天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學反思>數(shù)學分數(shù)除法的教學反思

數(shù)學分數(shù)除法的教學反思

時間:2022-08-08 00:26:50 教學反思 我要投稿
  • 相關(guān)推薦

數(shù)學分數(shù)除法的教學反思

  作為一名優(yōu)秀的教師,我們要有一流的課堂教學能力,通過教學反思可以快速積累我們的教學經(jīng)驗,來參考自己需要的教學反思吧!以下是小編幫大家整理的數(shù)學分數(shù)除法的教學反思,歡迎大家分享。

數(shù)學分數(shù)除法的教學反思

數(shù)學分數(shù)除法的教學反思1

  分數(shù)與除法的關(guān)系是在學習了分數(shù)的意義后進行的,目的是使學生初步知道兩個整數(shù)相除,不論是被除數(shù)小于、等于、或大于除數(shù),都可以用分數(shù)來表示它們的商。這部分內(nèi)容的教學,不但可以加深學生對分數(shù)意義的理解,而且是后面學習假分數(shù)、帶分數(shù)、分數(shù)的基本性質(zhì)以及比、百分數(shù)的基礎,所以溝通分數(shù)與除法的聯(lián)系至關(guān)重要。

  一、成功之處

  1.恰當鋪墊,有利于分散難點。

  為有效地分散算理,教學中設置的教學情境,以比較簡單的'題目形式分層呈現(xiàn),比如:將3塊月餅平均分給4個小朋友,每個小朋友得多少塊?將1塊月餅平均分給3個小朋友,每個小朋友得多少塊?……在該環(huán)節(jié)中,教師可借助實物操作著重引導學生理解:把1塊月餅平均分成4份,其中的每一份都是這塊月餅的1/4,也都是1/4塊,通過結(jié)合生活實際的一些數(shù)據(jù)較小題目的出示作為鋪墊,可以幫助學生更好地認識分數(shù)與除法的聯(lián)系。

  2.實際操作,感悟新知識。

  《數(shù)學課程標準》指出:“數(shù)學教學,要讓學生親身經(jīng)歷數(shù)學知識的形成過程!币簿褪墙(jīng)歷一個豐富、生動的思維過程,在教學中,在一塊月餅平均分給四個小朋友,求每人分得多少?讓學生拿一張圓形紙片代表一張餅,親自動手分一分,喚起對分數(shù)意義的理解。在解決把3張餅平均分給4個小朋友,每個小朋友分得多少的問題時,由于問題難度增加了,所以我就請他們四人一小組想辦法,進行動手操作嘗試,并讓小組派代表上臺展示分的過程。學生通過動手操作,得出兩種不同的分法,引申出兩種含義:即每人分得1張餅的四分之三,也可以說是3張餅的四分之一。通過這樣兩次動手操作的過程,學生充分理解算理,他們在自己的嘗試、探究、猜想、思考中,不斷解決問題、再生成新的問題,為探究分數(shù)與除法的關(guān)系搭建了溝通的橋梁。

  3.鼓勵發(fā)現(xiàn),探索分數(shù)與除法的關(guān)系。

  探索是學生親自經(jīng)歷和體驗的學習過程,引導學生觀察1÷3=1/3?? 3÷4=3/4這兩道算式,鼓勵他們想一想:①兩個(非0)自然數(shù)相除,在不能得到整數(shù)商的情況下還可以用什么數(shù)表示?②用分數(shù)表示商時,除式里的被除數(shù),除數(shù)分別是分數(shù)里的什么?③分數(shù)與除法的關(guān)系是怎樣的?以問題為主線,一步一步地引導學生歸納出了分數(shù)的意義,理解了分母、分子的含義。

  二、改進之處

  1.分數(shù)與除法的區(qū)別沒有理解透徹。

  雖然學生對分數(shù)與除法的聯(lián)系學生理解的`比較透徹,但是它們之間還有哪些區(qū)別沒有學生自己總結(jié)出來,剩下的時間比較倉促,只能由我?guī)椭龑W生總結(jié)出兩者的區(qū)別,即:除法表示兩個數(shù)相除,是一種運算,是一個算式,而分數(shù)既可以表示分子與分母相除的關(guān)系,又可以表示一個數(shù)值。這部分內(nèi)容下一節(jié)課應予以強調(diào)。

  2.小組操作參差不齊。

  在小組合作進行把3塊餅平均分給4個人時,有的小組合作的效果較好,但有的小組并沒有領(lǐng)會3/4塊是怎么得到的,3個1/4塊是3/4塊,3塊的1/4是3/4塊,分數(shù)的這兩種意義個別學生沒有理解透徹。

  針對本課的不足之處,下一節(jié)課將進一步彌補,期待學生將分數(shù)與除法的聯(lián)系和區(qū)別掌握牢固。

數(shù)學分數(shù)除法的教學反思2

  分數(shù)除法教學是整個小學階段應用題教學的重、難點之一。一個數(shù)除以分數(shù)是在一個數(shù)除以整數(shù)的基礎上,繼續(xù)學習一個數(shù)除以分數(shù)的方法。如何推導分數(shù)除法的計算方法,有多種方法。例如:利用商不變規(guī)律進行推導;利用等式的基本性質(zhì)進行推導;利用逆運算關(guān)系和分數(shù)的基本性質(zhì)進行推導;聯(lián)系實際問題分析、推導等。

  而教材選用的是最后一種,意在結(jié)合具體的情景,通過線段圖的分析,讓學生明白算理。而在以前的教學中,我習慣讓學生通過大量的.例子歸納方法,讓學生經(jīng)歷從特殊到一般的歸納過程。所以,在第一次教學時我先讓學生計算兩組比較簡單的算式,并且引導學生對算式進行觀察、比較和分析,讓學生通過猜想——嘗試——驗證,發(fā)現(xiàn)一個數(shù)除以分數(shù)和乘這個分數(shù)的倒數(shù)的結(jié)果都相等。然后進行練習,學生學習效果也不錯,教學過程一切自然流暢。

  清晰地記得去年教學此內(nèi)容時,下課后,一個學生問我:“老師,一個數(shù)除以分數(shù)為什么要乘這個分數(shù)的倒數(shù)呢?”這句話引起了我的反思。是啊!一個數(shù)除以分數(shù)的算理還沒有講清楚呢?因為一直以來都是這樣教學,只是通過猜想、嘗試、驗證、歸納一個數(shù)除以分數(shù)和乘這個分數(shù)的倒數(shù)的結(jié)果相等,也就把計算法則作為一個規(guī)定硬性地塞給了孩子,而忽視了算理的教學,這種學生只知其然而不知其所以然。翻閱教材,發(fā)現(xiàn)教材是通過畫線段圖讓學生來明白算理,注重的算理的教學,忽視猜想、嘗試、驗證、歸納這種數(shù)學思想的滲透。如何讓兩者有機的結(jié)合起來呢?既能讓學生明白算理又讓學生滲透這種數(shù)學方法呢?

  經(jīng)過仔細反思之后,今年我在教學此內(nèi)容時,調(diào)整了我的教學過程。我在學生猜想、嘗試、驗證、歸納出一個數(shù)除以分數(shù)等于乘這個分數(shù)的倒數(shù)的結(jié)果后,我拋出了這個問題:一個數(shù)除以分數(shù)為什么要乘以這個數(shù)的倒數(shù)呢?學生思考,討論。匯報時學生開始大部分圍繞因為結(jié)果相等來總結(jié)。此時我再結(jié)合線段圖對學生進行算理的教學,大部分同學們恍然大悟,都露出了燦爛的笑容。孩子們高興地說分數(shù)除法的算理也恰恰證明了我們猜想是正確的。

  從這節(jié)課,使我感悟到,計算教學,最省事的教法就是把計算方法和盤托出,直接告訴學生,然后進行大量的訓練?墒沁@樣教學,盡管也能讓學生熟練掌握算法,但學生只知其然,不知其所以然。為了培養(yǎng)學生的學習能力和探究能力,促進學生的發(fā)展,我們應該舍得花時間讓學生經(jīng)歷計算方法的探索過程。這也是課程改革理念在計算教學中的具體體現(xiàn)。

數(shù)學分數(shù)除法的教學反思3

  《分數(shù)除法》第一課時包含了兩方面的內(nèi)容:分數(shù)除法的意義和分數(shù)除以整數(shù)。本課時是在學習了倒數(shù)的基礎上開展教學,所以學生已經(jīng)理解了倒數(shù)的意義。實驗教材與老教材比較,對于分數(shù)除法的意義教學有所弱化,不再要求學生講清楚每道分數(shù)除法的意義,而是改為利用除法算式改寫出乘法算式,相對來說,降低了本節(jié)課的難度,更加貼合學生實際情況。根據(jù)以上情況,本節(jié)課把重點定在理解分數(shù)除以整數(shù)的算理和計算方法上,其中,理解算理是本節(jié)課的難點。

  教學本節(jié)課時,我首先出示4/52,直奔主題。利用例題,讓學生進行探究學習。讓他們先說說解題設想,包括折一折、畫一畫、算一算等方式。出乎我意料的是學生經(jīng)過思考后,爭先恐后地說出了多種解答方法。雖然有些方法都是不恰當?shù),但是學生積極主動的思考,使我感到最高興的事。有些學生的每種算法把算理都解釋得非常清楚。然后引導然后學生說說3份或其他幾份怎么算。計算:4/53。最后引導歸納出:把一個數(shù)平均分成幾份,求其中一份,就是求這個數(shù)的幾分之一。

  《新課標》指出:學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者和合作者。在教學中只有確立了學生的主體地位,優(yōu)化學習過程,才能促使學生的自主學習過程。在以往的教學中,教師往往是代替學生發(fā)言,代替學生思維,代替學生說出結(jié)論,這根本不能體現(xiàn)學生的主體性。久而久之會慢慢抹煞孩子的創(chuàng)新意識。在教學中教師要培養(yǎng)學生的創(chuàng)新意識,發(fā)揮學生的主體性,不代替學生去思維。

  在計算教學中,一些教師怕學生思考,會出現(xiàn)思維分散,偏離重點,尤其是一些公開課,更不敢放手讓學生去思考。這實際上是教師缺乏對學生的正確引導,導致不敢放手讓學生去思考,最后只能自己替學生思考、歸納、總結(jié)。計算教學要體現(xiàn)學生思維的開放性。鼓勵學生解決問題策略的多樣化,就要讓學生成為學習的主人,把思考的`空間留給學生。在本課中,我注重學生思維的開放性,充分讓學生自己去利用已有知識和經(jīng)驗,去尋找解決的計算方法,學生通過長期的訓練,已能通過各種思維去尋找解決的辦法。每種方法都可以看作是一種創(chuàng)新意識的體現(xiàn)。我認為這樣的思維活動體現(xiàn)了以學生為主體的學習活動,對學生理解數(shù)學是非常重要的。學生的學習不是被動地吸收課本上現(xiàn)成的結(jié)論,而是一個親自參與的充滿豐富思維活動的實踐和創(chuàng)新的過程。

  同時在數(shù)學課堂教學中我注重對學生的評價,力爭做到評價及時、準確。促使每個學生自主地發(fā)展,逐步達到培養(yǎng)學生自主學習、自主創(chuàng)新的能力,全面提高素質(zhì)。

數(shù)學分數(shù)除法的教學反思4

  本節(jié)課是北師大版數(shù)學《分數(shù)除法》中的第三節(jié)課。本節(jié)課旨在借助圖形語言,在操作活動中理解一個數(shù)除以分數(shù)的意義和計算方法。為此,根據(jù)本節(jié)課教材的特點,結(jié)合學生已有的個體經(jīng)驗,本節(jié)課做了如下幾個層次的設計:

  第一層次:“分一分”的活動。通過學生動手分餅活動,讓學生經(jīng)過觀察、比較與思考,發(fā)現(xiàn)整數(shù)除以整數(shù)與整數(shù)除以分數(shù)知識間的內(nèi)在聯(lián)系,借助圖形語言,初步感知體會“除以一個數(shù)”與“乘這個數(shù)的倒數(shù)”之間的關(guān)系。這樣做不僅為學生創(chuàng)設了一個更好理解分數(shù)除法意義的機會,更主要的是教會學生一種學習的方法,即分數(shù)除法的意義可聯(lián)系整數(shù)除法的意義進行學習。最后,通過啟發(fā)性的問話:“觀察這一組算式,你有什么發(fā)現(xiàn)?”激發(fā)學生思考、求知、解答的愿望,為下一步的探究做了很好的鋪墊。

  第二層次:“畫一畫”的活動。在第一層次分餅的基礎上分線段,雖然線段圖比圓形圖更抽象,但學生已有分餅的'經(jīng)驗,所以學生根據(jù)問題不難列出算式,怎樣求出結(jié)果就成為這一操作活動要解決的問題。其中(1)(2)小題比較容易,學生從圖上可以看出結(jié)果,關(guān)鍵是第三小題不容易突破,是本節(jié)課教學的難點。主要是讓學生弄清第(2)小題的算理,再將此方法遷移到地(3)小題。

  第三層次:“想一想、填一填”的活動。由于學生有了前面操作的基礎,這部分比較大小的題目,他們不難填出答案。但關(guān)鍵是讓學生觀察、比較、分析,從而發(fā)現(xiàn)題目中蘊含的規(guī)律。這一活動是學生對前面問題思考過程的整理,對分數(shù)除法意義進一步的理解。

  第四層次:實踐應用活動。是學生應用所學知識解決實際問題,鞏固、內(nèi)化知識的過程。

數(shù)學分數(shù)除法的教學反思5

  六年級上學期數(shù)學第二單元是“分數(shù)除法”,其中第一小節(jié)是:“分數(shù)除法的意義和計算法則”。在教學上,“分數(shù)除法的意義”好辦,因為有分數(shù)乘法和小數(shù)乘法除法的意義做基礎,在課堂上,只要按課文編排稍做解釋學生就可明白。

  對分數(shù)除法計算法則,我對課文編排講解內(nèi)容作了一下變動。這一小節(jié)有3道例題,分別講“分數(shù)除以整數(shù)” 、“整數(shù)除以分數(shù)” 、 “分數(shù)除以分數(shù)”。分數(shù)除法的計算法則如何得來,如何向?qū)W生講得明白,一直是老師們所苦惱的問題。不講嘛,似乎是沒有完成教學任務,講吧,即使是老師認為自己講得很明白,其實學生真正理解嗎?我認為,學分數(shù)除法的關(guān)鍵是記牢、熟練運用“計算法則”,至于這計算法則是如何得來的,可暫時忽略。我把這3道例題分為兩節(jié)課講解。第一課時講“分數(shù)除以整數(shù)”,通過例1,“把6/7米鐵絲平均分成2段,每段長多少米?”使學生明白,把一個數(shù)平均分成2份,既可以用除法“÷2”表示,也可以用乘法“×1/2”表示,也就是說“÷2”=“×1/2”,進而,把一個數(shù)平均分成3、4、5……,既可以用÷3、÷4、÷5……表示,也可以用×1/3、1/4、1/5……表示,而1/2是2的倒數(shù)、1/3是3的倒數(shù)……,從而得出“除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)”。在和學生學習過程中,盡管我用的是課本例1的教學素材,但在教學過程中,我一直有意忽略被除數(shù)和除數(shù)到底是分數(shù)還是整數(shù)的問題,只是強調(diào)被除數(shù)除以除數(shù)等于乘除數(shù)的倒數(shù)。教學完例1,就讓學生做相應的練習(強化“除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)”的'概念)第二課時,同學生學習例2、例3。課文中例2“一輛車2/5小時行駛18千米,1小時行駛多少千米?”,是詳細地講解了為什么18÷2/5最后可以表達為18×2/5,而我只是根據(jù)題意列出18÷2/5后,讓學生回想例1的學習過程和分數(shù)除法計算法則,讓學生自己說出18÷2/5=18×2/5,然后計算得出結(jié)果,而省略了中間的講解過程。接著學習例3“小剛3/10小時走了14/15千米,他1小時走多少千米?”“14/15÷3/10=14/15×3/10”。這兩道例題是應用題(但在教材安排中,沒有把它放在分數(shù)除法應用題范圍內(nèi)),我沒有把注意力放在計算法則的推倒過程上,反倒是根據(jù)題意為什么這樣列式花了些時間。

  3道例題學習完(還包括相當量的練習),用了兩節(jié)課,學生已經(jīng)掌握了“甲數(shù)除以乙數(shù)(0除外)等于甲數(shù)乘乙數(shù)的倒數(shù)”的分數(shù)除法計算法則。根據(jù)學生情況的反饋,學生掌握這一小節(jié)的知識是扎實的。

  現(xiàn)在我還在想,既然乘法不強調(diào)被乘數(shù)與乘數(shù),如,一本書5元,買3本要多少元?既可以5×3,又可以3×5,只要結(jié)果是15元就算對,(但我堅持認為5×3和 3×5表達的意義是不一樣的,不過,現(xiàn)行教材認為結(jié)果一樣就行)那么,在學生不太明白算理而只掌握計算方法,在教學上應該是允許的。也許我這樣做有點離經(jīng)叛道,不符合現(xiàn)在的教育教學觀念,但要求一定要讓學生明白所有算理教學才算成功,似有點不太實際。學生(包括成人)很多時候知道要這樣做并且做對了,已經(jīng)是完成學習任務了,又何必強求一定要“知其所以言”呢?

數(shù)學分數(shù)除法的教學反思6

  《分數(shù)與除法》是在學生學習了分數(shù)的意義基礎上進行教學的,通過這節(jié)課的教學,目的是讓學生在理解了分數(shù)的意義基礎上,從除法的角度去理解分數(shù)的意義,掌握分數(shù)與除法的關(guān)系,會用分數(shù)表示兩個數(shù)相除的商。

  在講這節(jié)課之前,本來以為是很簡單的一節(jié)課,學生在理解分數(shù)與除法的關(guān)系時也一定會很容易,唯一的難點是用除法的意義理解分數(shù)的意義,我想只要借助實物圓形紙片給學生演示一下,學生就會理解了,但當我講完這節(jié)課后,才發(fā)現(xiàn)我的想法太簡單了,我把學生想象成理想化的學生了,這部分知識雖然有一部分學生理解了,但仍有一部分學生在用除法的意義理解分數(shù)還很困難。在這節(jié)課的教學中,我覺得有以下幾方面值得我去思考:

  一,在學生用除法的意義理解分數(shù)的意義時, 能夠借助直觀形象的實物圖,通過動手操作、演示說明等方法,讓學生理解分數(shù)的意義,這對于小學生來說,理解起來比較容易。但由于我在教學時,疏忽了個別理解能力較差的學生,在演示說明的時候,叫的學生少,如果能多叫幾名同學演示說明,再加上教師的及時點撥,我想這部分學生在理解這一難點時,就會比較容易了。

  二、學生不是理想化的學生,不要指望他們什么都會,因為學生之間畢竟存在著很大的差異。在教學“把3張餅平均分給4個同學,每個同學應分多少張餅?”時,我讓學生借助圓形紙片在小組內(nèi)合作進行分割,在學生動手操作時,我才發(fā)現(xiàn)有的同學竟然不知道該怎么分,圓紙片拿在手上束手無策,只是眼巴巴地看著其他的同學分;小組的同學分完后,演示匯報時,有很多同學都知道怎么分,但說的不是很明白。在以后的備課過程中,要充分考慮學生的已有知識水平和心理認知特點。

  三、小組的全員參與不夠。在小組合作進行把3張餅平均分給4個人時,有的小組合作的效果較好,但有的`小組有個別同學孤立,不能很好的與人合作,我想,學生在動手操作之前,教師如果能讓小組長布置好明確的任務分工,讓每個人都有事可做,小組合作的效果就會更好了。

  四、在教學設計環(huán)節(jié)上,學生動手操作的內(nèi)容過多,使整堂課顯得很羅嗦,練習的時間就相對縮短了。在操作這一環(huán)節(jié)上,我設計了兩次動手操作,都是分餅問題,分餅的目的是讓學生用除法的意義理解分數(shù)的意義,學生分了兩次,但還是有的同學理解的不是很透徹,如果只讓學生分一次,把這一次的操作活動時間延長一些,匯報演示時讓每個類型的學生都有參與展示的機會,我想這樣教師就會有充足的時間在學生匯報展示的時候給予指導,使學生真正理解分數(shù)的意義。

數(shù)學分數(shù)除法的教學反思7

  分數(shù)應用題是六年級下期的內(nèi)容,它的教學是小學數(shù)學教學中的一個重點,也是一個難點。如何激發(fā)學生主動積極地參與學習的全過程呢?

  教學時,我沒有采用書上的情境,而是從學生的生活實際引入。例如:我們班有多少女生?有多少男生?女生占全班人數(shù)的幾分之幾?現(xiàn)在知道“全班人數(shù)”和“女生占全班人數(shù)的幾分之幾”求女生有多少人,怎樣求?學生很快就知道列出乘法算式解決。反過來,知道“女生人數(shù)”和“女生占全班人數(shù)的.幾分之幾”求全班人數(shù)呢?這樣引發(fā)學生參與的積極性,使學生感到數(shù)學就在自已的身邊,在生活中學數(shù)學,讓學生學習有價值的數(shù)學。

  讓學生理解題中的數(shù)量關(guān)系是解決分數(shù)除法應用題的關(guān)鍵。教學中,我通過省略題中的一個已知條件,讓學生發(fā)現(xiàn)問題,親自感受應用題中數(shù)量之間的聯(lián)系,想方設法讓學生在學習過程中發(fā)現(xiàn)規(guī)律,從而讓學生體會并歸納出:解答分數(shù)除法應用題的關(guān)鍵是從題目的關(guān)鍵句找出數(shù)量之間的相等關(guān)系。本課重點是要讓學生學會用方程的方法解決有關(guān)的分數(shù)問題,體會用方程解決實際問題的重要模型。為了幫助學生理解,我借助線段圖的直觀功能,引導孩子們理清解題思路,找出數(shù)量間的相等關(guān)系。

  在學生學會分析數(shù)量關(guān)系后,我把分數(shù)除法應用題與分數(shù)乘法應用題結(jié)合起來教學,讓學生通過討論交流對比,感受它們之間的異同,挖掘它們之間的內(nèi)在聯(lián)系與區(qū)別,從而增強學生分析問題、解決問題的能力。

  在學生掌握了用方程解決問題的方法后,我又鼓勵他們對同一個問題積極尋求多種不同的解法,拓展學生思維,引導學生學會多角度分析問題,從而在解決問題的過程中培養(yǎng)學生的探究能力和創(chuàng)新精神。教學中,給學生提供探究的平臺,先讓學生獨立思考,探究解題方法,在獨立探究的基礎上,再讓學生小組合作討論,探究不同的解題方法。使學生經(jīng)歷獨立探究、小組探究的過程,使學生對“分數(shù)除法問題”的算法有初步的感悟,對這類應用題數(shù)量關(guān)系及解法有清晰的理解,為進入更深層次的學習做好充分的準備。

數(shù)學分數(shù)除法的教學反思8

  首先通過課前談話解決了分數(shù)除法的意義。接下去重點來研究第一環(huán)節(jié)分數(shù)除以整數(shù)的計算方法,我出示了這樣一道例題:城西中心小學占地約為9/10公頃,如果按面積平均分成三塊不同的區(qū)域,每塊區(qū)域占地多少公頃?題目一出,學生馬上就把算式列出來了,9/10÷3,怎么計算呢?通過四人小組討論合作,最終相出了好幾種方法。如9/10÷3=0.9÷3=0.3(公頃)9/10÷3=(9/10×1/3)÷(3×1/3)=3/10(公頃)9/10÷3=9/10×1/3=3/10(公頃)(因為把一塊地看作一個整體,平均分成三塊,其中的一塊就占了這塊的1/3,所以直接乘以1/3)等一些方法,通過比較最終得出9/10÷3=9/10×1/3=3/10(公頃)這種方法簡便。接著我把9/10該為10/11,讓他們再用自己發(fā)現(xiàn)的方法進行計算。結(jié)果學生們發(fā)現(xiàn)還是用這種方法簡便,10/11÷3=10/11×1/3=10/33(公頃),最后,讓他們觀察、討論、交流9/10÷3=9/10×1/3=3/10(公頃)與10/11÷3=10/11×1/3=10/33(公頃)這兩題的計算方法,學生們發(fā)現(xiàn)除以整數(shù)等于乘以整數(shù)的倒數(shù)。第二環(huán)節(jié)解決一個數(shù)除以分數(shù)的計算方法。我把例題該為城西中心小學占地約為9/10公頃,如果每塊區(qū)域占地為3/10公頃,平均分成幾塊不同的'區(qū)域?有了第一題的基礎,大部分學生馬上就想到9/10÷3/10=9/10×10/3=3(塊),我問他們,為什么其他方法不用了呢?學生們說馬上異口同聲的回答,如果你在把9/10換成10/11的話,小數(shù)不行,除數(shù)轉(zhuǎn)化為1麻煩,反正只要乘以它的倒數(shù)就行了。接著我又問如果老師把9/10公頃換成1公頃,你認為又該怎么計算呢?學生們說還是乘以它的倒數(shù)。那么從中你發(fā)現(xiàn)了什么?分數(shù)除法的計算方法學生們脫口而出。第三環(huán)節(jié),做一些練習。

  在整個教學過程中,我是以學生學習的組織者,幫助者,促進者出現(xiàn)在他們的面前。這樣不僅充分發(fā)揮學生的自主潛能,培養(yǎng)學生的探索能力,而且激發(fā)學生的學習興趣。學生學的輕松,教師教的快樂。