《圓錐的體積》教學(xué)反思
身為一位優(yōu)秀的教師,課堂教學(xué)是我們的任務(wù)之一,教學(xué)反思能很好的記錄下我們的課堂經(jīng)驗(yàn),優(yōu)秀的教學(xué)反思都具備一些什么特點(diǎn)呢?以下是小編為大家收集的《圓錐的體積》教學(xué)反思,希望能夠幫助到大家。
《圓錐的體積》教學(xué)反思1
1、通過課堂評(píng)價(jià)促進(jìn)小組探究學(xué)習(xí)的有效性
我將班上同學(xué)分成了9個(gè)小組,在課堂開始前告訴同學(xué)們?cè)诮裉斓男〗M學(xué)習(xí)中會(huì)選出一個(gè)優(yōu)秀小組,并且從合作,紀(jì)律,發(fā)現(xiàn)三個(gè)方面進(jìn)行評(píng)價(jià),組長(zhǎng)安排組員活動(dòng) 體現(xiàn)小組合作性,鞏固了小組合作探究的實(shí)效性,活動(dòng)時(shí)間結(jié)束時(shí)從紀(jì)律方面進(jìn)行評(píng)價(jià),有效的組織了教學(xué),使學(xué)生的興奮點(diǎn)得到有效控制,盡快投入到公式的推到 過程中,在推到過程中鼓勵(lì)同學(xué)們表達(dá)自己的觀點(diǎn),從發(fā)現(xiàn)方面對(duì)學(xué)生進(jìn)行評(píng)價(jià)提高學(xué)生的積極性。
2、層次清楚,步步深入,重點(diǎn)突出
在教學(xué)圓錐的體積時(shí),我首先復(fù)習(xí)了圓柱的體積的計(jì)算過程,再用生活中的問題引入學(xué)習(xí)圓錐體積的必要性,調(diào)動(dòng)了學(xué)生的積極性。然后要學(xué)生用自己的學(xué)具動(dòng) 手做實(shí)驗(yàn),從實(shí)驗(yàn)的過程中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。然后,利用公 式解決生活中的實(shí)際問題,加深學(xué)生印象。
3、激發(fā)學(xué)生的求知欲
新課一開始,我就讓學(xué)生比較兩堆沙的大小,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。在應(yīng)用公式的教學(xué)中,又把問題轉(zhuǎn)向到課初學(xué)生猜測(cè)且還沒有解決的.問題,引導(dǎo)學(xué)生計(jì)算出圓錐的體積,終于使懸念得出了滿意的結(jié)果,使學(xué)生獲得了成功的喜悅。
4、全體學(xué)生的積極參與,突出學(xué)生的主體作用
由于我平時(shí)非常重視讓學(xué)生參與教學(xué)的全過程,重視培養(yǎng)學(xué)生的思維想象力,因此,學(xué)生在這節(jié)課上,表現(xiàn)也相當(dāng)?shù)某錾N以诮虒W(xué)中注意調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,采用分組觀察、操作、討論,動(dòng)手做實(shí)驗(yàn)等方法,突出了學(xué)生的主體作用。
5、課堂教學(xué)后的改進(jìn)
關(guān)于兩堆沙的多少的比較課讓學(xué)生有更多的發(fā)展空間,例如從價(jià)錢,重量等方面考慮,在這些都不知道的情況下才通過求體積的方法,事實(shí)上從價(jià)錢上來看更簡(jiǎn)單一些,要讓學(xué)生有選擇合適的方法解決問題的能力。
在操作活動(dòng)過程中,指向性過于直接,在第二次教學(xué)中我做了一些新的嘗試。簡(jiǎn)單的導(dǎo)入,我出示了一組圓柱和圓錐,先讓學(xué)生猜一猜學(xué)生它們體積的關(guān)系,因?yàn)閷W(xué) 生都有預(yù)習(xí),圓錐體積是圓柱體積的三分之一很快從學(xué)生口中脫出。那我們就來做個(gè)試驗(yàn)驗(yàn)證一下!我給六個(gè)小組分別準(zhǔn)備了等底等高、等底不等高、等高 不等底、既不等底也不等高的圓柱和圓錐,當(dāng)然,實(shí)驗(yàn)還沒結(jié)束,學(xué)生中的問題就出來了,我們做的正好是三分之一、怎么回事?我們的是二分之一?, 我們的是四分之一是不是書上寫錯(cuò)了?學(xué)生思維出現(xiàn)激烈的碰撞,這時(shí)我沒有評(píng)判結(jié)果,適時(shí)讓學(xué)生觀察、對(duì)比、通過合作、討論,等底等高這一 前提,這樣讓學(xué)生在看似混亂無序的實(shí)踐中,增加對(duì)實(shí)驗(yàn)條件的辨別,既圓滿地推導(dǎo)出了圓錐的體積公式,又促進(jìn)了學(xué)生實(shí)踐能力和批判意識(shí)的發(fā)展,而不必苦口婆 心地強(qiáng)調(diào)等底等高,對(duì)三分之一的認(rèn)識(shí)也深入學(xué)生之心,圓錐體積計(jì)算漏乘三分之一的錯(cuò)誤將得到很好的糾正。而這些目標(biāo)的達(dá)成完全是靈活機(jī)智地利 用錯(cuò)誤這一資源,所產(chǎn)生的效果,這節(jié)教學(xué)雖沒以前那么順利,但我覺得今天的學(xué)生才真正掌握了知識(shí)。因?yàn)閷W(xué)生更需要經(jīng)歷知識(shí)形成的全過程。真正關(guān)注學(xué)生 學(xué)習(xí)的過程,就要有效利用錯(cuò)誤這一資源,教師要勇于樂于向?qū)W生提供充分研究的機(jī)會(huì),幫助他們真正理解和掌握數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn), 這樣,我們的課堂才是學(xué)生成長(zhǎng)和體驗(yàn)成功的樂園!
《圓錐的體積》教學(xué)反思2
(課前準(zhǔn)備:等底等高、不等底不等高的空?qǐng)A柱、圓錐、沙子,利用“錯(cuò)誤”資源,展示思維過程 ——《圓錐的體積》一課的案例反思。課前學(xué)生都預(yù)習(xí)過這一內(nèi)容。)
教學(xué)片斷
師:下面分組做實(shí)驗(yàn),在空?qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,看看幾次正好裝滿。
小組代表從教具箱中自選實(shí)驗(yàn)用的空?qǐng)A錐圓柱各一個(gè),分頭操作。
師:請(qǐng)同學(xué)們利用手中的圓柱和圓錐、沙子,從倒的次數(shù)看,研究?jī)烧唧w積之間有怎樣的關(guān)系?
生1:我們將空?qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,三次正好裝滿。說明圓錐的體積是圓柱的三分之一。
生2:三次倒?jié)M,圓錐的體積是圓柱的三分之一。
生3(有些遲疑地):我們將空?qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,四次正好裝滿。說明圓錐的體積是圓柱的四分之一。
生1:是三分之一,不是四分之一。
生5:我們?cè)诳請(qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,不到三次就將圓柱裝滿了。
……
師:并不都是三分之一呀。怎么會(huì)是這樣!我來做。(教師從教具箱中隨手取出一個(gè)空?qǐng)A錐一個(gè)空?qǐng)A柱)你們看, 將空?qǐng)A錐里裝滿沙子,倒入空?qǐng)A柱里。一次,再來一次。兩次正好裝滿。圓錐的'體積是圓柱的二分之一。怎么回事?是不是書上的結(jié)論有錯(cuò)誤?(以前曾有學(xué)生對(duì)教材中的內(nèi)容提出過疑問)
學(xué)生議論紛紛。……
師:你們說該怎么辦?
生6:老師,你取的圓柱太大了。(教師在他的推薦下重新使用一個(gè)空?qǐng)A柱繼續(xù)實(shí)驗(yàn),三次正好倒?jié)M,教育論文《利用“錯(cuò)誤”資源,展示思維過程 ——《圓錐的體積》一課的案例反思》。)學(xué)生調(diào)換教具,再試。
師:什么情況下,圓錐的體積是圓柱的三分之一?
生:等底等高。
生:圓錐的體積等于和它等底等高的圓柱體積的三分之一。
師:也就是說圓錐的體積等于圓柱體積的三分之一的前提條件是等底等高。
案例反思
以前教學(xué)《圓錐的體積》時(shí)多是先由教師演示等底等高情況下的三分之一,再讓學(xué)生驗(yàn)證,最后教師通過對(duì)比實(shí)驗(yàn)說明不等底等高的差異,但效果不太好,學(xué)生對(duì)等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學(xué)生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設(shè)計(jì)了以上的教學(xué)片斷:讓學(xué)生自選空?qǐng)A柱和圓錐研究圓柱和圓錐體積之間的關(guān)系,學(xué)生通過動(dòng)手操作得出的結(jié)論與書上的結(jié)論有很大的差異,有三分之一、四分之一、二分之一,思維出現(xiàn)激烈的碰撞,這時(shí)我沒有評(píng)判結(jié)果,而是讓學(xué)生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學(xué)生裝在看似混亂無序的實(shí)踐中,增加對(duì)實(shí)驗(yàn)條件的辨別及信息的批判。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進(jìn)了學(xué)生實(shí)踐能力和批判意識(shí)的發(fā)展。而這些目標(biāo)的達(dá)成完全是靈活機(jī)智地利用“錯(cuò)誤”這一資源,所產(chǎn)生的效果
在平時(shí)的課堂教學(xué)中,我們要善于利用“錯(cuò)誤”這一資源,讓學(xué)生思考問題幾經(jīng)碰壁終于找到解決問題的方法,把思考問題的實(shí)際過程展現(xiàn)給學(xué)生看,讓學(xué)生經(jīng)過思維的碰撞,這樣做實(shí)際上是非常富于啟發(fā)性的.學(xué)習(xí)數(shù)學(xué)不僅要學(xué)會(huì)這道題的解法,而且更要學(xué)會(huì)這個(gè)解法是如何找到的.
《圓錐的體積》教學(xué)反思3
讓學(xué)生真正成為活動(dòng)的主動(dòng)者,才能讓學(xué)生真正的感受自己是學(xué)習(xí)的主人。在圖形的教學(xué)中,根據(jù)學(xué)習(xí)內(nèi)容的特點(diǎn),注重操作,注重實(shí)踐,可以讓教學(xué)達(dá)到最高效。
《圓錐》這節(jié)課,其教學(xué)目標(biāo)是:
1)、認(rèn)識(shí)圓錐,了解圓錐的底面、側(cè)面和高;
2)、掌握?qǐng)A錐高的測(cè)量方法;
3)、圓錐體積公式的推導(dǎo);
4)、通過例一例二使學(xué)生會(huì)應(yīng)用圓錐公式進(jìn)行簡(jiǎn)單的計(jì)算。
教學(xué)中,學(xué)生通過實(shí)際觸摸,動(dòng)手測(cè)量、探索推導(dǎo)等活動(dòng),前三個(gè)教學(xué)目標(biāo)在輕松快樂的氛圍中順利完成。在公式應(yīng)用這個(gè)環(huán)節(jié),考慮到學(xué)生已經(jīng)預(yù)習(xí)過例題,就把例二教學(xué)做了改動(dòng)給出一圓錐形麥堆,底面直徑是20分米,高是14分米,每立方米小麥重0.375千克,求這堆小麥重多少千克?讓學(xué)生自主練習(xí),本以為應(yīng)用公式很快就能解決的一個(gè)問題,可學(xué)生算了好長(zhǎng)時(shí)間還沒有完成。原來我在改動(dòng)數(shù)字時(shí)沒有考慮到圓錐體積公式的1/3和3。14給出的直徑和高與1/3都不能約分,使本應(yīng)該鞏固公式應(yīng)用的目標(biāo)辯詞了復(fù)雜的小數(shù)計(jì)算,浪費(fèi)了大量的時(shí)間,課后習(xí)題沒有處理完就匆匆結(jié)束了這節(jié)課。課后反思數(shù)學(xué)既活又嚴(yán)謹(jǐn),看似一個(gè)簡(jiǎn)單數(shù)字的'出示也要付出周密的策劃。一節(jié)簡(jiǎn)單流暢的好課,并不是隨手拈來的,只要用心的去思考,統(tǒng)籌安排,關(guān)注到每個(gè)細(xì)節(jié)才能得到。
教學(xué)需要學(xué)習(xí),教學(xué)更需要反思,在反思中進(jìn)步,在反思中提高。
《圓錐的體積》教學(xué)反思4
六年級(jí)的學(xué)生對(duì)立體圖形已經(jīng)有了初步的認(rèn)識(shí),因此,在教學(xué)中,我借助圓錐體和圓柱體的聯(lián)系和區(qū)別,引出圓錐體的特征,進(jìn)而分散了難點(diǎn)。在講授體積公式時(shí),我設(shè)計(jì)的實(shí)驗(yàn)環(huán)節(jié),把學(xué)習(xí)的主動(dòng)權(quán)交給了學(xué)生,學(xué)生就可以既動(dòng)手又動(dòng)腦,通過自己的努力總結(jié)出圓錐體的體積公式,在學(xué)習(xí)中體會(huì)到成功的喜悅。
建構(gòu)主義認(rèn)為,學(xué)生的學(xué)習(xí)不是由教師向?qū)W生的單向知識(shí)傳遞,而是學(xué)生建構(gòu)自己知識(shí)的過程。學(xué)生不是被動(dòng)的信息接受者,而是一個(gè)主動(dòng)探究、發(fā)現(xiàn)知識(shí)的研究者;谝陨系恼J(rèn)識(shí),我很注重讓學(xué)生自主學(xué)習(xí),通過動(dòng)手制作圓錐體,培養(yǎng)學(xué)生的.空間概念,自主探究圓錐體的計(jì)算方法,提高解決問題的能力。
這節(jié)課為學(xué)生提供了具體的實(shí)踐活動(dòng),創(chuàng)設(shè)了引導(dǎo)學(xué)生探索、操作和思考的情境,把教師變成“一位顧問”,“一位交換意見的參與者”,“一位幫助發(fā)現(xiàn)矛盾論點(diǎn)、而不是拿出現(xiàn)成真理的人”。這節(jié)課把學(xué)生推到探究新知的“第一線”,讓他們自己動(dòng)手、動(dòng)口、動(dòng)腦,主動(dòng)思考問題,并在探究新知的過程中,暴露感知的矛盾和差異,把他們弄不懂的地方、錯(cuò)誤的地方都擺在桌面上,再引導(dǎo)他們通過獨(dú)立思考,摒棄錯(cuò)誤,發(fā)現(xiàn)真理,實(shí)現(xiàn)由感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化。這樣,通過活動(dòng),讓學(xué)生自己發(fā)現(xiàn)要學(xué)習(xí)的東西,能夠積極地被同化,因而容易得到更深刻的理解。整節(jié)課大部分時(shí)間都是學(xué)生在操作,有獨(dú)立的思考,有小組的合作學(xué)習(xí),有猜想,有驗(yàn)證,有觀察,有分析,有想像,使學(xué)生在盡可能大的活動(dòng)空間中切實(shí)體驗(yàn)到數(shù)學(xué)對(duì)解決實(shí)際問題是有用的,讓學(xué)生在探究的氛圍中自主地學(xué)習(xí)知識(shí),發(fā)現(xiàn)規(guī)律,實(shí)際應(yīng)用,從而獲得成功的體驗(yàn)。
《圓錐的體積》教學(xué)反思5
圓錐的體積是圓柱體積的延伸,所以再學(xué)生了解圓柱體積計(jì)算公式以后,我有意識(shí)地讓學(xué)生來解決圓錐的體積,有的同學(xué)說圓錐的體積公式是V=sh,也有的同學(xué)說不是V=sh,而是V=sh÷3,當(dāng)我問及為什么是V=sh÷3時(shí),這位同學(xué)說,是書上是這樣說的。我知道這位同學(xué)在老師講新課之前,他已提前預(yù)習(xí)了。接著我把提前準(zhǔn)備好的兩個(gè)學(xué)具擺在學(xué)生面前,找人上來操作,讓學(xué)生從實(shí)際操作中驗(yàn)證圓錐的體積公式到底是V=sh,還是V=sh÷3。因?yàn)閿?shù)學(xué)由于語言的嚴(yán)謹(jǐn)性,我說“圓錐的體積是圓柱體積的`1/3”這句話是否正確。有不少同學(xué)通過剛才的試驗(yàn),絕大多數(shù)同學(xué)都說這句話是對(duì)的。然而也有極少數(shù)同學(xué)認(rèn)為這句話不夠嚴(yán)謹(jǐn),還應(yīng)該加上“當(dāng)圓錐與圓柱等底、等高時(shí),圓錐的體積才是圓柱體積的1/3.”通過辨析,我讓學(xué)生不僅明白了圓錐體積公式的推導(dǎo)過程,還讓學(xué)生明白圓錐體積公式與圓柱體積公式之間的內(nèi)在聯(lián)系。
一節(jié)好的數(shù)學(xué)課不是老師教出來的,而是學(xué)生通過試驗(yàn)總結(jié)、歸納、體驗(yàn),通過活動(dòng)“做”出來的。
《圓錐的體積》教學(xué)反思6
該學(xué)習(xí)“圓錐的認(rèn)識(shí)和體積”這部分知識(shí)了,想到在學(xué)生的生活中,純圓錐的物體并不多見,所以這樣安排本部分內(nèi)容的`教學(xué)。
第一節(jié)課帶領(lǐng)學(xué)生做圓錐,畫圓——剪圓——再剪出圓心角不同的扇形——把兩條半徑無縫隙的粘住,放在桌上,一個(gè)圓錐成型了,如果你想粘上底面也可以,可是得知道底面的半徑。。ㄍ卣乖鯓又郎刃蔚陌霃胶蛨A心角的度數(shù),求出圓錐底面半徑的大小)
學(xué)生自己做出來的圓錐,對(duì)它的認(rèn)識(shí)肯定是比較深刻的——圓錐由一個(gè)底面和一個(gè)曲面圍城,底面是圓,側(cè)面展開是一個(gè)扇形,還有強(qiáng)調(diào)對(duì)圓錐的高的理解。直角三角形沿一條直角邊所在的直線旋轉(zhuǎn)可以得到一個(gè)圓錐,讓學(xué)生試一試,想象一下。
第一節(jié)課圓錐的認(rèn)識(shí),因?yàn)榧由狭俗寣W(xué)生動(dòng)手制作這一環(huán)節(jié),教學(xué)效果出奇的好,也為下一節(jié)課做好的鋪墊。
《圓錐的體積》教學(xué)反思7
通過本節(jié)課的教學(xué),我意識(shí)到在平時(shí)的課堂教學(xué)中,我們要善于利用以學(xué)生認(rèn)識(shí)發(fā)展規(guī)律為依托 :發(fā)現(xiàn)問題,提出問題探究解決問題,探究解決問題得出結(jié)論,實(shí)際應(yīng)用使學(xué)生在“認(rèn)識(shí)—實(shí)踐—再認(rèn)識(shí)、再實(shí)踐”中理解運(yùn)用知識(shí)。反思教學(xué)過程,主要有以下幾點(diǎn)體會(huì):
一、觀察引導(dǎo)
讓學(xué)生觀察用卷筆刀削鉛筆,明白剛才那一截是圓柱體,現(xiàn)在這一截變成了圓錐體。啟發(fā)學(xué)生:削成后的這一部分體積與原體積比較有無變化?學(xué)生回答是肯定的,削后體積變小了。變小了以后的圓錐體是原圓柱體的幾分之幾?也就是說圓錐體體積與圓柱體體積有什么聯(lián)系?圓錐體體積公式如何推導(dǎo)?帶著問題去看書。
二、巧置陷阱
學(xué)生看書后知道圓錐體體積等于等底等高圓柱體積的三分之一。但對(duì)“等底、等高”這個(gè)條件往往不注意。為了突出“等底、等高”這個(gè)條件的重要性,我巧置陷阱,讓學(xué)生分組操作,(有一組的圓柱和圓錐體的容器不是等底等高的,有一組的圓柱和圓錐體的容器是等底等高的),去驗(yàn)證課本上的知識(shí)。學(xué)生進(jìn)行倒水實(shí)驗(yàn):用圓錐體容器盛滿水倒入圓柱體容器。過了一會(huì)兒,一個(gè)小組倒了3次水,還沒灌滿;而另一小組的同學(xué)卻大叫:“水溢出來了!”這是什么緣故呢?學(xué)生們議論紛紛。
三、柳暗花明
這時(shí)正是學(xué)生思維活動(dòng)進(jìn)入高潮時(shí),我拿出等底等高的圓柱體和圓錐體兩個(gè)容器,用圓錐體量水三次正好灌滿圓柱體,引導(dǎo)學(xué)生與上次演示比較,1比3的關(guān)系是在什么基礎(chǔ)上建立的?學(xué)生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。而在這樣的過程中我放手讓學(xué)生去想、去做,鼓勵(lì)學(xué)生以多角度去思考問題。學(xué)生在學(xué)習(xí)的過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。
四、歸納總結(jié)
剛才同學(xué)們發(fā)現(xiàn)圓錐體體積等于等底、等高圓柱體體積的,現(xiàn)在圓錐體體積公式如何推導(dǎo)?學(xué)生很容易得出:
v圓錐體=sh÷3
但在教學(xué)過程中我發(fā)現(xiàn)了幾個(gè)值得我思考和改正的問題:
1、在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實(shí)驗(yàn)的學(xué)生不多。
2、有些學(xué)生在計(jì)算過程中常忘記除以3,需要加強(qiáng)練習(xí)。
3、對(duì)學(xué)生的操作關(guān)注不夠到位。
采取的措施:
1、培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,做題時(shí)認(rèn)真仔細(xì)。
2、上課要用心去感受學(xué)生課堂上出現(xiàn)的各種情況,使自己更有激情,把自己更好地融入到課堂教學(xué)中去。同時(shí)也會(huì)把時(shí)間更多的放在鉆研教材上,把每一節(jié)課上得有聲有色。
《圓錐的體積》教學(xué)反思
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿和記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!币虼耍诮虒W(xué)圓錐體積計(jì)算時(shí),一改以前教師演示或在教師指令下實(shí)驗(yàn)的'做法;采取提供學(xué)生材料和機(jī)會(huì),引導(dǎo)學(xué)生自主探究的學(xué)習(xí)方式。具體表現(xiàn)在:
。1)密切數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系,富有兒童情趣。
學(xué)生從熟悉的經(jīng)典歷史故事《曹操稱象》中,理解了“大象”轉(zhuǎn)化為“石頭”的等量代換的數(shù)學(xué)方法,滲透轉(zhuǎn)化的方法,為新知識(shí)作好鋪墊和準(zhǔn)備。又從刨鉛筆直觀引入,引發(fā)學(xué)生大膽猜想,學(xué)生的主動(dòng)性,探究性得到培養(yǎng)。實(shí)驗(yàn)中的米;最后,習(xí)題中又回歸生活,延伸了課堂。
。2)致力于改變學(xué)生的學(xué)習(xí)方式。
在教學(xué)過程中,能夠在學(xué)生已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)和動(dòng)手操作上,經(jīng)過學(xué)生自主探索與合作交流,解決了與生活經(jīng)驗(yàn)密切聯(lián)系,具有挑戰(zhàn)性的問題。課堂中,啟發(fā)學(xué)生提問,猜想,動(dòng)手測(cè)量,注重了解決問題能力的培養(yǎng),體驗(yàn)到了成功的快樂。
。3)學(xué)習(xí)過程中揭示了一般科學(xué)的研究方法。
提出問題——直覺猜想——實(shí)驗(yàn)探索——合作交流——實(shí)驗(yàn)驗(yàn)證——得出結(jié)論——實(shí)踐運(yùn)用。這為以后的探究學(xué)習(xí)提供了一個(gè)基本方法,使學(xué)生在自主探索中掌握了知識(shí),同時(shí)獲得了最廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)、理想和方法,更發(fā)展了學(xué)生的反思意識(shí)、小組自我評(píng)價(jià)意識(shí)。
縱觀本節(jié)課的設(shè)計(jì),運(yùn)用現(xiàn)代教學(xué)理論,以新課程的理念指導(dǎo)教學(xué),較好的處理了主導(dǎo)和主體、知識(shí)和能力、過程和結(jié)論的關(guān)系,充分調(diào)動(dòng)了學(xué)生的積極性,引導(dǎo)全體學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口參與學(xué)習(xí)的全過程。整節(jié)課教學(xué)目標(biāo)明確,教學(xué)層次清楚。結(jié)構(gòu)嚴(yán)謹(jǐn),重點(diǎn)突出,取得了良好的教學(xué)效果。
《圓錐的體積》教學(xué)反思8
圓錐的體積是在學(xué)生掌握了圓柱的特征及圓柱的體積等有關(guān)知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。
好的地方:
1.讓學(xué)生經(jīng)歷圓錐體積計(jì)算公式的推導(dǎo)過程,弄清來龍去脈。在教學(xué)中,我讓學(xué)生在課前自己先制作出等底等高的圓柱和圓錐型容器教具,讓學(xué)生通過倒水,發(fā)現(xiàn)在等底等高的圓柱和圓錐中,用圓錐容器裝水倒入等底等高的圓柱容器中,剛好倒三次,即圓錐的體積是與它等底等高圓柱體積的三分之一,由此通過公式可以得出:
V圓錐=1/3圓柱=1/3Sh(知道底面積和高)
=1/3πr2h(知道半徑和高)
=1/3π(d*2)2h(知道直徑和高)
=1/3π(C*2*π)2h(知道周長(zhǎng)和高)
2.加強(qiáng)學(xué)生的實(shí)踐,培養(yǎng)學(xué)生的動(dòng)手操作能力與自主解決問題的能力。在教學(xué)中,我讓學(xué)生自己制作學(xué)具,目的是讓學(xué)生通過自己的親身實(shí)踐,親自動(dòng)手,親身體會(huì)圓柱與圓錐體積之間的關(guān)系,這樣利于培養(yǎng)學(xué)生自主探索,與同學(xué)之間合作學(xué)習(xí),共同解決問題的能力。學(xué)生在此項(xiàng)活動(dòng)中,不僅收獲了知識(shí)的來龍去脈,還體會(huì)到了與同學(xué)合作,共享成果的`幸福喜悅。
不足之處:
沒有在制作學(xué)具時(shí)候,制作出等底不等高的圓柱和圓錐型容器教具,然后挑一組學(xué)生實(shí)驗(yàn),得不出圓錐的體積是與它等底等高圓柱體積的三分之一的結(jié)論。所以,缺乏對(duì)比性,如果加入這個(gè)教具的話,更能讓學(xué)生深知等底等高的重要性。
《圓錐的體積》教學(xué)反思9
本節(jié)課在學(xué)習(xí)圓柱的體積的基礎(chǔ)上,再學(xué)習(xí)圓錐的體積,學(xué)生感到非常簡(jiǎn)單易懂,因此學(xué)起來并不感到困難。但教學(xué)過后,仍感到有許多不盡人意之處,當(dāng)然也有許多收獲。
一、收獲
1、是在教學(xué)新課時(shí),沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實(shí)驗(yàn),而是通過師生交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然;
2、是在實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動(dòng)手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,即動(dòng)手操作,又動(dòng)腦思考,努力探索圓錐體積的計(jì)算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。
3、探究圓錐體積計(jì)算方法的學(xué)習(xí)過程,學(xué)生可以不再是實(shí)驗(yàn)演示的被動(dòng)的觀看者,而是參與操作的主動(dòng)探索者,真正成為學(xué)習(xí)的主人。在整個(gè)學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識(shí),同時(shí)也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會(huì)逐步變的有思想、會(huì)思考、會(huì)逐漸發(fā)現(xiàn)自身的價(jià)值。
4、每個(gè)學(xué)生都經(jīng)歷“猜想---設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教師適當(dāng)?shù)囊龑?dǎo)下給于學(xué)生根據(jù)自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計(jì)算方法。讓每個(gè)學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的'過程。
二、不足:
1、許多學(xué)生在計(jì)算過程中常忘記除以3,需要加強(qiáng)練習(xí)。
2、許多學(xué)生在計(jì)算中出現(xiàn)錯(cuò)誤,計(jì)算能力不過關(guān),口算也不過關(guān),導(dǎo)致計(jì)算失敗。
3、在學(xué)生進(jìn)行倒沙實(shí)驗(yàn)時(shí),應(yīng)該事先讓學(xué)生準(zhǔn)備好充分的學(xué)具,比如,準(zhǔn)備一個(gè)圓柱,然后做一個(gè)和圓柱等底等高的圓錐,在做一個(gè)等底不等高的圓錐或者等高不等底的,這樣學(xué)生就比較明顯的看出與圓柱等底等高的圓錐的體積是圓柱體積的三分之一。
4、一節(jié)好課在教學(xué)時(shí)要層次清楚,步步深入,重點(diǎn)突出。應(yīng)注意激發(fā)學(xué)生的求知欲。要有全體學(xué)生的積極參與,突出學(xué)生的主體作用。我在這幾個(gè)方面都還要加強(qiáng)。
《圓錐的體積》教學(xué)反思10
對(duì)于《圓錐體積》的教學(xué),我前些年按傳統(tǒng)的教法:用空心圓柱、圓錐裝沙的實(shí)驗(yàn),得出圓錐體積的計(jì)算公式,的確有不妥之處,其一用“容積”偷換“體積”的概念,淡化了學(xué)生對(duì)“體積”的理解。其二在實(shí)驗(yàn)中,把“容積”看作近似地等于“體積”有失科學(xué)的嚴(yán)密性,對(duì)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度不利。由于自己的守舊,一直沒能突破,沒想到今日的突破收到意想不到的效果。也引發(fā)我的進(jìn)一步思考:
1、在日常的.教學(xué)中,我們教師常常提醒學(xué)生,學(xué)習(xí)不能死守書本、不知變化、人云我云,要不拘泥、不守舊。那么我們教師自己更應(yīng)該打破條條框框、突破教材、創(chuàng)造性的靈活地使用教材。
2、陶行知先生倡導(dǎo)“手腦聯(lián)盟”,他說“人生兩個(gè)寶,雙手和大腦”就是要學(xué)生手腦并用。在小學(xué)數(shù)學(xué)教學(xué)中,如果我們教師能給學(xué)生創(chuàng)造人人參與,既動(dòng)手又動(dòng)腦的情景,就能最大限度的激發(fā)學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的創(chuàng)新思維。讓不同的學(xué)生在活動(dòng)中得到不同的發(fā)展。
3、實(shí)驗(yàn)后的交流是培養(yǎng)學(xué)生思維的有力的催化劑。在交流中,學(xué)生通過比較、思考,加深了對(duì)公式的理解,不僅理解了圓柱體和圓錐體之間的關(guān)系,而且培養(yǎng)了學(xué)生的思維能力、表達(dá)能力、概括能力。
總之,我們教師只有在教學(xué)活動(dòng)中,努力創(chuàng)造條件,讓學(xué)生主動(dòng)參與、發(fā)現(xiàn)和揭示數(shù)學(xué)原理和方法,我們的數(shù)學(xué)課堂就一定能生成更多的精彩!
《圓錐的體積》教學(xué)反思11
(1)
讓學(xué)生真正成為活動(dòng)的主動(dòng)者,才能讓學(xué)生真正的感受自己是學(xué)習(xí)的主人。在圖形的教學(xué)中,根據(jù)學(xué)習(xí)內(nèi)容的特點(diǎn),注重操作,注重實(shí)踐,可以讓教學(xué)達(dá)到最高效。
就正如探究圓錐體積計(jì)算方法的學(xué)習(xí)過程,學(xué)生可以不再是實(shí)驗(yàn)演示的被動(dòng)的觀看者,而是參與操作的主動(dòng)探索者,真正成為學(xué)習(xí)的主人。在整個(gè)學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識(shí),同時(shí)也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會(huì)逐步變的有思想、會(huì)思考、會(huì)逐漸發(fā)現(xiàn)自身的價(jià)值。同時(shí),在操作與實(shí)踐的過程中讓一些學(xué)習(xí)困難的學(xué)生也有參與的興趣,讓他們也能感受數(shù)學(xué)學(xué)習(xí)的快樂,使他們懂得他們也可以通過玩掌握到數(shù)學(xué)的知識(shí)。
讓每個(gè)學(xué)生都經(jīng)歷“猜想估計(jì)---設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教師適當(dāng)?shù)囊龑?dǎo)下給于學(xué)生根據(jù)自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計(jì)算方法。讓每個(gè)學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。同時(shí)對(duì)于學(xué)習(xí)困難的學(xué)生該學(xué)習(xí)方法也是降低了他們對(duì)知識(shí)的掌握的難度。
出現(xiàn)了驗(yàn)證等底等高的圓錐體和圓柱體體積的方法。涌現(xiàn)出了對(duì)圓錐體體積計(jì)算公式中“1/3”的不同理解,實(shí)現(xiàn)了學(xué)習(xí)策略的多樣化,豐富了學(xué)生的學(xué)習(xí)資源。雖然學(xué)生的學(xué)習(xí)用具是固定的,但是他們所采用的方式卻是不一樣的。這也證明了學(xué)生是有著各自不同的思維方式的。
(2)
《圓錐》這節(jié)課,其教學(xué)目標(biāo)是:1)、認(rèn)識(shí)圓錐,了解圓錐的底面、側(cè)面和高;2)、掌握?qǐng)A錐高的測(cè)量方法;3)、圓錐體積公式的推導(dǎo);4)、通過例一例二使學(xué)生會(huì)應(yīng)用圓錐公式進(jìn)行簡(jiǎn)單的計(jì)算。教學(xué)中,學(xué)生通過實(shí)際觸摸,動(dòng)手測(cè)量、探索推導(dǎo)等活動(dòng),前三個(gè)教學(xué)目標(biāo)在輕松快樂的氛圍中順利完成。在公式V錐=1/3sh=1/3r2h,應(yīng)用這個(gè)環(huán)節(jié),考慮到學(xué)生已經(jīng)預(yù)習(xí)過例題,就把例二教學(xué)做了改動(dòng)給出一圓錐形麥堆,底面直徑是20分米,高是14分米,每立方米小麥重0.375千克,求這堆小麥重多少千克?讓學(xué)生自主練習(xí),本以為應(yīng)用公式很快就能解決的一個(gè)問題,可學(xué)生算了好長(zhǎng)時(shí)間還沒有完成。原來我在改動(dòng)數(shù)字時(shí)沒有考慮到圓錐體積公式的1/3和3.14給出的直徑和高與1/3都不能約分,使本應(yīng)該鞏固公式應(yīng)用的目標(biāo)辯詞了復(fù)雜的小數(shù)計(jì)算,浪費(fèi)了大量的時(shí)間,課后習(xí)題沒有處理完就匆匆結(jié)束了這節(jié)課。課后反思數(shù)學(xué)既活又嚴(yán)謹(jǐn),看似一個(gè)簡(jiǎn)單數(shù)字的出示也要付出周密的策劃。一節(jié)簡(jiǎn)單流暢的好課,并不是隨手拈來的,只要用心的去思考,統(tǒng)籌安排,關(guān)注到每個(gè)細(xì)節(jié)才能得到。
教學(xué)需要學(xué)習(xí),教學(xué)更需要反思,在反思中進(jìn)步,在反思中提高。
(3)
一節(jié)課下來,我靜心思考,有以下幾點(diǎn)反思:
1、一節(jié)好的課,在教學(xué)時(shí)要層次清楚,步步深入,重點(diǎn)突出。
在教學(xué)“圓錐的'體積”時(shí),我首先從實(shí)物圖形講解到空間圖形,采用對(duì)比的方法,不斷加深學(xué)生對(duì)形體的認(rèn)識(shí)。然后要學(xué)生用自己的學(xué)具動(dòng)手做實(shí)驗(yàn),從實(shí)驗(yàn)的過程中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。然后,利用公式解決生活中的實(shí)際問題,加深學(xué)生印象。
2、一節(jié)好的課,應(yīng)注意激發(fā)學(xué)生的求知欲。
新課一開始,我就讓學(xué)生觀察,先猜測(cè)圓柱和圓錐的大小,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。在應(yīng)用公式的教學(xué)中,又把問題轉(zhuǎn)向到課初學(xué)生猜測(cè)且還沒有解決的問題,引導(dǎo)學(xué)生計(jì)算出圓錐的體積,終于使懸念得出了滿意的結(jié)果,使學(xué)生獲得了成功的喜悅。
3、一節(jié)好的課,要有全體學(xué)生的積極參與,突出學(xué)生的主體作用。
由于我平時(shí)非常重視讓學(xué)生參與教學(xué)的全過程,重視培養(yǎng)學(xué)生的思維想象力,因此,學(xué)生在這節(jié)課上,表現(xiàn)也相當(dāng)?shù)某錾N以诮虒W(xué)中注意調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,采用分組觀察、操作、討論,動(dòng)手做實(shí)驗(yàn)等方法,突出了學(xué)生的主體作用。
《圓錐的體積》教學(xué)反思12
優(yōu)點(diǎn):
教學(xué)“圓錐的體積”一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。我讓每個(gè)學(xué)生都經(jīng)歷“猜想估計(jì)———設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證———發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,適當(dāng)?shù)囊龑?dǎo)學(xué)生根據(jù)自己的設(shè)想探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式——V=1/3Sh,這樣,就有一種水到渠成的'感覺。然后,利用公式解決生活中的實(shí)際問題,加深學(xué)生印象。
不足:
1、學(xué)生對(duì)公式推導(dǎo)過程理解有困難,對(duì)圓錐體體積計(jì)算公式中“1/3”的理解不深入,雖然學(xué)生的學(xué)習(xí)用具是固定的,但是他們所采用的方式卻是不一樣的,學(xué)生有著各自不同的思維方式。
2、在計(jì)算的過程中,運(yùn)用公式計(jì)算時(shí)往往丟失“1/3”,單位名稱用錯(cuò),體積單位用面積單位。
再教設(shè)想:
1.為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1立方米=——立方分米=——立方厘米,100平方厘米=1立方分米。
2.在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓錐與圓柱體各部分之間的關(guān)系,從而推導(dǎo)出圓錐的體積公式。
《圓錐的體積》教學(xué)反思13
圓錐的體積是在學(xué)生掌握了圓柱的特征及圓柱的體積等有關(guān)知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。
體積的推導(dǎo),必須讓學(xué)生經(jīng)歷圓錐體積計(jì)算公式的推導(dǎo)過程,弄清來龍去脈。在教學(xué)中,我首先通過給學(xué)生提供兩組不同的學(xué)具:一組是等底等高的圓柱和圓錐,另一組是等底不等高的圓柱和圓錐。讓學(xué)生通過倒水,發(fā)現(xiàn)在等底等高的圓柱和圓錐中,用圓錐容器裝水倒入等底等高的圓柱容器中,剛好倒三次,即圓錐的體積是與它等底等高圓柱體積的三分之一,而在等底不等高的圓柱和圓錐中,則不存在這樣的關(guān)系,圓錐的體積就不是與它等底不等高圓柱體積的`三分之一,由此通過公式可以得出:
V圓錐=1/3圓柱=1/3Sh(知道底面積和高)
=1/3πr2h(知道半徑和高)
=1/3π(d÷2)2h(知道直徑和高)
=1/3π(C÷2÷π)2h(知道周長(zhǎng)和高)
加強(qiáng)學(xué)生的實(shí)踐,培養(yǎng)學(xué)生的動(dòng)手操作能力與自主解決問題的能力。在教學(xué)中,我提供的是兩組不同的學(xué)具,目的是讓學(xué)生通過自己的親身實(shí)踐,親自動(dòng)手,親身體會(huì)圓柱與圓錐體積之間的關(guān)系,這樣利于培養(yǎng)學(xué)生自主探索,與同學(xué)之間合作學(xué)習(xí),共同解決問題的能力。學(xué)生在此項(xiàng)活動(dòng)中,不僅收獲了知識(shí)的來龍去脈,還體會(huì)到了與同學(xué)合作,共享成果的幸福喜悅。
《圓錐的體積》教學(xué)反思14
《圓錐的體積》是人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第三單元的內(nèi)容之一,它是學(xué)生在學(xué)習(xí)了圓柱的認(rèn)識(shí),圓柱的表面積,圓柱的體積,圓錐的認(rèn)識(shí)基礎(chǔ)之上,學(xué)習(xí)的。這一堂課,我有幸邀請(qǐng)了三位同伴來聽我的課,給我一定的指導(dǎo),我也從中發(fā)現(xiàn)了自己的一些問題。
這節(jié)課中,我注重學(xué)生操作的過程,我的設(shè)想就是要學(xué)生經(jīng)歷這個(gè)過程。首先要讓學(xué)生觀察,我手中的學(xué)具,圓錐和圓柱有什么共同點(diǎn)?學(xué)生發(fā)現(xiàn),它們是等底等高的。接下來,我提出問題,它們誰的體積大?但是關(guān)于這個(gè)問題,學(xué)生的回答,基本上沒有答到點(diǎn)子上,有學(xué)生說,因?yàn)檎l的表面積大,所以體積大。本來我預(yù)設(shè)中,很容易觀察發(fā)現(xiàn)的體積對(duì)比,但是,因?yàn)槲业?提問,它們誰的體積大,為什么,這個(gè)為什么,讓學(xué)生絞盡腦汁去想,去套一些內(nèi)容。后來我反思,我應(yīng)該先把圓錐放入圓柱里,讓學(xué)生直接說出,圓錐的體積,比等底等高的圓柱體積小;蛘哂迷囼(yàn)的方法,把圓錐的水,倒入圓柱,讓學(xué)生直接得到體積比大小的結(jié)論。接下來,先讓學(xué)生說說方法如何驗(yàn)證圓錐和等底等高圓柱體積之間的關(guān)系是什么?根據(jù)以前學(xué)的圓柱體積,學(xué)生得出了三個(gè)方法,排水法,實(shí)驗(yàn)法,測(cè)量體積法。根據(jù)一些情況,排水法無法實(shí)現(xiàn)。學(xué)具是空心的,會(huì)漂浮在水面,其次,學(xué)具有縫隙,水會(huì)滲進(jìn)去。所以排水法,只是作為學(xué)生了解的方法,但并不實(shí)踐。在試驗(yàn)環(huán)節(jié),我沒有說清楚具體的操作要求,導(dǎo)致個(gè)別學(xué)生在操作中,用圓柱的水,倒進(jìn)圓錐里,這樣難以得出正確的結(jié)論。大多數(shù)學(xué)生,聽清了我的要求,幾杯圓錐的水,可以倒入圓柱。學(xué)生很容易就得出了結(jié)論。我讓學(xué)生在黑板上小組演示倒水的過程,同時(shí),也讓其他學(xué)生一起數(shù)杯數(shù),也是加深試驗(yàn)結(jié)果。我多讓幾個(gè)學(xué)生說一說,圓錐和等底等高圓柱體積之間的關(guān)系,用了關(guān)聯(lián)詞,因?yàn)?..所以...我也引導(dǎo)學(xué)生,多次強(qiáng)調(diào),這樣的關(guān)系一定有一個(gè)前提,圓錐和圓柱是等底等高的。為了驗(yàn)證這樣的體積關(guān)系,我抽學(xué)生上講臺(tái),利用測(cè)量法,來驗(yàn)證。當(dāng)然,我在最后也強(qiáng)調(diào),試驗(yàn)只是一種手段,得出的結(jié)論可能是不精確的,但是數(shù)學(xué)家驗(yàn)證了這一點(diǎn),所以大家可以直接用這條結(jié)論。
美中不足就是習(xí)題沒有時(shí)間去練習(xí)。學(xué)生都有最佳遺忘曲線,如果沒有練習(xí)題,學(xué)生的知識(shí)沒有在最佳的時(shí)間去鞏固去檢測(cè),對(duì)于真正理解知識(shí),鞏固知識(shí)是不利的。我設(shè)計(jì)的習(xí)題,都是書上的,還是缺乏一點(diǎn)趣味性、層次性。
總之,這節(jié)課,不是很完美,有很多遺憾。以后的幾何課中,我還是會(huì)多讓學(xué)生歷經(jīng)操作的過程,學(xué)生在操作中觀察、歸納、驗(yàn)證、總結(jié)。操作前,一定要講清楚操作要求,還要預(yù)設(shè)更多可能會(huì)出現(xiàn)的
情況,時(shí)間的把控要再精確一點(diǎn),自己的教學(xué)語言,還更規(guī)范一些,多用一些激勵(lì)語,以后的教學(xué)設(shè)計(jì),盡量多考慮如何體現(xiàn)趣味性這個(gè)問題。
《圓錐的體積》教學(xué)反思15
我認(rèn)為這節(jié)課的設(shè)計(jì)與教學(xué)具有下面的特點(diǎn):
一、在教學(xué)新課時(shí),沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒水實(shí)驗(yàn),而是通過師生交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望。學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然。
二、在實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動(dòng)手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,既動(dòng)手操作,又動(dòng)腦思考,努力探索圓錐體制的計(jì)算方法。這樣的學(xué)習(xí),學(xué)生學(xué)得活,記得牢,既發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。
但是,這節(jié)課學(xué)生是在教師預(yù)設(shè)引導(dǎo)中探究。為什么要學(xué)的.疑念,怎樣學(xué)的策略,可能還不夠突顯,與學(xué)生生活聯(lián)系還不是很緊密的。學(xué)生的問題意識(shí)不強(qiáng),都有待探究。
【《圓錐的體積》教學(xué)反思】相關(guān)文章:
《圓錐的體積》教學(xué)反思04-03
圓錐的體積教學(xué)反思15篇03-31
《圓錐體積》教學(xué)反思04-02
圓錐的體積教學(xué)反思(15篇)04-06
圓錐和圓錐的體積08-16