解形成了一一對(duì)應(yīng)的關(guān)系。)
盡管學(xué)生知道了曲線(xiàn)和方程互相完整表示時(shí)所具有的這樣兩個(gè)關(guān)系,但學(xué)生此時(shí)可能還會(huì)存有這樣的疑問(wèn):“曲線(xiàn)與方程互相完整表示時(shí)一定要滿(mǎn)足這樣兩個(gè)關(guān)系嗎?缺少一個(gè)會(huì)怎樣呢?”學(xué)生的這一疑問(wèn)也正是本節(jié)課的教學(xué)難點(diǎn)所在。為了突破這一難點(diǎn),我在例1的基礎(chǔ)上分別構(gòu)造出兩個(gè)反例,一個(gè)是在原有拋物線(xiàn)上“長(zhǎng)出”一部分,即“曲線(xiàn)多了”的情形,另一個(gè)是將原來(lái)的拋物線(xiàn)“剪去”一段,即“曲線(xiàn)少了”的情形。接著在教師的引導(dǎo)下,讓學(xué)生分別對(duì)兩個(gè)反例進(jìn)行充分地觀(guān)察、分析、討論(當(dāng)然,這里要給學(xué)生留足時(shí)間)。通過(guò)這些認(rèn)知活動(dòng)的開(kāi)展,學(xué)生能夠發(fā)現(xiàn):?jiǎn)栴}1中(反例1),雖然以方程的解為坐標(biāo)的點(diǎn)都在曲線(xiàn)C2上,但曲線(xiàn)C2上的點(diǎn)的坐標(biāo)不全滿(mǎn)足方程(可舉例驗(yàn)證),也就是C2上“混進(jìn)”了其坐標(biāo)不是方程解的點(diǎn),從而導(dǎo)致曲線(xiàn)C2上的點(diǎn)和方程解不是一一對(duì)應(yīng)的關(guān)系,它們不能互相完整地表示,即“曲線(xiàn)多了”。此時(shí),它滿(mǎn)足同學(xué)自己提出的“兩個(gè)關(guān)系”中②不滿(mǎn)足①。問(wèn)題2(反例2)中,曲線(xiàn)C3上的點(diǎn)的坐標(biāo)都滿(mǎn)足方程,但以方程的解為坐標(biāo)的點(diǎn)不全在曲線(xiàn)C3上(也可舉例說(shuō)明),也就是曲線(xiàn)上“缺漏”其坐標(biāo)是方程解的點(diǎn),同樣導(dǎo)致曲線(xiàn)C3上的點(diǎn)與方程的解也不是一一對(duì)應(yīng)的關(guān)系。顯然曲線(xiàn)C3與方程不能互相完整
地表示,即“曲線(xiàn)少了”。此時(shí),它滿(mǎn)足“兩個(gè)關(guān)系”中的①不滿(mǎn)足②。由此,學(xué)生可以得出結(jié)論:“兩個(gè)關(guān)系”中缺少任何一個(gè),曲線(xiàn)和方程都不能互相完整地表示。這樣就使本節(jié)課的教學(xué)難點(diǎn)被突破了。這里對(duì)反例的設(shè)置是在例1的基礎(chǔ)上進(jìn)行演化的,沒(méi)有另外構(gòu)造反例,目的是讓學(xué)生能更好地進(jìn)行正反對(duì)比,從而易于發(fā)現(xiàn)問(wèn)題,形成深刻的印象。這一環(huán)節(jié)的教學(xué)是在教師的引導(dǎo)下采用研討的方式進(jìn)行的,這樣處理有助于調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,增強(qiáng)課堂參與意識(shí),培養(yǎng)學(xué)生的觀(guān)察能力和邏輯思維能力。(本環(huán)節(jié)用時(shí)約分鐘)
通過(guò)上一環(huán)節(jié)的實(shí)例探究和反例分析,實(shí)際上已經(jīng)揭示了曲線(xiàn)和方程對(duì)應(yīng)關(guān)系的本質(zhì)屬性,但學(xué)生對(duì)此還缺乏一種邏輯上的準(zhǔn)確表述。因此,接下來(lái)就是引導(dǎo)學(xué)生在剛才的探討基礎(chǔ)上“歸納定義”。首先向?qū)W生提出這樣的問(wèn)題:如果將例1中能完整表示曲線(xiàn)的這個(gè)方程稱(chēng)為“曲線(xiàn)的方程”,那么我們?cè)撊绾味x“曲線(xiàn)的方程”?這時(shí)可引導(dǎo)學(xué)生思考:為了避免兩個(gè)反例中曲線(xiàn)與方程關(guān)系的“不完整性”,我們應(yīng)該作出怎樣的限制?隨著這一問(wèn)題的解答,自然也就得出了定義。事實(shí)上,這一環(huán)節(jié)是在暴露定義產(chǎn)生的過(guò)程,目的是讓學(xué)生從中學(xué)到處理數(shù)學(xué)問(wèn)題的思想和方法,培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì)。另外,在歸納出定義后,又引導(dǎo)學(xué)生用集合對(duì)定義進(jìn)行重新表述,這樣可以使學(xué)生對(duì)曲線(xiàn)與方程的關(guān)系進(jìn)行再認(rèn)識(shí),從而強(qiáng)化對(duì)概念的理解。(本環(huán)節(jié)用時(shí)約分鐘)
接下來(lái),我給學(xué)生準(zhǔn)備了一道練習(xí)題,通過(guò)練習(xí)一方面可以加深學(xué)生對(duì)定義的理解;另一方面也旨在了解學(xué)生對(duì)概念的掌握情況,以便調(diào)節(jié)后面的教學(xué)節(jié)奏。同時(shí),通過(guò)兩個(gè)引申提問(wèn)(一個(gè)是怎樣修改圖形,可使曲線(xiàn)是方程的曲線(xiàn),另一個(gè)是如何修改方程可使方程是曲線(xiàn)的方程。),對(duì)題目作進(jìn)一步的探討。這樣有利于培養(yǎng)學(xué)生的發(fā)散思維,促使良好思維習(xí)慣的形成。(練習(xí)用時(shí)約分鐘)
處理完練習(xí)以后,又引導(dǎo)學(xué)生對(duì)概念進(jìn)行初步運(yùn)用(目的還是為了加強(qiáng)對(duì)概念的理解)。首先我將例2、例3分別投影在屏幕上,然后引導(dǎo)學(xué)生分析解題思路,并根據(jù)學(xué)生的分析進(jìn)行補(bǔ)充講解,最后師生共同完成解答。對(duì)例3的證明在理清思路后,由我將證明過(guò)程板書(shū)出來(lái),目的是給學(xué)生起一個(gè)示范作用,讓學(xué)生掌握正確的書(shū)寫(xiě)格式,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)推理的習(xí)慣。另外,在解完例題之后,又引導(dǎo)學(xué)生對(duì)解題過(guò)程進(jìn)行回顧,并歸納出具有一般性的結(jié)論,這樣既有利于解題技能的形成,又可培養(yǎng)學(xué)生良好的解題習(xí)慣。(本環(huán)節(jié)用時(shí)約分鐘)
課堂小結(jié)我是引導(dǎo)學(xué)生從知識(shí)內(nèi)容和思想方法兩個(gè)方面進(jìn)行小結(jié)的。通過(guò)小結(jié)使學(xué)生對(duì)本節(jié)課的知識(shí)結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí)。在小結(jié)時(shí)不僅概括所學(xué)知識(shí),而且還對(duì)所用到的數(shù)學(xué)方法和涉及的數(shù)學(xué)思想也進(jìn)行歸納,這樣既可以使學(xué)生完成知識(shí)建構(gòu),又可以培養(yǎng)其能力。(用時(shí)約分鐘)
最后布置作業(yè)。所布置的作業(yè)都是緊緊圍繞著“曲線(xiàn)和方程”的概念及運(yùn)用。通過(guò)作業(yè)來(lái)反饋知識(shí)掌握效果,鞏固所學(xué)知識(shí),強(qiáng)化基本技能的訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì)。另外,設(shè)計(jì)選作題是為了給學(xué)有余力的學(xué)生留出自由發(fā)展的空間。(用時(shí)約分鐘)
五、關(guān)于板書(shū)設(shè)計(jì)
我將板書(shū)設(shè)計(jì)為“提綱式”。這樣設(shè)計(jì)主要是力求重點(diǎn)突出,能加深學(xué)生對(duì)重點(diǎn)知識(shí)的理解和掌握,便于記憶,從而提高教學(xué)效果。
六、關(guān)于評(píng)價(jià)
在授課過(guò)程中,我根據(jù)學(xué)生對(duì)課堂提問(wèn)及例習(xí)題的解答情況,及時(shí)調(diào)節(jié)課堂節(jié)奏,“易”則可加快,“難”則應(yīng)放慢速度,并借用富有啟發(fā)性的、階梯性的提問(wèn)對(duì)學(xué)生進(jìn)行思維引導(dǎo)。
課后,我將通過(guò)統(tǒng)計(jì)《課堂練習(xí)反饋表》、批改作業(yè)以及與學(xué)生談話(huà)等方式,來(lái)了解學(xué)生對(duì)“曲線(xiàn)與方程”概念的掌握情況,檢查教學(xué)目的的實(shí)現(xiàn)程度。同時(shí),根據(jù)收集的這些教學(xué)反饋信息來(lái)對(duì)下一步教學(xué)工作作出必要的調(diào)整和改進(jìn)。另外,通過(guò)對(duì)作業(yè)的評(píng)判和統(tǒng)計(jì)課堂練習(xí)完成情況,有助于學(xué)生認(rèn)識(shí)自我,讓他們獲得成就感,從而增強(qiáng)其自信心,培養(yǎng)學(xué)生積極進(jìn)取的學(xué)習(xí)態(tài)度。
以上,我從六個(gè)方面闡述了對(duì)“曲線(xiàn)和方程”這一節(jié)內(nèi)容的有關(guān)分析和教學(xué)設(shè)想。不妥之處,敬請(qǐng)各位專(zhuān)家、同仁指正。謝謝大家!
高三數(shù)學(xué)說(shuō)課稿2
教學(xué)目的:使學(xué)生熟練掌握奇偶函數(shù)的判定以及奇偶函數(shù)性質(zhì)的靈活應(yīng)用;
培養(yǎng)學(xué)生化歸、分類(lèi)以及數(shù)形結(jié)合等數(shù)學(xué)思想;提高學(xué)生分析、解題的能力。
教學(xué)過(guò)程:
一、知識(shí)要點(diǎn)回顧
1、奇偶函數(shù)的定義:應(yīng)注意兩點(diǎn):①定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)為奇偶函數(shù)的必要非充分條件。②f(x)f(x)或f(x)f(x)是定義域上的恒等式(對(duì)定義域中任一x均成立)。
2、判定函數(shù)奇偶性的方法(首先注意定義域是否為關(guān)于原點(diǎn)的對(duì)稱(chēng)區(qū)間)
①定義法判定(有時(shí)需將函數(shù)化簡(jiǎn),或應(yīng)用定義的變式:f(x)f(x)f(x)f(x)0f(x)1(f(x)0)。f(x)
②圖象法。
、坌再|(zhì)法。
3、奇偶函數(shù)的性質(zhì)及其應(yīng)用
①奇偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng);②奇函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),并且在兩個(gè)關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相同的單調(diào)性;③偶函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),并且在兩個(gè)關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上單調(diào)性相反;④若奇函數(shù)f(x)的定義域包含0,則f(0)=0;⑤f(x)為偶函數(shù),則f(x)f(x);⑥y=f(x+a)為偶函數(shù)
而偶函數(shù)y=f(x+a)的對(duì)稱(chēng)軸為f(xa)f(xa)f(x)對(duì)稱(chēng)軸為x=a,x=0(y軸);⑦兩個(gè)奇函數(shù)的和差是奇函數(shù),積商是偶函數(shù);兩個(gè)偶函數(shù)的和差、積商都是偶函數(shù);一奇一偶的兩個(gè)函數(shù)的積商是奇函數(shù)。
二、典例分析
例1:試判斷下列函數(shù)的奇偶性
|x|(x1)0;(1)f(x)|x2||x2|;(2)f(x);(3)f(x)x2x1__(x0)(4)f(x);(5)ylog2(x;(6)f(x)loga。2x1__(x0)
解:(1)偶;(2)奇;(3)非奇非偶;(4)奇;(5)奇;(6)奇。簡(jiǎn)析:(1)用定義判定;
(2)先求定義域?yàn)閇,再化簡(jiǎn)函數(shù)得f(x)則f(x)f(x),為奇函數(shù);
(3)定義域不對(duì)稱(chēng);
。4)x注意分段函數(shù)奇偶性的判定;
(5)、均利用f(x)f(x)0判定。
例2,(1)已知f(x)是奇函數(shù)且當(dāng)x>0時(shí),f(x)x32x21則xR時(shí)x32x21(x0)f(x)0(x0)32x2x1(x0)
(2)設(shè)函數(shù)yf(x1)為偶函數(shù),若x1時(shí)yx21,則x>1時(shí),yx24x5。
簡(jiǎn)析:本題為奇偶函數(shù)對(duì)稱(chēng)性的靈活應(yīng)用。
(1)中當(dāng)x<0時(shí),x0,則f(x)(x)32(x)21可得f(x)x32x21,∴x<0時(shí),f(x)x32x21
也可畫(huà)出示意圖,由原點(diǎn)左邊圖象上任一點(diǎn)(x,y)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)(x,y)在右邊的圖象上可得y(x)32(x)21yx32x21。
(2)中yf(x1)為偶函數(shù)f(x1)f(x1)f(x)的對(duì)稱(chēng)軸為
x=1故x=1右邊的圖象上任一點(diǎn)(x,y)關(guān)于x=1的對(duì)稱(chēng)點(diǎn)(x2,y)在
。ǹ僧(huà)圖幫助分析)。yx21上,∴y(x2)21x24x5。
本題也可利用二次函數(shù)的性質(zhì)確定出解析式。
練習(xí):設(shè)f(x)是定義在[—1,1]上的偶函數(shù),g(x)與f(x)圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),當(dāng)x[2,3]時(shí)g(x)2t(x2)4(x2)3(t為常數(shù)),則f(x)的表達(dá)式為xx。
例3:若奇函數(shù)f(x)是定義在(—1,1)上的增函數(shù),試解關(guān)于a的不等式f(a2)f(a24)0。
分析:抽象函數(shù)組成的'不等式的求解,常利用函數(shù)的單調(diào)性脫去“f”符號(hào),轉(zhuǎn)化為關(guān)于自變量的不等式求解,但要注意定義域)。
解:依題意得f(a2)f(a24)f(4a2)(∵f(x)為奇函數(shù))又∵f(x)是定義在(—1,1)上的單調(diào)增函數(shù)
1a21∴1a241
2a24aa2
∴解集是{aa2}
變式1:設(shè)定義在[—2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1m)f(m),求實(shí)數(shù)m的取值范圍。|1m||m|簡(jiǎn)解:依題意得21m2
2m2121m
。ㄗ⒁鈹(shù)形結(jié)合解題)
變式2:設(shè)定義在[—2,2]上的偶函數(shù)y=f(x+1)在區(qū)間[0,2]上單調(diào)遞減,若f(1—m)
11m3簡(jiǎn)解:依題意得1m3
|1m1||m1|1m22
例4,已知函數(shù)f(x)滿(mǎn)足f(x+y)+f(x—y)=2f(x)·f(y),(x,yR),且
。1)f(0)=1,(2)f(x)的圖象關(guān)于y軸對(duì)稱(chēng)。f(0)0,試證:
。ǚ治觯撼橄蠛瘮(shù)奇偶性的證明,常用到賦值法及奇偶性的定義)。解:(1)令x=y=0,有f(0)f(0)2f2(0),又f(0)0∴f(0)1。
。2)令x=0,得f(y)f(y)2f(0)f(y)2f(y)
∴f(y)f(y)(yR)
∴f(x)為偶函數(shù),∴f(x)的圖象關(guān)于y軸對(duì)稱(chēng)。
歸類(lèi)總結(jié)出抽象函數(shù)的解題方法與技巧。
變式訓(xùn)練:設(shè)f(x)是定義在(0,)上的減函數(shù),且對(duì)于任意x,y(0,)x都有f()f(x)f(y)y
1(1)求f(1);(2)若f(4)=1,解不等式f(x6)f()2x
。c(diǎn)明題型特征及解題方法)
三、小結(jié)
1、奇偶性的判定方法;
2、奇偶性的靈活應(yīng)用(特別是對(duì)稱(chēng)性);
3、求解抽象不等式及抽象函數(shù)的常用方法。
四、課后練習(xí)及作業(yè)
1、完成《教學(xué)與測(cè)試》相應(yīng)習(xí)題。
2、完成《導(dǎo)與練》相應(yīng)習(xí)題。
高三數(shù)學(xué)說(shuō)課稿3
一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析
1 本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:
《向量》出現(xiàn)在高中數(shù)學(xué)第一冊(cè)(下)第五章第1節(jié)。本節(jié)內(nèi)容是傳統(tǒng)意義上《平面解析幾何》的基礎(chǔ)部分,因此,在《數(shù)學(xué)》這門(mén)學(xué)科中,占據(jù)極其重要的地位。
2 數(shù)學(xué)思想方法分析:
(1) 從“向量可以用有向線(xiàn)段來(lái)表示”所反映出的“數(shù)”與“形”之間的轉(zhuǎn)化,就可以看到《數(shù)學(xué)》本身的“量化”與“物化”。
(2)從建構(gòu)手段角度分析,在教材所提供的材料中,可以看到“數(shù)形結(jié)合”思想。
二、 教學(xué)目標(biāo)
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征 ,制定如下教學(xué)目標(biāo):
1 基礎(chǔ)知識(shí)目標(biāo):掌握“向量”的概念及其表示方法,能利用它們解決相關(guān)的問(wèn)題。
2 能力訓(xùn)練目標(biāo):逐步培養(yǎng)學(xué)生觀(guān)察、分析、綜合和類(lèi)比能力,會(huì)準(zhǔn)確地闡述自己的思路和觀(guān)點(diǎn),著重培養(yǎng)學(xué)生的認(rèn)知和元認(rèn)知能力。
3 創(chuàng)新素質(zhì)目標(biāo):引導(dǎo)學(xué)生從日常生活中挖掘數(shù)學(xué)內(nèi)容,培養(yǎng)學(xué)生的發(fā)現(xiàn)意識(shí)和整合能力;《向量》的教學(xué)旨在培養(yǎng)學(xué)生的“知識(shí)重組”意識(shí)和“數(shù)形結(jié)合”能力。
4 個(gè)性品質(zhì)目標(biāo):培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn),獨(dú)立意識(shí)以及不斷超越自我的創(chuàng)新品質(zhì)。
三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
重點(diǎn):向量概念的引入。
難點(diǎn):“數(shù)”與“形”完美結(jié)合。
關(guān)鍵:本節(jié)課通過(guò)“數(shù)形結(jié)合”,著重培養(yǎng)和發(fā)展學(xué)生的認(rèn)知和變通能力。
四、 教材處理
建構(gòu)主義學(xué)習(xí)理論認(rèn)為,建構(gòu)就是認(rèn)知結(jié)構(gòu)的組建,其過(guò)程一般是先把知識(shí)點(diǎn)按照邏輯線(xiàn)索和內(nèi)在聯(lián)系,串成知識(shí)線(xiàn),再由若干條知識(shí)線(xiàn)形成知識(shí)面,最后由知識(shí)面按照其內(nèi)容、性質(zhì)、作用、因果等關(guān)系組成綜合的知識(shí)體。本課時(shí)為何提出“數(shù)形結(jié)合”呢,應(yīng)該說(shuō),這一處理方法正是基于此理論的體現(xiàn)。其次,本節(jié)課處理過(guò)程力求達(dá)到解決如下問(wèn)題:知識(shí)是如何產(chǎn)生的?如何發(fā)展?又如何從實(shí)際問(wèn)題抽象成為數(shù)學(xué)問(wèn)題,并賦予抽象的數(shù)學(xué)符號(hào)和表達(dá)式,如何反映生活中客觀(guān)事物之間簡(jiǎn)單的和諧關(guān)系。
五、 教學(xué)模式
教學(xué)過(guò)程是教師活動(dòng)和學(xué)生活動(dòng)的十分復(fù)雜的`動(dòng)態(tài)性總體,是教師和全體學(xué)生積極參與下,進(jìn)行集體認(rèn)識(shí)的過(guò)程。教為主導(dǎo),學(xué)為主體,又互為客體。啟動(dòng)學(xué)生自主性學(xué)習(xí),啟發(fā)引導(dǎo)學(xué)生實(shí)踐數(shù)學(xué)思維的過(guò)程,自得知識(shí),自覓規(guī)律,自悟原理,主動(dòng)發(fā)展思維和能力。
六、 學(xué)習(xí)方法
1、讓學(xué)生在認(rèn)知過(guò)程中,著重掌握元認(rèn)知過(guò)程。
2、使學(xué)生把獨(dú)立思考與多向交流相結(jié)合。
七、 教學(xué)程序及設(shè)想
(一)設(shè)置問(wèn)題,創(chuàng)設(shè)情景。
1、提出問(wèn)題:在日常生活中,我們不僅會(huì)遇到大小不等的量,還經(jīng)常會(huì)接觸到一些帶有方向的量,這些量應(yīng)該如何表示呢?
2、(在學(xué)生討論基礎(chǔ)上,教師引導(dǎo))通過(guò)“力的圖示”的回憶,分析大小、方向、作用點(diǎn)三者之間的關(guān)系,著重考慮力的作用點(diǎn)對(duì)運(yùn)動(dòng)的相對(duì)性與絕對(duì)性的影響。
設(shè)計(jì)意圖:
1、把教材內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”、驚訝、困惑、感到棘手,緊張地沉思,期待尋找理由和論證的過(guò)程。
2、我們知道,學(xué)習(xí)總是與一定知識(shí)背景即情境相聯(lián)系的。在實(shí)際情境下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí)。這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情境中。
(二)提供實(shí)際背景材料,形成假說(shuō)。
1、小船以0.5m/s的速度航行,已知一條河長(zhǎng)20xxm,寬150m,問(wèn)小船需經(jīng)過(guò)多長(zhǎng)時(shí)間,到達(dá)對(duì)岸?
2、到達(dá)對(duì)岸?這句話(huà)的實(shí)質(zhì)意義是什么?(學(xué)生討論,期望回答:指代不明。)
3、由此實(shí)際問(wèn)題如何抽象為數(shù)學(xué)問(wèn)題呢?(學(xué)生交流討論,期望回答:要確定某些量,有時(shí)除了知道其大小外,還需要了解其方向。)
設(shè)計(jì)意圖:
1、教師站在稍稍超前于學(xué)生智力發(fā)展的邊界上(即思維的最鄰近發(fā)展)通過(guò)問(wèn)題引領(lǐng),來(lái)促成學(xué)生“數(shù)形結(jié)合”思想的形成。
2.通過(guò)學(xué)生交流討論,把實(shí)際問(wèn)題抽象成為數(shù)學(xué)問(wèn)題,并賦予抽象的數(shù)學(xué)符號(hào)和表達(dá)方式。
(三)引導(dǎo)探索,尋找解決方案。
1、如何補(bǔ)充上面的題目呢?從已學(xué)過(guò)知識(shí)可知,必須增加“方位”要求。
2.方位的實(shí)質(zhì)是什么呢?即位移的本質(zhì)是什么?期望回答:大小與方向的統(tǒng)一。
3、零向量、單位向量、平行向量、相等向量、共線(xiàn)向量等系列化概念之間的關(guān)系是什么?(明確要領(lǐng)。)
設(shè)計(jì)意圖:
學(xué)生在教師引導(dǎo)下,在積累了已有探索經(jīng)驗(yàn)的基礎(chǔ)上,進(jìn)行討論交流,相互評(píng)價(jià),共同完成了“數(shù)形結(jié)合”思想上的建構(gòu)。
2、這一問(wèn)題設(shè)計(jì),試圖讓學(xué)生不“唯書(shū)”,敢于和善于質(zhì)疑批判和超越書(shū)本和教師,這是創(chuàng)新素質(zhì)的突出表現(xiàn),讓學(xué)生不滿(mǎn)足于現(xiàn)狀,執(zhí)著地追求。
3、盡可能地揭示出認(rèn)知思想方法的全貌,使學(xué)生從整體上把握解決問(wèn)題的方法。
(四)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。
經(jīng)過(guò)引導(dǎo),學(xué)生歸納出“數(shù)形結(jié)合”的思想——“數(shù)”與“形”是一個(gè)問(wèn)題的兩個(gè)方面,“形”的外表里,蘊(yùn)含著“數(shù)”的本質(zhì)。
設(shè)計(jì)意圖:促進(jìn)學(xué)生數(shù)學(xué)思想方法的形成,引導(dǎo)學(xué)生確實(shí)掌握“數(shù)形結(jié)合”的思想方法。
(五)變式延伸,進(jìn)行重構(gòu)。
教師引導(dǎo):在此我們已經(jīng)知道,欲解決一些抽象的數(shù)學(xué)問(wèn)題,可以借助于圖形來(lái)解決,這就是向量的理論基礎(chǔ)。
下面繼續(xù)研究,與向量有關(guān)的一些概念,引導(dǎo)學(xué)生利用模型演示進(jìn)行觀(guān)察。
概念1:長(zhǎng)度為0的向量叫做零向量。
概念2:長(zhǎng)度等于一個(gè)單位長(zhǎng)度的向量,叫做單位向量。
概念3:方向相同或相反的非零向量叫做平行(或共線(xiàn))向量。(規(guī)定:零向量與任一向量平行。)
概念4:長(zhǎng)度相等且方向相同的向量叫做相等向量。
設(shè)計(jì)意圖:
1.學(xué)生在教師引導(dǎo)下,在積累了已有探索經(jīng)驗(yàn)的基礎(chǔ)上進(jìn)行討論交流,相互評(píng)價(jià),共同完成了有向線(xiàn)段與向量?jī)烧哧P(guān)系的建構(gòu)。
2.這些概念的比較可以讓學(xué)生加強(qiáng)對(duì)“向量”概念的理解,以便更好地“數(shù)形結(jié)合”。
3.讓學(xué)生對(duì)教學(xué)思想方法,及其應(yīng)情境達(dá)到較為純熟的認(rèn)識(shí),并將這種認(rèn)識(shí)思維地貯存在大腦中,隨時(shí)提取和應(yīng)用。
(六)總結(jié)回授調(diào)整。
1.知識(shí)性?xún)?nèi)容:
例 設(shè)O是正六邊形A B C D E F的中心,分別寫(xiě)出圖中與向量O A、O B、O C相等的向量。
2.對(duì)運(yùn)用數(shù)學(xué)思想方法創(chuàng)新素質(zhì)培養(yǎng)的小結(jié):
a.要善于在實(shí)際生活中,發(fā)現(xiàn)問(wèn)題,從而提煉出相應(yīng)的數(shù)學(xué)問(wèn)題。發(fā)現(xiàn)作為一種意識(shí),可以解釋為“探察問(wèn)題的意識(shí)”;發(fā)現(xiàn)作為一種能力,可以解釋為“找到新東西”的能力,這是培養(yǎng)創(chuàng)造力的基本途徑。
b.問(wèn)題的解決,采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想,體現(xiàn)了數(shù)
學(xué)思想方法是解決問(wèn)題的根本途徑。
c.問(wèn)題的變式探究的過(guò)程,是一個(gè)創(chuàng)新思維活動(dòng)過(guò)程中一種多維整合過(guò)程。重組知識(shí)的過(guò)程,是一種多維整合的過(guò)程,是一個(gè)高層次的知識(shí)綜合過(guò)程,是對(duì)教材知識(shí)在更高水平上的概括和總結(jié),有利于形成一個(gè)自我再生力強(qiáng)的開(kāi)放的動(dòng)態(tài)的知識(shí)系統(tǒng),從而使得思維具有整體功能和創(chuàng)新能力。
2.設(shè)計(jì)意圖:
1、知識(shí)性?xún)?nèi)容的總結(jié),可以把課堂教學(xué)傳授的知識(shí),盡快轉(zhuǎn)化為學(xué)生的素質(zhì)。
2、運(yùn)用數(shù)學(xué)方法創(chuàng)新素質(zhì)的小結(jié),能讓學(xué)生更系統(tǒng),更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,并且逐漸培養(yǎng)學(xué)生的良好個(gè)性品質(zhì)。這是每堂課必不可少的一個(gè)重要環(huán)節(jié)。
(七)布置作業(yè)。
反饋“數(shù)形結(jié)合”的探究過(guò)程,整理知識(shí)體系,并完成習(xí)題5.1的內(nèi)容。
高三數(shù)學(xué)說(shuō)課稿4
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與技能
1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。
2、體會(huì)數(shù)學(xué)實(shí)驗(yàn)的直觀(guān)性、有效性,提高幾何畫(huà)板的操作能力。
。ǘ┻^(guò)程與方法
1、培養(yǎng)學(xué)生觀(guān)察能力、抽象概括能力及創(chuàng)新能力。
2、體會(huì)感性到理性、形象到抽象的思維過(guò)程。
3、強(qiáng)化類(lèi)比、聯(lián)想的方法,領(lǐng)會(huì)方程、數(shù)形結(jié)合等思想。
(三)情感態(tài)度價(jià)值觀(guān)
1、感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美、和諧美、對(duì)稱(chēng)美。
2、樹(shù)立競(jìng)爭(zhēng)意識(shí)與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣。
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):運(yùn)用類(lèi)比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點(diǎn):圖形、文字、符號(hào)三種語(yǔ)言之間的過(guò)渡。
三、、教學(xué)方法和手段
教學(xué)方法:觀(guān)察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對(duì)學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會(huì),幫助學(xué)生對(duì)自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。
教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現(xiàn)知識(shí)產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的`障礙(靜態(tài)到動(dòng)態(tài));另一方面:節(jié)省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動(dòng)發(fā)現(xiàn)、主動(dòng)發(fā)展”。
四、教學(xué)過(guò)程
1、創(chuàng)設(shè)情景,引入課題
生活中我們四處可見(jiàn)軌跡曲線(xiàn)的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認(rèn)為天體運(yùn)行的軌跡都是圓錐曲線(xiàn),研究表明,天體數(shù)目越多,軌跡種類(lèi)也越多。
演示建筑中也有許多美麗的軌跡曲線(xiàn)。
設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線(xiàn)的動(dòng)態(tài)美、和諧美、對(duì)稱(chēng)美,激發(fā)學(xué)習(xí)興趣。
2、激發(fā)情感,引導(dǎo)探索
靠在墻角的梯子滑落了,如果梯子上站著一個(gè)人,我們不禁會(huì)想,這個(gè)人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線(xiàn)飛出去呢?我們把這個(gè)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題就是新教材高二上冊(cè)88頁(yè)20題,也就是這里的例題1。
高三數(shù)學(xué)說(shuō)課稿5
1.教材分析
1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)
(1)本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線(xiàn)的位置關(guān)系》的最后一個(gè)內(nèi)容
(2)包含知識(shí)點(diǎn):點(diǎn)到直線(xiàn)的距離公式和兩平行線(xiàn)的距離公式
1-2教材所處地位、作用和前后聯(lián)系
本節(jié)課是兩條直線(xiàn)位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線(xiàn)位置關(guān)系的定性刻畫(huà):平行、垂直,以及對(duì)相交兩線(xiàn)的定量刻畫(huà):夾角、交點(diǎn)。在此之后,有圓錐曲線(xiàn)方程,因而本節(jié)既是對(duì)前面兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線(xiàn)距離(在直線(xiàn)和圓錐曲線(xiàn)構(gòu)成的組合圖形中)提供一套工具。
可見(jiàn),本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線(xiàn)的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線(xiàn)的距離公式。在近年的高考中,通常以直線(xiàn)和圓錐曲線(xiàn)構(gòu)成的組合圖形為背景,判斷直線(xiàn)和圓錐曲線(xiàn)的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線(xiàn)垂直,最小值等。
1-5教學(xué)目標(biāo)及確定依據(jù)
教學(xué)目標(biāo)
(1)掌握點(diǎn)到直線(xiàn)的距離的概念、公式及公式的`推導(dǎo)過(guò)程,能用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
(2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3)認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。
(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據(jù):
中華人民共和國(guó)教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(xxxx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說(shuō)明》(xxxx年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
(1)重點(diǎn):點(diǎn)到直線(xiàn)的距離公式
確定依據(jù):由本節(jié)在教材中的地位確定
(2)難點(diǎn):點(diǎn)到直線(xiàn)的距離公式的推導(dǎo)
確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。
分析“嘗試性題組”解題思路可突破難點(diǎn)
(3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線(xiàn)距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過(guò)程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺(jué)學(xué)習(xí),通過(guò)學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。
確定依據(jù):
(1)美國(guó)教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。
2-2教具:多媒體和黑板等傳統(tǒng)教具
3.學(xué)法
3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習(xí)、觀(guān)察、分析、探索等步驟,自己發(fā)現(xiàn)解決問(wèn)題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問(wèn)題。
一句話(huà):還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
(1)知識(shí)能力狀況,本節(jié)為兩線(xiàn)位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線(xiàn)方程的各種形式,有對(duì)兩線(xiàn)位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線(xiàn)相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線(xiàn)方程、兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線(xiàn)與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。
(2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線(xiàn)的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢(xún)動(dòng)機(jī)由此而生。
(3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線(xiàn)距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數(shù)學(xué)化,是每個(gè)追求成長(zhǎng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過(guò)程,錘煉意志,培養(yǎng)能力。
3-3學(xué)具:直尺、三角板
3.教學(xué)程序
教學(xué)環(huán)節(jié)教學(xué)過(guò)程設(shè)計(jì)意圖
創(chuàng)設(shè)情景(三分鐘)喚醒舊知師:“距離產(chǎn)生美”。昨天我與**同學(xué)相隔遙遠(yuǎn),彼此毫無(wú)感覺(jué),今天的零距離蕩漾著親切,卻少了想象的空間,看來(lái)把握恰當(dāng)?shù)木嚯x才能感知美好。
(1)你有什么辦法能得到我(A點(diǎn))和**同學(xué)(B點(diǎn))之間的距離?
生:思考,回答。
(2)“形缺數(shù)時(shí)難入微”。(1)中的各種辦法中哪個(gè)較好?還有沒(méi)有更好的辦法。
生:比較,回答。
教學(xué)機(jī)智:針對(duì)學(xué)生的回答,老師進(jìn)行引導(dǎo)。老師進(jìn)行鋪墊、遞進(jìn),或深入、拓展。
師:由此看來(lái),兩點(diǎn)間距離公式成為解決該問(wèn)題的首選。讓我們一鼓作氣,繼續(xù)努力。提問(wèn)一:還原學(xué)生的數(shù)學(xué)現(xiàn)實(shí),誘發(fā)動(dòng)機(jī),樂(lè)于參與。
提問(wèn)二:既可點(diǎn)燃數(shù)形結(jié)合的思想,又可喚醒兩點(diǎn)間距離公式。
根據(jù)認(rèn)識(shí)發(fā)展理論,學(xué)生認(rèn)知結(jié)構(gòu)的發(fā)展是在其認(rèn)識(shí)的過(guò)程中伴隨同化和順應(yīng)的認(rèn)知結(jié)構(gòu)不斷再建構(gòu)的過(guò)程,達(dá)到以舊悟新的目的。(1)(2)兩問(wèn)的解決為后繼知識(shí)作好了鋪墊。
4.教學(xué)評(píng)價(jià)
學(xué)生完成反思性學(xué)習(xí)報(bào)告,書(shū)寫(xiě)要求:
(1)整理知識(shí)結(jié)構(gòu)
(2)總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法
(3)總結(jié)在學(xué)習(xí)過(guò)程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說(shuō)明產(chǎn)生障礙的原因
(4)談?wù)勀銓?duì)老師教法的建議和要求。
作用:
(1)通過(guò)反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過(guò)程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過(guò)程。
(2)報(bào)告的寫(xiě)作本身就是一種創(chuàng)造性活動(dòng)。
(3)及時(shí)了解學(xué)生學(xué)習(xí)過(guò)程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿(mǎn)意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。
5.板書(shū)設(shè)計(jì)
(略)
6.教學(xué)的反思總結(jié)
心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。
高三數(shù)學(xué)說(shuō)課稿6
一、本課時(shí)在教材中的地位及作用
教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類(lèi)型的函數(shù)上,把函數(shù)看成變量之間的依賴(lài)關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴(lài)關(guān)系,更是從“變量說(shuō)”到“對(duì)應(yīng)說(shuō)”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無(wú)疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)
二、教學(xué)目標(biāo)
理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
通過(guò)對(duì)實(shí)際問(wèn)題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
通過(guò)對(duì)函數(shù)概念形成的探究過(guò)程,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點(diǎn)分析確定
根據(jù)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
四、教學(xué)基本思路及過(guò)程
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
、艑W(xué)情分析
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀(guān)點(diǎn)下的函數(shù)定義,并具體研究了幾類(lèi)最簡(jiǎn)單的.函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書(shū)第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過(guò),不過(guò)較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來(lái)描繪函數(shù)概念,是一個(gè)抽象過(guò)程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來(lái)有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。
、平谭āW(xué)法
1、本節(jié)課采用的方法有:
直觀(guān)教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):我一方面精心設(shè)計(jì)問(wèn)題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問(wèn)題的提出、問(wèn)題的解決為主線(xiàn),設(shè)置問(wèn)題,倡導(dǎo)學(xué)生主動(dòng)參與,通過(guò)不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過(guò)程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過(guò)程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
3、學(xué)法方面,學(xué)生通過(guò)對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀(guān)點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
、墙虒W(xué)過(guò)程
。ㄒ唬﹦(chuàng)設(shè)情景,引入新課
情景1:提供一張表格,把本班中考得分前10名的情況填入表格,
我報(bào)名次,學(xué)生提供分?jǐn)?shù)。
情景2:西康高速汽車(chē)的行駛速度為80千米/小時(shí),汽車(chē)行駛的距離
y與行駛時(shí)間x之間的關(guān)系式為:y=80x
情景3:安康市一天24小時(shí)內(nèi)的氣溫隨時(shí)間變化圖:(圖略)
提問(wèn)(1):這三個(gè)例子中都涉及到了幾個(gè)變化的量?(兩個(gè))
提問(wèn)(2):當(dāng)其中一個(gè)變量取值確定后,另一個(gè)變量將如何?(它的
值也隨之唯一確定)
提問(wèn)(3):這樣的關(guān)系在初中稱(chēng)之為什么?(函數(shù))引出課題
[設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開(kāi)頭情境1、2的時(shí)候,我并沒(méi)有運(yùn)用書(shū)中的前兩個(gè)例子。第一個(gè)例子我改成提供給學(xué)生一張中考成績(jī)統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個(gè)例子我改成一道簡(jiǎn)單的速度與時(shí)間問(wèn)題,是因?yàn)閷W(xué)生對(duì)重力加速度的問(wèn)題還不是很熟悉。同時(shí)這兩個(gè)例子并沒(méi)有改變課本用三個(gè)實(shí)例分別代表三種表示函數(shù)方法的意圖。
這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。
。ǘ┨剿餍轮纬筛拍
1、引導(dǎo)分析,探求特征
思考:如何用集合的語(yǔ)言來(lái)闡述上述三個(gè)問(wèn)題的共同特征?
[設(shè)計(jì)意圖]并不急著讓學(xué)生回答此問(wèn),為引導(dǎo)學(xué)生改變思路,換個(gè)角度思考問(wèn)題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時(shí)對(duì)學(xué)生進(jìn)行指引。
提問(wèn)(4):觀(guān)察上述三問(wèn)題,它們分別涉及到了哪些集合?(每個(gè)問(wèn)題都涉及到了兩個(gè)集合,具體略)
[設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀(guān)察,培養(yǎng)觀(guān)察問(wèn)題,分析問(wèn)題的能力。
提問(wèn)(5):兩個(gè)集合的元素之間具有怎樣的關(guān)系?(對(duì)應(yīng))
及時(shí)給出單值對(duì)應(yīng)的定義,并嘗試用輸入值,輸出值的概念來(lái)表達(dá)這種對(duì)應(yīng)。
2、抽象歸納,引出概念
提問(wèn)(6):現(xiàn)在你能從集合角度說(shuō)說(shuō)這三個(gè)問(wèn)題的共同點(diǎn)嗎?
[設(shè)計(jì)意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
板書(shū):函數(shù)的概念
上述一系列問(wèn)題,始終倡導(dǎo)學(xué)生主動(dòng)參與,通過(guò)不斷探究、發(fā)現(xiàn),在師生互動(dòng),生生互動(dòng)中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點(diǎn)。
3、探求定義,提出注意
提問(wèn)(7):你覺(jué)得這個(gè)定義中應(yīng)注意哪些問(wèn)題(兩個(gè)非空數(shù)集,唯一對(duì)應(yīng)等)?
[設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
2、例題剖析,強(qiáng)化概念
例1、判斷下列對(duì)應(yīng)是否為函數(shù):
。1)
。2)
[設(shè)計(jì)意圖]通過(guò)例1的教學(xué),使學(xué)生體會(huì)單值對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的核心作用。
例2、(1);
。2)y=x—1;
。3);
。4)
[設(shè)計(jì)意圖]首先對(duì)求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(guò)(2)(3)兩道題,強(qiáng)調(diào)只有對(duì)應(yīng)法則與定義域相同的兩個(gè)函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無(wú)關(guān),進(jìn)一步理解函數(shù)符號(hào)的本質(zhì)內(nèi)涵。
例3、試求下列函數(shù)的定義域與值域:
(1)
。2)
[設(shè)計(jì)意圖]讓學(xué)體會(huì)理解函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則。
4、鞏固練習(xí),運(yùn)用概念
書(shū)本練習(xí)P25:練習(xí)1,2,3。P28:練習(xí)1,2
布置作業(yè):A組:1、2。B組1。
5、課堂小結(jié),提升思想
引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對(duì)本節(jié)課有一個(gè)整體把握,將對(duì)學(xué)生形成的知識(shí)系統(tǒng)產(chǎn)生積極的影響。
6、板書(shū)設(shè)計(jì):借助小黑板,時(shí)間的合理分配等(略)
五、教學(xué)評(píng)價(jià)及反思
我通過(guò)對(duì)一系列問(wèn)題情景的設(shè)計(jì),讓學(xué)生在問(wèn)題解決的過(guò)程中體驗(yàn)成功的樂(lè)趣,實(shí)現(xiàn)對(duì)本課重難點(diǎn)的突破,教學(xué)時(shí)間分配合理,為使課堂形式更加豐富,也可將某些問(wèn)題改成判斷題。在學(xué)生分析、歸納、建構(gòu)概念的過(guò)程中,可能會(huì)出現(xiàn)理解的偏差,教師應(yīng)給予恰當(dāng)?shù)氖崂怼?/p>
本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景(結(jié)合各學(xué)校的硬件條件)。
高三數(shù)學(xué)說(shuō)課稿7
目的要求
1、能從數(shù)、形兩方面深刻理解線(xiàn)與線(xiàn)之間的位置關(guān)系,并會(huì)用方程法討論直線(xiàn)與兩類(lèi)(封閉與非封閉)曲線(xiàn)的位置關(guān)系。
2、弦長(zhǎng)公式的理解與靈活運(yùn)用。
3、通過(guò)曲線(xiàn)焦點(diǎn)的弦的弦長(zhǎng)問(wèn)題的處理,能運(yùn)用圓錐曲線(xiàn)的第二定義以求簡(jiǎn)化運(yùn)算,使解題過(guò)程得到優(yōu)化。
本節(jié)重點(diǎn):
1、直線(xiàn)與曲線(xiàn)的位置關(guān)系。
2、數(shù)形結(jié)合思想的滲透。
本節(jié)難點(diǎn):
1、非封閉曲線(xiàn),尤其是雙曲線(xiàn)與直線(xiàn)位置關(guān)系的討論。
2、充分運(yùn)用新舊知識(shí)的遷移,從數(shù)與形兩方面深刻理解相關(guān)結(jié)論,構(gòu)建完整的知識(shí)體系。
3、在掌握共性的(方程法)基礎(chǔ)上,注意個(gè)性(距離法),防止負(fù)遷移,做到特殊問(wèn)題能特殊處理。
教學(xué)過(guò)程
一、要點(diǎn)歸納:
如何解決直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題,方程法是通用的方法,
相應(yīng)方程組的解的個(gè)數(shù)就是二者交點(diǎn)的個(gè)數(shù),若有兩個(gè)交點(diǎn),則交點(diǎn)連線(xiàn)的長(zhǎng)度就是相應(yīng)的弦長(zhǎng);緝(nèi)容包括:
(一)、位置關(guān)系的分類(lèi)討論:
1、直線(xiàn)與封閉曲線(xiàn)(圓與橢圓):
以直線(xiàn)與橢圓為例:
因?yàn)椋钥梢灾苯佑懻撆袆e式:
直線(xiàn)與曲線(xiàn)相離(0個(gè)交點(diǎn))。
直線(xiàn)與曲線(xiàn)相切(1個(gè)交點(diǎn))。
直線(xiàn)與曲線(xiàn)相交(2個(gè)交點(diǎn))。
注意:對(duì)于直線(xiàn)與圓的位置關(guān)系的.討論,除此之外,我們常
通過(guò)圓心和直線(xiàn)的距離與半徑的大小關(guān)系來(lái)判定。
2、直線(xiàn)與非封閉曲線(xiàn)(雙曲線(xiàn)與拋物線(xiàn)):
以直線(xiàn)與雙曲線(xiàn)為例:
(1)、即時(shí),方程有唯一解,直線(xiàn)與漸近線(xiàn)平行,位置關(guān)系是相交,且只有一個(gè)交點(diǎn)。
(2)、時(shí),討論判別式:
直線(xiàn)與曲線(xiàn)相離(0個(gè)交點(diǎn))。
直線(xiàn)與曲線(xiàn)相切(1個(gè)交點(diǎn))。
直線(xiàn)與曲線(xiàn)相交(2個(gè)交點(diǎn))。
歸納指出:對(duì)于非封閉曲線(xiàn),直線(xiàn)與其僅有一個(gè)交點(diǎn),只是二者相切的一個(gè)必要條件,而非充分條件!
。ǘ、直線(xiàn)與曲線(xiàn)相交——弦長(zhǎng)問(wèn)題:
設(shè)直線(xiàn)與曲線(xiàn)相交于,兩交點(diǎn)坐標(biāo)的唯一來(lái)源
是方程組,下面的弦長(zhǎng)公式很顯然:
。ㄏ笫顷P(guān)于x的方程)
或(消元后是關(guān)于y的方程)
結(jié)合圖象,弄清楚公式的導(dǎo)出方法,是為至要!
特別指出:拋物線(xiàn)的焦點(diǎn)弦性質(zhì)豐富多彩,以為例,若直線(xiàn)過(guò)焦點(diǎn),關(guān)鍵是注意兩點(diǎn):
。1)、巧設(shè)直線(xiàn)方程:
。2)、根據(jù)定義求弦長(zhǎng):
高三數(shù)學(xué)說(shuō)課稿8
一、教材分析
1.教材所處的地位和作用
本節(jié)課主要內(nèi)容是兩種循環(huán)語(yǔ)句。學(xué)生在前面已經(jīng)學(xué)習(xí)了算法的三種基本結(jié)構(gòu)的框圖,學(xué)習(xí)了輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句和條件語(yǔ)句,這些都是學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)基礎(chǔ)。
本節(jié)在教材中起著承上啟下的作用。一方面把框圖轉(zhuǎn)化為語(yǔ)言,將循環(huán)結(jié)構(gòu)在計(jì)算機(jī)上實(shí)現(xiàn),另一方面為學(xué)習(xí)較復(fù)雜的流程圖打下基礎(chǔ)。本節(jié)課對(duì)學(xué)生算法語(yǔ)言能力、有條理的思考與清晰地表達(dá)的能力,邏輯思維能力的綜合提升具有重要作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解for語(yǔ)句與while語(yǔ)句的結(jié)構(gòu)與含義,并會(huì)應(yīng)用
難點(diǎn):應(yīng)用兩種循環(huán)語(yǔ)句將具體問(wèn)題程序化,搞清for循環(huán)和while循環(huán)的區(qū)別和聯(lián)系
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo):
初步掌握三種不同的循環(huán)語(yǔ)句的形式、執(zhí)行過(guò)程和比較對(duì)循環(huán)語(yǔ)句的作用。
2.過(guò)程與方法目標(biāo):
通過(guò)本節(jié)課的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題,創(chuàng)造性思維的能力和自學(xué)能力。
3.情感,態(tài)度和價(jià)值觀(guān)目標(biāo)
在學(xué)習(xí)過(guò)程及解決實(shí)際問(wèn)題的過(guò)程中,盡可能的用基本算法語(yǔ)句描述算法、體會(huì)算法思想的作用及應(yīng)用,增進(jìn)對(duì)算法的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感、積極的學(xué)習(xí)態(tài)度。
三、教學(xué)方法與手段分析
1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導(dǎo)作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成概念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計(jì)算機(jī))調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、教學(xué)過(guò)程分析
1.復(fù)習(xí)引入
復(fù)習(xí)循環(huán)結(jié)構(gòu),目的是承上啟下,以舊引新,一方面引起學(xué)生對(duì)舊知識(shí)的回憶,另一方面為引入循環(huán)語(yǔ)句作鋪墊。
操作方法:師生共同在黑板上畫(huà)出框圖,并對(duì)重點(diǎn)適當(dāng)強(qiáng)調(diào)。
例1.設(shè)計(jì)一個(gè)計(jì)算
的算法并寫(xiě)出相應(yīng)的框圖。
直到型當(dāng)型
復(fù)習(xí)的.時(shí)候通過(guò)提問(wèn)的方式強(qiáng)調(diào)重點(diǎn),學(xué)生通過(guò)對(duì)比,發(fā)現(xiàn)差異。
2.探索新知
通過(guò)上面的兩種循環(huán)結(jié)構(gòu)程序框圖,引出今天所要學(xué)習(xí)的兩種循環(huán)語(yǔ)句,他們分別對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語(yǔ)言中也有當(dāng)型(wHILE型)和直到型(UNTIL型)兩種語(yǔ)句結(jié)構(gòu)。即wHILE語(yǔ)句和UNTIL語(yǔ)句。
下面就向?qū)W生們介紹這兩種語(yǔ)句的一般格式,并在相應(yīng)位置作出對(duì)應(yīng)的程序框圖。之后提問(wèn):通過(guò)對(duì)照,大家覺(jué)得wHILE型語(yǔ)句與UNTIL型語(yǔ)句之間有什么區(qū)別呢?(學(xué)生獨(dú)立思考,交流討論、教師予以提示,點(diǎn)撥指導(dǎo)。由特殊到一般培養(yǎng)學(xué)生的觀(guān)察、歸納、概括能力)
3.例題精析
例2把例1的直到型循環(huán)框圖轉(zhuǎn)化為程序。
教師將直到型語(yǔ)句寫(xiě)在直到型結(jié)構(gòu)旁邊,并連線(xiàn),告訴學(xué)生,這就是直到型循環(huán)語(yǔ)句。通過(guò)這樣的訓(xùn)練,使學(xué)生意識(shí)到程序和框圖是一一對(duì)應(yīng)的,寫(xiě)程序只需把框圖翻譯成相應(yīng)的語(yǔ)句即可。并且對(duì)循環(huán)語(yǔ)句有了一個(gè)大體的印象?梢耘囵B(yǎng)學(xué)生的觀(guān)察能力和對(duì)比能力
例3.求平方值小于1000的最大整數(shù)
.(wHILE型)語(yǔ)句的理解
4.課堂小結(jié)
、叛h(huán)語(yǔ)句的兩種不同形式:wHILE語(yǔ)句和UNTIL語(yǔ)句(另補(bǔ)充了for語(yǔ)句),掌握它們的一般格式。
、圃谟脀HILE語(yǔ)句和UNTIL語(yǔ)句編寫(xiě)程序解決問(wèn)題時(shí),一定要注意它們的格式及條件的表述方法。
⑶循環(huán)語(yǔ)句主要用來(lái)實(shí)現(xiàn)算法中的循環(huán)結(jié)構(gòu),在處理一些需要反復(fù)執(zhí)行的運(yùn)算任務(wù)。如累加求和,累乘求積等問(wèn)題中常用到。
(通過(guò)師生合作總結(jié),使學(xué)生對(duì)本節(jié)課所學(xué)的知識(shí)結(jié)構(gòu)有一個(gè)明確的認(rèn)識(shí),抓住本節(jié)的重點(diǎn)。)
5.布置作業(yè)
必做:設(shè)計(jì)一個(gè)計(jì)算
的算法,畫(huà)出程序框圖,寫(xiě)出相應(yīng)程序。
選做:設(shè)計(jì)一個(gè)計(jì)算
的算法,畫(huà)出程序框圖,寫(xiě)出相應(yīng)程序。
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對(duì)作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
6.板書(shū)設(shè)計(jì)
總結(jié):