- 《3的倍數(shù)的特征》教學(xué)案例反思 推薦度:
- 相關(guān)推薦
3的倍數(shù)特征教學(xué)反思
身為一名人民教師,教學(xué)是我們的任務(wù)之一,通過教學(xué)反思可以很好地改正講課缺點(diǎn),那么寫教學(xué)反思需要注意哪些問題呢?以下是小編整理的3的倍數(shù)特征教學(xué)反思,僅供參考,大家一起來看看吧。
3的倍數(shù)特征教學(xué)反思1
在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學(xué)情況進(jìn)行反思。
一、跨年級學(xué)習(xí)新數(shù)學(xué)知識,知識銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。
雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時難以掌握。
二、為了體現(xiàn)“容量大”,教學(xué)延堂。
備課時也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時間和機(jī)會就壓縮的比較少了。而3的倍數(shù)的特征與2、5的'又完全不同,學(xué)生接受起來可能會有一定的難度,最好單獨(dú)作為一課時學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測試拖堂了。
三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。
高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會學(xué),學(xué)會,在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。
3的倍數(shù)特征教學(xué)反思2
《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號,根據(jù)編號做游戲。由于每個學(xué)生的編號不一樣,所以在做游戲的時候,每個學(xué)生集中注意力,傾聽游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時,對3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學(xué)生充分地認(rèn)識到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個位有什么特點(diǎn),再次否定了之前的思維定式。由于個位上沒有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時能發(fā)現(xiàn)個位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時提出“什么是沒有變的?”問題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個規(guī)律后,下面開始延伸這個規(guī)律。一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個規(guī)律?通過兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個規(guī)律是普遍存在的,而這時3的倍數(shù)特征已經(jīng)歸結(jié)為:一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯。最后,對本節(jié)課的知識進(jìn)行了延伸,通過出示課本第13頁“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識不但要知其然還要知其所以然。整個教學(xué)過程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺得在每個環(huán)節(jié)上的過渡應(yīng)該更加的自然。另外,在小組討論的時候應(yīng)多關(guān)注學(xué)生的交流,對學(xué)生進(jìn)行適時地指導(dǎo);诘谝还(jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過本節(jié)課,所以對于學(xué)生們來說已經(jīng)是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來一個新的問題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
1、學(xué)生在舉例驗(yàn)證猜想的時候,讓學(xué)生體會反例的作用,如果有一個反例的存在,就說明猜想的結(jié)論是錯誤的。
2、在探索3的倍數(shù)特征時,對于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會:在研究規(guī)律的時候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
3、在拓展規(guī)律的時候,采用舉了大量的'數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會規(guī)律的適用范圍。
4、在做練習(xí)的時候,第2小題,關(guān)注學(xué)生思考問題是否全面,關(guān)注學(xué)生的思考過程。
5、練習(xí)的第3小題,一道解決問題的題目,通過讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時也說明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學(xué)生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。
3的倍數(shù)特征教學(xué)反思3
《2、5、3倍數(shù)的特征練習(xí)課》是一堂練習(xí)課,本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了2,5,3倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。為以后學(xué)習(xí)分?jǐn)?shù),特別是約分、通分,需要以因數(shù)倍數(shù)的知識的概念為基礎(chǔ),到進(jìn)一步掌握公因數(shù)、最大公因數(shù)和公倍數(shù)、最小公倍數(shù)的概念,需要用到質(zhì)數(shù)、合數(shù)的概念,而最基礎(chǔ)的就是掌握2,5,3的倍數(shù)的特征。從開始學(xué)習(xí)2,5的倍數(shù)特征僅僅體現(xiàn)在個位數(shù)上,到學(xué)習(xí)3的倍數(shù)特征時從只看個位轉(zhuǎn)向考察各位上的數(shù)相加的和,學(xué)生已經(jīng)有了思路上的轉(zhuǎn)變,思維的轉(zhuǎn)折,觀察角度的改變,以此讓學(xué)生自主探索4的倍數(shù)特征,但由于與2,5,3的倍數(shù)特征又有些許不同,對學(xué)生依然有一定難度。
如果只是單一的做習(xí)題,勢必有學(xué)生會感到枯燥無味,這樣子學(xué)生的學(xué)習(xí)效果難以保障,對教師的功底與教學(xué)策略有很大的挑戰(zhàn)。因此課堂伊始,我直接開門見山式的先對前面學(xué)習(xí)的知識進(jìn)行復(fù)習(xí)梳理,接著利用學(xué)生感興趣也是正在使用著的工具——“手機(jī)”的鎖屏密碼為線索,通過提示讓學(xué)生解密碼的方式激發(fā)學(xué)生的學(xué)習(xí)興趣,然后以破解后的密碼1080,導(dǎo)出本節(jié)課我們要重點(diǎn)探究的'4的倍數(shù)特征。讓學(xué)生帶著趣味,自主的去探索。由于有了前面探索2,5,3倍數(shù)特征的基礎(chǔ)在,所以在探索4的倍數(shù)特征時放手讓學(xué)生通過操作,觀察,思考從而有所發(fā)現(xiàn),體驗(yàn)探索的樂趣。接著通過計(jì)數(shù)器,讓學(xué)生明白判斷4的倍數(shù)特征背后的原理。最后在練習(xí)鞏固中,逐漸熟練應(yīng)用所學(xué)知識,感知數(shù)學(xué)知識和我們的生活緊密聯(lián)系。如何讓練習(xí)課不僅僅只是做練習(xí),讓學(xué)生能在練習(xí)中獲得對知識的理解以及思維上實(shí)質(zhì)的提升,仍然值得我在好好的去思考探索。
3的倍數(shù)特征教學(xué)反思4
站在跳板上學(xué)習(xí)數(shù)學(xué)——3的倍數(shù)的特征教學(xué)反思
《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實(shí)際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展 。
“3的倍數(shù)的特征”屬于數(shù)論的范疇,離學(xué)生的生活較遠(yuǎn),有一定的難度。而2、5的倍數(shù)的特征是學(xué)生學(xué)習(xí)這一課的基礎(chǔ)。所以,在教學(xué)“3的倍數(shù)的特征”時,我首先以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。但針對這樣的環(huán)節(jié),也有老師提出反對意見,他們認(rèn)為教師在教學(xué)中不僅要注重知識的正遷移,還要防止負(fù)遷移的產(chǎn)生,要能正確地預(yù)見學(xué)生學(xué)習(xí)中可能出現(xiàn)的錯誤,采取適當(dāng)措施,防患于未然,達(dá)到所謂“防微杜漸”的目的;他們滿足于學(xué)生的一路凱歌,陶醉于學(xué)生的盡善盡美,視學(xué)生的差錯為洪水猛獸。但是課堂就是學(xué)生出錯的地方,出錯是學(xué)生的權(quán)利,學(xué)生的錯誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學(xué)的巨大財富”。正式因?yàn)槿绱耍覀兊男抡n堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學(xué)生總會出現(xiàn)各種各樣的錯誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個出錯的機(jī)會和權(quán)利。
其次,看一個數(shù)是不是2、5的倍數(shù),只需看這個數(shù)的個位。個位是0、2、4、6、8的數(shù)就是2的倍數(shù),個位是0、5的數(shù)就是5的倍數(shù)。而3的倍數(shù)特征則不然,一個數(shù)是不是3的倍數(shù),不能只看個位,而要看它所有所有數(shù)位上的數(shù)的和是不是3的倍數(shù)。在教學(xué)中,我和大多數(shù)的教師一樣,更多的是關(guān)注兩者的不同,注重讓學(xué)生對兩種特征進(jìn)行區(qū)分,因此,教學(xué)中往往刻意對比強(qiáng)化,凸顯這種差異。但這樣的處理很明顯在數(shù)論的角度上割裂了兩者的共同點(diǎn)。實(shí)際上教師在引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)的獨(dú)特特征的同時,也應(yīng)該注意引導(dǎo)學(xué)生歸納2、3、5倍數(shù)特征的.共同點(diǎn)。別小看這寥寥數(shù)言的引導(dǎo),實(shí)質(zhì)它蘊(yùn)藏著深意。因?yàn)閺臄?shù)論角度講一個數(shù)能否被2、3、5乃至被其它數(shù)整除,其研究的理論基礎(chǔ)是一樣的:即如果各個數(shù)位上的數(shù)被某數(shù)除,所得的余數(shù)的和能夠被某數(shù)整除,那么這個數(shù)也一定能被某數(shù)整除。當(dāng)然,小學(xué)生由于知識和思維特點(diǎn)的限制,還不可能從數(shù)論的高度去建構(gòu)與理解。但是,這并不意味著教師不可以作相應(yīng)的滲透。事實(shí)上,正是由于有了教師看似無心實(shí)則有意的點(diǎn)撥:“其實(shí)3的倍數(shù)特征與2、5的倍數(shù)特征其實(shí)有一點(diǎn)還是很像的,不知同學(xué)們注意到?jīng)]有?”學(xué)生才可能從2、3、5倍數(shù)特征孤立、割裂、甚至是相互對立的表象中跳離出來,朦朧地感受到這三者之間的聯(lián)系:2、3、5倍數(shù)特征可以看作是一樣的,都是看它是不是誰的倍數(shù),只不過判斷一個數(shù)是不是2、5的倍數(shù),只需看這個數(shù)的個位是不是2、5的倍數(shù),而判斷一個數(shù)是不是3的倍數(shù)就要看它所有數(shù)位的和是不是3的倍數(shù)。
3的倍數(shù)特征教學(xué)反思5
《3 的倍數(shù)和特征》一課是在學(xué)生自主探究2、5的倍數(shù)的特征的基礎(chǔ)上進(jìn)一步學(xué)習(xí),我從學(xué)生的已有基礎(chǔ)出發(fā),把復(fù)習(xí)和導(dǎo)入有機(jī)結(jié)合起來,通過2、5的倍數(shù)特征的復(fù)習(xí),設(shè)置了“陷阱”,引導(dǎo)學(xué)生進(jìn)行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認(rèn)知沖突,激發(fā)學(xué)生的求知欲望,經(jīng)歷新知的產(chǎn)生過程。
一、引發(fā)猜想,產(chǎn)生沖突。
前一課時,學(xué)生在發(fā)現(xiàn)2、5的倍數(shù)特征時,都是從個位上研究起的,所以在復(fù)習(xí)舊知時,我也特意強(qiáng)調(diào)了這一點(diǎn)。接下來我引導(dǎo)學(xué)生猜想3 的倍數(shù)特征是什么時,不少學(xué)生知識遷移,提出:個位上是3、6、9的數(shù)應(yīng)該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當(dāng)然需要驗(yàn)證,很快就有學(xué)生在觀察百數(shù)表后提出問題:個位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學(xué)生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學(xué)生就開始了繁雜的計(jì)算,這個環(huán)節(jié)我給了他們時間慢慢去算,用意在于體會這種計(jì)算的不方便,從而去想有沒有更好的方法去判斷一個數(shù)是否是3 的倍數(shù)。
二、自主探究,建構(gòu)特征
找3 的倍數(shù)的特征是本節(jié)課的難點(diǎn),我處理這個難點(diǎn)時力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索并掌握找一個3的'倍數(shù)的特征的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導(dǎo)學(xué)生觀察發(fā)現(xiàn)3的倍數(shù)的個位可以是0~9中任何一個數(shù)字,要判斷一個數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個位,打破了學(xué)生的認(rèn)知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個問題的解決需要借助計(jì)數(shù)器,于是我給學(xué)生準(zhǔn)備了簡易計(jì)數(shù)器,讓學(xué)生多次撥數(shù)后,觀察算珠的個數(shù)有什么共同的特點(diǎn)。反應(yīng)比較快的學(xué)生就有了發(fā)現(xiàn):所用的算珠個數(shù)都是3 的倍數(shù)。在學(xué)生提出這個猜想后,全班學(xué)生再一次進(jìn)行驗(yàn)證第二個猜想,這個驗(yàn)證也是在突破難點(diǎn),學(xué)生在驗(yàn)證中掌握難點(diǎn)。同時,我也讓學(xué)生對比了之前所用的方法,體驗(yàn)這個新方法的快捷與簡便,讓學(xué)生的印象更深刻。這個教學(xué)環(huán)節(jié)在教師的引導(dǎo)下克服困難,解決了力所能及的問題,達(dá)到了新的平衡,開發(fā)了學(xué)生的創(chuàng)新潛能。
在教學(xué)過程中讓學(xué)生自主探索,雖然用了很多時間,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生的收獲會更多。
三、鞏固內(nèi)化,拓展提高。
在上述教學(xué)過程中,雖然每個同學(xué)只操作了一兩次,但是通過學(xué)生之間的合作交流,在教師的引導(dǎo)下,學(xué)生經(jīng)歷了一個典型的通過不完全 歸納的方法得出規(guī)律的過程。學(xué)生在這一過程中的體驗(yàn),無論是方法層面,還是思想層面均將對后繼的學(xué)習(xí)產(chǎn)生深刻的影響。
在初步感知3 的倍數(shù)的特征后,我提出了問題:一個數(shù),在計(jì)數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對嗎?你是否認(rèn)為我們研究出的結(jié)論對所有的數(shù)都適用呢?這兩個問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學(xué)生深切體驗(yàn)了不完全歸納法的這一要義,同時也培養(yǎng)了學(xué)生縝密思考問題的意識和習(xí)慣。
3的倍數(shù)特征教學(xué)反思6
2、3、5倍數(shù)的特征我設(shè)計(jì)的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對教材的把握不夠,時間用到2、5倍數(shù)上的較多。以至于對3的倍數(shù)特征探究不到位。
好的`開始等于成功了一半。課伊始,我設(shè)計(jì)了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個游戲沒讓學(xué)生部明白要求沒有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗(yàn)證、結(jié)論等探索性與挑戰(zhàn)性活動。首先讓學(xué)生獨(dú)圈出寫出100以內(nèi)2、5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。但我對這部分的處理太過于復(fù)雜零碎。以至于用的時間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點(diǎn)。
小組合作,發(fā)揮團(tuán)體的作用,動手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學(xué)生的之一能力傾聽能等等還需進(jìn)一步訓(xùn)練。
3的倍數(shù)特征教學(xué)反思7
【初次實(shí)踐】
課始,讓學(xué)生任意報數(shù),師生比賽誰先判斷出這個數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個“不識時務(wù)者”打亂了課前的預(yù)想!袄蠋,我知道其中的秘密,只要把各個數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對!在數(shù)學(xué)書上就有這句話!薄钟袔讉學(xué)生偷偷地打開了數(shù)學(xué)書!霸趺崔k?”謎底都被學(xué)生揭開了。面對這一生成,我沒有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來,驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……
[反思]
課堂上經(jīng)常會出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?
【再次實(shí)踐】
。ㄅc第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個數(shù)是不是3的倍數(shù),這時一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)
師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)?
生:只和一個數(shù)的個位有關(guān)。
師:與今天學(xué)習(xí)的知識比較一下,你有什么疑問嗎?
生1:為什么判斷一個數(shù)是不是3的倍數(shù)只看個位不行?
生2:為什么判斷一個數(shù)是不是2、5的倍數(shù)只看個位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?
……
師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個位有關(guān)。
。▽W(xué)生嘗試探索,教師適時引導(dǎo)學(xué)生從簡單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)
生1:我在擺小棒時發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個位擺幾就可以了。
生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個數(shù)都可以拆成一個整十?dāng)?shù)加個位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個數(shù)的個位是幾就決定了它是否是2、5的倍數(shù)。
師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個好辦法。
生3:是否是3的倍數(shù)只看個位就不行了。比如13,雖然個位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個位上的數(shù)合起來是不是3的倍數(shù)就行了。
生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
生(部分):對。
生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個位上的和是不是3的倍數(shù)就可以了。
師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。
師:同學(xué)們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征,F(xiàn)在你還有哪些新的探索想法呢?
生1:我想知道4的'倍數(shù)有什么特征?
生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎、整千?shù)一定都是4的倍數(shù)。
師:你能把學(xué)到的方法及時應(yīng)用,非常棒!
生3:7或9的倍數(shù)有什么特征呢?
……
師:同學(xué)們又提出了一些新的、非常有價值的問題,課后可以繼續(xù)進(jìn)行探索。
[反思]
1. 找準(zhǔn)知識間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會自覺地進(jìn)入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準(zhǔn)知識間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會產(chǎn)生困惑,這種困惑有時是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ,促使探究活動走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。
3. 溝通知識間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對數(shù)的倍數(shù)特征的整體認(rèn)識,感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡馭繁。課堂不是句號,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對于一堂課知識的掌握,而應(yīng)著眼于學(xué)生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動力。
3的倍數(shù)特征教學(xué)反思8
《3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中一個知識點(diǎn),是在學(xué)生已認(rèn)識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。因而在《3的倍數(shù)的特征》的開始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會將“2。5的倍數(shù)的特征”遷移到“3的`倍數(shù)特征的問題中, 得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。
在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把 3 的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征 。學(xué)生在經(jīng)歷了猜測、分析、判斷、驗(yàn)證、概括、等一系列的數(shù)學(xué)活動后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學(xué)生明確3的倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實(shí)許多,之后的知識應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒有做足,所以誤導(dǎo)了學(xué)生。題目如下:“從3、0、4、5這四個數(shù)中,選出兩個數(shù)字組成一個兩位數(shù),分別滿足以下條件:1、是3的倍數(shù)。2、同時是2和3的倍數(shù)。3、同時是3和5的倍數(shù)。4、同時是2、3和5的倍數(shù)。”學(xué)生問要寫幾個時,我回答如果數(shù)量很多至少寫3個。呵呵,其實(shí)此題不需要如此考慮,因?yàn)樗鼈兊臄?shù)量都有限。
希望以后自己的教學(xué)會更扎實(shí)起來。
3的倍數(shù)特征教學(xué)反思9
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗(yàn)的過程中,概括歸納出了3的倍數(shù)特征。
一、猜想:讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的.倍數(shù)有什么特征呢?由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”。
二、驗(yàn)證::先讓學(xué)生在百數(shù)圖中找找看,顯然像13、16、19等等的數(shù)不是3的倍數(shù),學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢。
三、探究:在此基礎(chǔ)上,讓學(xué)生在百數(shù)圖中找出3的倍數(shù)的數(shù),如果把這些3的倍數(shù)的個位數(shù)字和十位數(shù)字進(jìn)行調(diào)換,它還是3的倍數(shù)嗎?(讓學(xué)生動手驗(yàn)證)
12→2115→5118→8124→4227→72
我們發(fā)現(xiàn)調(diào)換位置后還是3的倍數(shù),那3的倍數(shù)有什么奧妙呢?
如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。
四、驗(yàn)證:下面各數(shù),哪些數(shù)是3的倍數(shù)呢?
2105421612992319876
小結(jié):從上面可知,一個數(shù)各位上的數(shù)字之和如果是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。這樣結(jié)論的得出水到渠成。
3的倍數(shù)特征教學(xué)反思10
心理學(xué)原理表明,新異的刺激可以引起學(xué)生的注意和興趣。在教學(xué)中,根據(jù)不同的教材和要求,采取不同的教學(xué)方法,能夠引起學(xué)生學(xué)習(xí)的興趣,有利于創(chuàng)設(shè)良好的課堂氣氛。
教學(xué)3的倍數(shù)特征這一課時,教師組織學(xué)生進(jìn)行下列鞏固練習(xí):
下列數(shù)中3的倍數(shù)有:()
1435451003328767488
學(xué)生利用3的倍數(shù)的特征一下子就回答了上面的問題,得到了老師的.肯定。這時我接著說:“我們來一場老師、學(xué)生打擂臺怎么樣?看誰說的3的倍數(shù)的數(shù)最多,我們看誰能考倒老師!边@時同學(xué)們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:20xx
生:6891
…………
這時師故意出錯:369041
學(xué)生馬上發(fā)現(xiàn)了這個數(shù)不是3的倍數(shù),師問:“你能不能改一改其中的某個數(shù)字使它成為3的倍數(shù)!
生:“可以將1改為2!
生:“可以將4改為5!
生:“可以將1改為5。”
生:“可以將1改為8!
生:“可以將4改為2”
生:“可以將4改為8”
學(xué)生回答完后,我及時提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學(xué)生通過思考回答:“因?yàn)?、6、3、9每一個數(shù)都是3的倍數(shù),所以只要改4和1這兩個數(shù)就行了!边@時我及時指出:“判斷一個數(shù)是不是3的倍數(shù)可以用篩選法來判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的倍數(shù),原數(shù)就是3的倍數(shù),否則就不是!边@時我逐漸地出示下列這組數(shù)要求學(xué)生馬上判斷是否3的倍數(shù)。
56
561
5617
56178
561784
5617849
…………
這個鞏固練習(xí),有效地調(diào)動了學(xué)生的積極性,不斷激起學(xué)生認(rèn)知的內(nèi)驅(qū)力,使學(xué)生在探索的過程中,主動學(xué)習(xí)、主動探索,帶來了內(nèi)心的滿足感。
3的倍數(shù)特征教學(xué)反思11
1.以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。教師利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。本案例中,學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,大部分學(xué)生漸漸進(jìn)入了探究者的角色。
2.以問題為中心組織學(xué)生展開探究活動。在上面案例中,教師注意突出學(xué)生的主體地位,教師依據(jù)學(xué)生年齡特征和認(rèn)知水平設(shè)計(jì)具有探索性的.問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個問題來開展學(xué)習(xí)活動,指導(dǎo)學(xué)生圍繞問題展開探究活動,并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學(xué)生的探索意識和分析、概括、驗(yàn)證、判斷等能力。
3的倍數(shù)特征教學(xué)反思12
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗(yàn)的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的`倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結(jié)束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);
2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時,都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。
3的倍數(shù)特征教學(xué)反思13
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的.特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
3、追求本真,知其所以然
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
3的倍數(shù)特征教學(xué)反思14
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個數(shù)所用算珠的顆數(shù),也是每個數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的.倍數(shù)特征的關(guān)鍵。
“試一試”是教學(xué)的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性?上г谶@一點(diǎn)上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時,所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。
整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時總結(jié),虛心請教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。
3的倍數(shù)特征教學(xué)反思15
3的倍數(shù)的特征的教學(xué)與2、5倍數(shù)的特征難度上有不同,因?yàn)?、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出(根據(jù)個位數(shù)的'特點(diǎn)就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點(diǎn)預(yù)習(xí)題。
1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說一說你是怎么判斷的?
2、從以上的3的倍數(shù)進(jìn)行思考:
(1)、3的倍數(shù)與它個位上的數(shù)有關(guān)系嗎?
。2)、 3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?
新課時讓學(xué)生從上面的練習(xí)中去發(fā)現(xiàn)了什么,從而歸納3的倍數(shù)的特征:一個數(shù)的各個數(shù)位上的數(shù)字和是3的倍數(shù),這個數(shù)就是3的倍數(shù)
然后再讓每個同學(xué)任意寫一個3的倍數(shù),再看看這個數(shù)的各個數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說出方法和思路。
經(jīng)過以上這些活動后學(xué)生都能對一個數(shù)是不是3的倍數(shù)進(jìn)行簡單的判斷。特別是學(xué)生對3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。
【3的倍數(shù)特征教學(xué)反思】相關(guān)文章:
《3的倍數(shù)的特征》教學(xué)案例反思02-14
3的倍數(shù)教學(xué)反思04-04
5的倍數(shù)的特征教學(xué)設(shè)計(jì)01-23
因數(shù)和倍數(shù)教學(xué)反思(精選3篇)01-27
《倍數(shù)和因數(shù)》教學(xué)反思(精選3篇)03-09