乘法分配律教學反思
作為一位到崗不久的教師,課堂教學是重要的任務之一,借助教學反思可以快速提升我們的教學能力,快來參考教學反思是怎么寫的吧!下面是小編為大家整理的乘法分配律教學反思,歡迎大家分享。
乘法分配律教學反思1
乘法分配律是第三章的教學難點也是重點。這節(jié)課的設計。我是從學生的生活問題入手,利用與生活密切相關的情境圖植樹問題展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識。通過讓學生經歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成的過程;仡櫿麄教學過程,這節(jié)課的亮點主要體現(xiàn)在以下幾個方面:
在教學中,通過這次植樹情境讓學生感到數學就是從身邊的生活中來的,激發(fā)學生學習的熱情。“一共有多少名學生參加這次植樹活動?”。讓學生根據提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的`探究提供了有力的保障。
重點是理解算式的意義,我們在引導中進行總結(4+2)個25的和也可以寫為25分別乘以4和2,再把他們的積相加的形式,接著讓同學們再次深化理解自己嘗試寫出幾個類似的算式,由于是網上教學,沒辦法直接展示學生的算式,于是我在大屏幕上寫出幾個算式,讓同學們來說一說他們的觀察到的算式,從而總結出乘法分配律的規(guī)律。進而通過計算,發(fā)現(xiàn)運用乘法分配律可以使得計算更加簡便。
這節(jié)課的不足:
當我們運用乘法分配律進行練習的時候,我發(fā)現(xiàn)學生在做題時會錯誤的把中間的+抄寫成×,導致錯誤。這說明學生沒有完全對乘法結合律和乘法分配律進行區(qū)分,還需要再次進行強調。
這節(jié)課上對學生的主題地位有所忽視。雖然是網課教學,沒辦法與學生共同在一間教室,沒辦法與學生面對面教學,但是顧慮到時間的限制與學生的互動,留給學生的思考的時間不夠充分,接下來在教學設計時可以減少授課容量,留給學生充分的思考時間。
乘法分配律教學反思2
學生對于乘法分配律和結合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學中應該注意什么呢?
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。
教學時我們往往注重等式兩邊的外形特點,即a×(b+c)=a×b+a×c缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=+2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3
2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩個數的和乘以一個數或兩個積的和。在練習題中(40+4)×25與(40×4)×25這種題學生特別容易出錯。為了更好地掌握,可多進行一些對比練習,如進行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運算定律?應用什么運算定律可以使計算簡便?為什么要這樣算?
3、讓學生進行一題多解的練習,加深對乘法結合律和乘法分配律的理解
如:125×88;101×89你能有幾種方法?125×88①豎式計算②125×8×11③125×(80+8)④(100+25)×88等等。101×89①豎式計算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。對于不同解法,引導學生進行對比分析,什么時候用乘法結合律簡便?什么時候用乘法分配律簡便?力爭達到"用簡便計算法進行計算"成為學生一種自主行為,并能根據題目的`特色靈活選擇適當的算法的目的。
4、多練
針對題目多次練習。練習時注意練習量和時間的安排。剛開始可以天天練習,過段時間以后可以一兩天練習一次,再到一周練習一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。+
對于比較特殊的題目可以間斷性練習,對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。
乘法分配律教學反思3
由于本學期的時間比較短,所以自己在講四年級數學課的時候,不免有些匆匆。為了保持好進度,習題處理稍顯落后。在近一段時間對孩子們的“運用乘法分配律進行簡算”的檢查來看,效果不是很好。我發(fā)現(xiàn)這是好多學生不容易掌握的,很容易和乘法的結合律弄混淆。所以,我就想搞清楚,到底孩子們是哪里沒有搞清楚?就在課下又提問了幾個老在分配率出錯的孩子運算公式,發(fā)現(xiàn)有的孩子能結結巴巴地把公式背出來,有的`是比較順利地進行背誦。那么,會順利背誦公式的孩子們到底是哪里不會呢?
帶著這個問題,我是旁敲側擊地進行“盤問”——我拿著生活中的2.5元的冰淇淋打比方,問問買23個和28個需要多少錢?孩子們算的很快。他們知道把23分解成20加上3,還有部分學生28×25=(20+8)×25,我當時一項,哎呦不錯,還不是完全不會啊?磥,孩子們在真正的生活情境中還是有一大部分人會自覺的用乘法分配律的?墒,真正運用到教學中,孩子們確實很難達到自覺地運用分配律去計算,特別是一些變式就更加的困難了。
在批改作業(yè)的時候,有三四個孩子的下面的結果卻是讓我大跌眼鏡——28×25=(20+8)×25=20×8×25,當時我就在想,壞了,孩子們把這兩個公示記混淆了。果不其然,我給他們出了一道題72×25=(8×9)×25=8×25+9×25,我在給學生們一一講解的時候,我就在反思,這一類問題出現(xiàn)是因為孩子們沒有自覺觀察算式特點的習慣。他們只是急匆匆的完成自己的作業(yè),對于此類的計算的目的單純得很就是只要得到答案,自己就忽略了計算的過程。
后來我就想,我去時應該多出一點類似于(80+8)×25,72×25,125×32×25的這些題對孩子們進行相應的練習,這樣來提高孩子們對公式概念的認識。我可以讓孩子們先學會一道題的做法,在慢慢來進行相應的引導。并且出一些題目要求孩子們使用分配律或者結合律等等,對孩子們進行鞏固。讓孩子們學會多種方法解決一到數學題,把握“湊整”這個解題關鍵,正確、合理地使用運算定律,就是正確的。做到真正的學以致用!
乘法分配律教學反思4
乘法分配律是一節(jié)概念課,是在學生已經掌握了加法運算定律以及乘法交換律和結合律的基礎上進行教學的。在五大運算定律中,是最難理解的,學生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律進行簡便計算 。
成功之處:
1.本課在教學情境的設計上沒有采用課本上的主題圖,而是選取學生熟悉的買校服情境:這學期學校要換新校服。上衣每件28元,褲子每條12元。我們班共需繳校服費多少元?學生獨立思考,同位交流,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(28+12)×44=28×44+12×44。
2.加深對乘法分配律意義的`理解,讓學生不僅知道兩個數的和與一個數相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數的和的形式。通過多種形式的練習讓學生深入理解乘法分配律的意義。
不足之處:
1.在總結乘法分配律時沒有把結構說的很透徹,導致學生出現(xiàn)在練習時有一個同學在同步學習的練習題中把連乘算成乘法分配律。
2.學生的語言敘述不熟練,導致學生雖然會背用字母表示的式子,但是不會應用。
乘法分配律教學反思5
乘法分配律是教學的難點也是重點。這節(jié)課采用從生活中的問題入手,利用學生感興趣的具體情境展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識,將重視結論的記憶變?yōu)橹匾晫W生獲取結論的體驗和感悟,將模仿式的學習變?yōu)樘骄渴降膶W習。學生經歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。這樣不僅讓學生獲得了數學基礎知識和基本技能,而且更能培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。回顧整個教學過程,這節(jié)課的亮點體現(xiàn)在以下幾個方面:
一、從身邊引入熟悉的生活問題,激趣探究
我們在教學中要為學生創(chuàng)設大量生動、具體、鮮活的生活情境,讓學生感到數學就是從身邊的生活中來的,激發(fā)學生學習的熱情。在教學時,我先創(chuàng)設情景,提出問題:“一共有多少名學生參加這次植樹活動?”。讓學生根據提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、為學生提供了自己獨立探究的機會
數學教學應該是數學教學的活動。傳統(tǒng)的教學活動往往只重視結論的記憶,而這節(jié)課我把學生的活動定位在感悟和體驗上,引導學生用數學思維方式去發(fā)現(xiàn),去探索。尤其是在學生初步感悟到兩種算法相等關系的`基礎上,繼續(xù)為學生創(chuàng)造一個思考的情景。我要求學生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學生對“乘法分配律”已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較“模糊”的認識。
三、為學生的學習方式的轉變創(chuàng)設了條件
模仿學習,學生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應用。改變學生的學習方式,讓學生進行探索性的學習,不能是一句空話。在這節(jié)課上,我抓住學生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
乘法分配律教學反思6
乘法分配律是人教版四年級數學下冊的內容,是一節(jié)比較抽象的概念課,是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。因此,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
所以,本課的.教學目標,我定位在:
(1)從學生已有生活經驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。
(2)滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學生獨立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數學的應用意識。
本單元教材的一個鮮明特點是,不再僅僅給出一些數值計算的實例,讓學生通過計算,發(fā)現(xiàn)規(guī)律,而是結合學生熟悉的問題情境,幫助學生體會運算定律的現(xiàn)實背景。這樣便于學生依托已有的知識經驗,分析比較不同的解決問題的方法,引出運算定律。
教材提供了這樣一個主體圖:春季里,同學們開展植樹活動,一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用“=”連接,即25×(4+2)=25×4+25×2。我將其首先呈現(xiàn)給學生,目的是結合學生熟悉的問題情境,幫助學生體會運算定律的現(xiàn)實背景。
接著設計“懸念”,拋出四組題目,把學生引到“兩算式的結果相等”的情況中來。先請學生猜想,而后驗證,再請學生編題,讓每一個學生都不由自主地參與到研究中來。在編題過程中,很多學生都交出了正確的“答卷”,增強了他們學習的自信心和繼續(xù)研究的欲望。接著,請同學在生活中尋找驗證的方法,以四人小組為研究單位,學生的思維活動一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學生之間進行思維交流,激發(fā)學生希望獲得成功的動機。
通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內化。這樣做,學生學得積極、學得主動、學得快樂,自己動手編題、自己動腦探索,從數量關系變化的多次類比中悟出規(guī)律,“扶”得少,學生創(chuàng)造得多,學生學會的不僅僅是一條規(guī)律,更重要的是,學生學會了自主自動,學會了進行合作,學會了獨立思考,學會了像數學家一樣進行研究、發(fā)現(xiàn)!這對十歲左右的孩子來說,其激勵作用無疑是無比巨大的,而“愛思、多思、會思”的學習習慣,會讓孩子一生受益?v觀教學過程,學生學得輕松,學得主動。
我通過這節(jié)課的教學感受到:認真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內涵更有廣度和深度,也為培養(yǎng)和發(fā)展學生思維的靈活性,提供了更廣闊的空間。
乘法分配律教學反思7
《乘法分配律的運用》教學設計及反思
教學目標
(一)使學生學會用乘法分配律進行簡算,提高計算能力.
(二)培養(yǎng)學生靈活運用乘法運算定律進行計算的習慣.
教學重點和難點
能比較熟練地應用運算定律進行簡算是教學的重點;反向應用乘法分配律是學習的難點. 教學過程設計
(一)復習準備
1.口算:
(二)學習新課
我們已經學過乘法分配律,今天繼續(xù)研究怎樣應用乘法分配律使計算簡便.(板書:乘法分配律的應用)
1.創(chuàng)設情境,激發(fā)學生學習積極性.
出示102×( ).
請同學任意填上一個兩位數,老師可以迅速說出它的得數,而不用筆算.
2.教學例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數乘三位數的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應用運算定律進行簡算?
經過討論后,可能出現(xiàn)兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進行計算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎上引導學生觀察這類題目的特點,以及怎樣應用乘法分配律,從而使學生明確:“兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據是什么.
(3)計算9×37+9×63.
啟發(fā)提問:
①這類題目的`結構形式是怎樣的?有什么特點?
、诟鶕朔ǚ峙渎,可以把原式改寫成什么形式?這樣算為什么簡便?
在學生充分討論的基礎上,師板書:
提問:這題能簡算嗎?什么地方錯了?應怎樣改?
啟發(fā)學生明確:題里兩個乘式沒有相同的因數.應該有一個相同的因數,另外兩個因數加起來應是能湊成整十、整百、整千的數.
2.根據乘法分配律把相等的式子用“=”連接起來.
討論:2,3兩題為什么不相等?要使等號兩邊式子相等、符合乘法分配律的形式,應該改哪個地方?
在討論基礎上得出:
第2題,如果左邊算式不變,右邊算式應改為35×12+45×12,使兩個加數分別與同一個數相乘;如果右邊算式不變,兩個積里有相同的因數45,把相同的因數提到括號外面,兩個不同的因數就是兩個加數,改為(35+12)×45.
第3題右邊兩個積里相同的因數是4,不同的因數是11和25,應改為(11+25)×4.因此
要特別注意:括號里的每一個加數都要同括號外面的數相乘;反過來,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面.而三個數連乘則是可以改變運算順序,它是乘法結合律.必須要掌握這兩個運算定律的區(qū)別.
(四)作業(yè)
練習十四第5~10題.
教學反思:本節(jié)課從學生實際出發(fā),創(chuàng)設了具體的生活情境,引導學生開展觀察、猜想、舉例驗證、交流等活動,從激活學生已有的知識經驗和探究欲望入手,引導學生主動參與數學的學習過程,從而發(fā)展學生數學思維數學能力,在學習過程中學會學習,學會與人交流合作。新理念還體現(xiàn)不夠,學生的積極性沒有充分調動起來。
乘法分配律教學反思8
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。它的教學重點是讓學生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。所以本堂課我通過口算、讀算式、寫類似算式等多種方式讓學生去感知乘法分配律,最后由學生總結出乘法分配律概念。本堂課我感到比較滿意的地方,就是把課堂的主體權交給了學生,學生們都很主動積極的參與到學習中來,可是不足之處頗多。
一、本課堂我的教學程序是:
先讓學生獨學“學一學”部分的6個問題,第1、2個問題根據情景圖上所給的信息估算并列出算式:(4+2)×25和4×25+2×25;第3個問題讓學生觀察這兩個算式的特點;第4個問題根據你的發(fā)現(xiàn)完成填空。25×(40+4)=25×()+25×()、65×17+35×17=(+)×()(意圖是讓學生體驗乘法分配律);第5個問題試著舉出類似的例子;第6個問題試一試:你可以用a、b、c分別表示三個數,寫出你的發(fā)現(xiàn)嗎?(a+b)×c=()×()+()×()。獨學完六個問題后,學生通過群學和小組在全班的展示,進一步達成學習目標。接下來,通過練習檢測學生對乘法分配律的理解和應用。最后通過兩道練習題對所學內容進行了延伸。((1)28×18—8×28、(2)25×99)
二、不足之處:
1、在要求同學們去總結出乘法分配律的概念時老師沒有很好的引導,導致同學對乘法分配律特點的認識比較模糊。
2、在學生總結出乘法分配律的概念時,我只是一筆帶過的把乘法分配律通過課件再展示給學生們看了一遍,沒有反復強調乘法分配律的特點,導致學生沒有較好的掌握乘法分配律。
3、課堂用語不夠簡潔。
三、結合學生的掌握情況我覺得教學此內容需要注意以下幾點:
1、區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的和乘一個數或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
2、學生進行一題多解的練習,經歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解。
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④125×(100—12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計算;②(100+1)×89;③101×(80+9);101×(100—11);101×(90—1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行間算的條件是不一樣的。乘法結合律適用于連乘的.算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學生的一種自主行為,并能根據題目的特點,靈活選擇適當的算法的目的。
3、多練。
針對典型題目多次進行練習。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
乘法分配律教學反思9
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。它的教學重點是讓學生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。所以本堂課我通過口算、讀算式、寫類似算式等多種方式讓學生去感知乘法分配律,最后由學生總結出乘法分配律概念。本堂課我感到比較滿意的地方,就是把課堂的主體權交給了學生,學生們都很主動積極的參與到學習中來,可是不足之處頗多。
1、在要求同學們去總結出乘法分配律的概念時老師沒有很好的引導,導致同學對乘法分配律特點的認識比較模糊。
結合學生的掌握情況我覺得教學此內容需要注意以下幾點:
1、區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的和乘一個數或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
2、學生進行一題多解的練習,經歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解。
3、多練。針對典型題目多次進行練習。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
《乘法分配律》教學反思11
乘法分配律是一節(jié)概念課,是在學生已經掌握了加法運算定律以及乘法交換律、乘法結合律的基礎上進行教學的。在本單元運算定律中,是最難理解的,學生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進行簡便計算。
在課堂上,創(chuàng)設了植樹活動的情境,求一共有多少名同學參加了植樹活動。在課堂中,鼓勵學生獨立思考,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學生理解了乘法分配律后,運用變式練習加深對乘法分配律意義的理解,讓學生不僅知道兩個數的'和與一個數相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習讓學生深入理解乘法分配律的意義。
通過學習,一些學生已掌握,但也有一些學生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應用。還有一些學生容易把乘法分配律和乘法結合律弄混淆。
所以在復習鞏固時,要加強乘法結合律與乘法分配律的對比,讓學生對這兩個運算定律的結構更清晰。還要加強對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應用運算定律進行簡便計算。
乘法分配律教學反思10
乘法分配律是小學階段學生比較難理解與敘述的運算定律,但的確又非常重要、運用廣泛。在本節(jié)教學過程的設計上我采用了讓孩子通過“聯(lián)系實際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗證;表示規(guī)律,建構模型;概括規(guī)律,完善模型;應用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學任務。
在教學過程中,以突破乘法分配律的教學重點和難點為切入點,對本節(jié)課知識的學習起到了舉足輕重的作用。根據自己的教學教訓,在平常的教學中,總是發(fā)現(xiàn)學生在學習完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的現(xiàn)象仔細研究其原因,其實是學生學的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內在的數學意義。因此,我就打破通過觀察 發(fā)現(xiàn) 猜想 驗證 概括的傳統(tǒng)教學思路,除了在外在形式上認識規(guī)律(教材意圖),又從乘法的意義入手,使學生進一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結論。讓學生對乘法分配律的理解不再只是停留在外在的“形”,而是又進入“質”的深化。這種教學建立在學生認知規(guī)律的基礎之上,實現(xiàn)了有效的建立模型突破了本節(jié)的第一個難點。從課后作業(yè)可以看出,這種教學效果明顯好于以前。
在突破本節(jié)第二個難點:乘法分配律容易跟乘法結合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學生既懂得乘法結合律和分配律的區(qū)別,又找到了乘法分配律概念的重點。
在本節(jié)課的練習設計上,力求有針對性、有坡度的知識延伸,出示擴展型的.練習,對分配律的概念加以升華。
這些方面,只是我對自己原來的教學在反思與對比中覺得是對我而言較為進步的一點點。但是,在實際的課堂操作中,整個教學過程也出現(xiàn)了許多不盡人意的地方。
比如:課堂上由于緊強導致只顧自己思路,而忘了對學生的回答或知識的恰當與否做出及時評定。還有,恐怕在規(guī)定時間內完不成任務,而把“總結”與“拓展”放錯了位置;學生參與的積極性沒有預想中那么高,可能與我相對缺乏激勵性語言有關等等問題。
深入思考,覺得還是自己的業(yè)務不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:
一、深入鉆研,在挖掘教材上下功夫。
二、多聽課,學習別人長處,多查閱資料學習,提高自己的業(yè)務水平。
最重要的是更新教學理念,在教學思路的“創(chuàng)新”上狠下功夫,讓學生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標。
乘法分配律教學反思11
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律并能初步應用這些定律進行一些簡便計算的基礎上進行教學的。乘法分配律是本單元教學的一個重點,也是本單元內容的難點,因為乘法分配律不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節(jié)課不僅使學生學會什么是乘法分配律,更要讓學生經歷探索規(guī)律的過程,進而培養(yǎng)學生的分析、推理、抽象、概括的思維能力。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學生答案,而是讓學生自己通過舉例加以驗證。學生興趣濃厚,這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。
這堂課由具體到抽象,大多需要學生體驗得來,上下來感覺很好,學生很投入,似乎都掌握了,可在練習時還是發(fā)現(xiàn)了一些問題。如:學生在學習時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認為在練習課時要加以改進。注重從學生的實際出發(fā),把數學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習知識。乘法分配律在乘法的運算定律中是一個比較難理解的.定律,通過這一節(jié)課的學習,學生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學生就感到很為難了。感覺他們只能意會不能言傳。課本中關于乘法分配律只有一個求跳繩根數的例題,但是練習中有關乘法分配律的運用卻靈活而多變,學生們應用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學生能針對不同的題目能靈活應用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數字與8相乘,這樣不公平,稱不上是平均分配法,學生印象很深刻,開始還有部分學生只選擇一個數與8相乘,歸納方法后學生都能正確應用了。
二、提取公因數法。如:25*40+25*60=25*(40+60)解題關鍵:找準兩個乘法式子中公有的因數,提取出公因數后,剩下的另一個數字該相加還是該相減,看符號就能確定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關鍵在于觀察那個數字最接近整百數,將它拆分成整百數加一個數或者整百數減去一個數,再應用乘法的分配率進行簡算。有了歸類,學生再見到題目就能依據數字或運算符號的特征熟練進行乘法分配律的簡算了。
乘法分配律教學反思12
曾經真的以為自己是一個很負責任的人:我愛我的學生,我愛我的數學教學,甚至可以為了我的學生與數學教學,放棄我個人的'休息時間,為的只是我愛的學生能愛上我教的數學,能把數學學得很出色。然而為什么總是事與愿違,成效“背叛”了設想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學期最大的感受,到底問題出在哪里呢?當我回想起教學中一點一滴的瑣事,老師們交流時的經驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經“背叛”了數學教學。
“哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學生,積極舉手發(fā)言,而且一步一步被我“引進”來,突出所謂的教學重點,攻克預設的教學難點,最后解決相應的問題,“看上去很美”,真的,經過我的“引導”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?
可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉不過來了,曾經我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進行簡便運算》后,經過反思與請教,我終于發(fā)現(xiàn)我錯了。
乘法分配律教學反思13
《乘法分配律》是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關注學生已有的知識經驗。以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導學生積極主動探究。讓學生根據提供的問題,用不同的方法解決,引導學生觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學生獲得了數學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。
3、出示乘法分配律的幾種不同的形式讓學生進行練習。
通過這一系列的教學措施,一節(jié)課下來,總體感覺良好——覺得同學們掌握得還不錯。于是,我布置了讓學生們完成練習冊中《乘法分配律》這一課的習題。
當我批改練習時我傻了眼,學生的作業(yè)大多是中,少部分得良和差(我的.作業(yè)批改評定標準),為什么會是這樣的結果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當時學生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學生就很容易受到干擾,結果是張冠李戴,錯得讓我涕笑皆非。而為了讓學生把這個知識點掌握牢固,我整整又用了兩節(jié)課。
通過這個知識點的教學,我發(fā)現(xiàn)數學不多練是不行的。在學生理解之后,必須對其進行及時、有效的練習才可以使知識掌握的更加牢固。
乘法分配律教學反思14
在教學本課之前,我安排了這樣的預習作業(yè):將左右兩邊相等的算式用線連起來(共五組),我故意安排了兩組不相等的,居然大部分同學都上當了,說明他們對乘法分配律的認識僅僅停留在表面,沒有認識到其實質。
在教學例題時我特別加強了“分別乘”的指導,不但結合實例讓學生明白為何要分別乘再相加,而且用一些形象的箭頭讓學生感受分別乘的過程;而在學生探究了例題和試一試后,讓他們通過比較,體會在利用乘法分配律進行簡便計算時要根據具體情況選擇:有時合起來乘容易,有時分別乘更容易,要靈活運用。
但是,今天的課堂作業(yè)讓我十分失望,我本以為“分別乘”的'指導比較到位,但還是有一些同學出現(xiàn)15×(20+3)=15×20+3這樣的錯誤,并且有兩名學生在解決實際問題中列出了(18+22)×15的算式后,還將它用乘法分配律展開計算,結果計算錯誤百出,如何讓學生靈活地運用所學的知識,我還得進一步地學習研究。
本節(jié)課主要應用乘法分配律進行簡便計算,培養(yǎng)學生靈活合理地進行計算的意識和能力。課的一開始,我就復習乘法分配律,抓住其特點:合起來乘轉化成分別乘再加起來或者分別乘轉化成合起來乘。接著通過例題和試一試的教學,中間結合類型分別練習相應的題目,再通過比較讓學生明白這兩組題:有的時候是合起來乘簡便,有的時候是分別乘簡便,要根據具體的題目來選擇。對于后面的練習,我注意引導學生比較和辨析,使學生較深刻地理解適合用乘法分配律進行簡便計算的題目的結構形式,培養(yǎng)學生的審題能力,從而使學生更好地運用乘法分配律進行簡便計算。
乘法分配律教學反思15
乘法分配律的教學是在學生學習了加法交換律、加法結合律及法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關注學生已有的知識經驗。以學生身邊熟悉的.情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境――為參加“陽光伙伴”的32 名運動員購買統(tǒng)一服裝。通過兩種算式的比較,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導學生積極主動探究。先讓學生根據提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(35+25 )×32=35 ×32+25 ×32 這個等式,讓學生觀察,初步感知“乘法分配律”。再根據“老師還有其他選擇嗎”?這一問題,再次引出(35+25 )×32=35 ×32+25 ×32 ,最后,要求學生照樣子寫出幾組這樣的等式,引導學生再觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。這樣學生經歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學生獲得了數學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。
3、教完之后,感覺在練習的設計上,還太拘禮與課本,雖然引導學生發(fā)現(xiàn)了定律,但沒有相配套的練習使學生對所學知識加以鞏固、應用。對學生掌握知識的情況不能及時反饋,對如何用活、用好教材還需進行進一步的思考。
【乘法分配律教學反思】相關文章:
《乘法分配律》教學反思02-15
乘法分配律教學反思04-02
數學乘法分配律教學反思03-24
乘法分配律教學反思(精選6篇)07-20
乘法分配律教學反思15篇03-23
《乘法分配律》教學反思15篇03-05
《乘法分配律》教學反思(15篇)03-05
乘法分配律教學反思(15篇)03-26
《乘法分配律》教學反思(通用15篇)03-27