天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學(xué)反思>因數(shù)和倍數(shù)的教學(xué)反思

因數(shù)和倍數(shù)的教學(xué)反思

時間:2023-02-21 16:44:14 學(xué)榮 教學(xué)反思 我要投稿

關(guān)于因數(shù)和倍數(shù)的教學(xué)反思(精選25篇)

  作為一名人民教師,我們要有一流的教學(xué)能力,教學(xué)反思能很好的記錄下我們的課堂經(jīng)驗,那么應(yīng)當(dāng)如何寫教學(xué)反思呢?以下是小編為大家收集的關(guān)于因數(shù)和倍數(shù)的教學(xué)反思,僅供參考,歡迎大家閱讀。

關(guān)于因數(shù)和倍數(shù)的教學(xué)反思(精選25篇)

  因數(shù)和倍數(shù)的教學(xué)反思 篇1

  《倍數(shù)和因數(shù)》這一節(jié)的主要內(nèi)容是讓學(xué)生在已有知識和經(jīng)驗的基礎(chǔ)上,自主探索和總結(jié)找一個數(shù)的倍數(shù)和因數(shù)的方法;用“列舉法”研究一個數(shù)的倍數(shù)的特點和一個數(shù)的因數(shù)的特點。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

 。ㄒ唬┎僮鲗嵺`,舉例內(nèi)化,認識倍數(shù)和因數(shù)。

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念,使數(shù)與形做到了有機的結(jié)合。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,降低了難度,效果較好。

 。ǘ┳灾魈骄,意義建構(gòu),找倍數(shù)和因數(shù)。

  一個數(shù)的倍數(shù)與因數(shù)的特征,單憑記憶也不難接受,為防止學(xué)生進行“機械學(xué)習(xí)”,我提出“任何一個不是0的自然數(shù)的因數(shù)有什么特點,”讓學(xué)生觀察12,20,16,36的因數(shù),思考:一個數(shù)的因數(shù)的個數(shù)是有限的還是無限的?其中最大的因數(shù)是幾?最小的呢?讓學(xué)生的思維有了明確的指向。整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的'方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。

 。ㄈ┳プW(xué)生思維的“最近發(fā)展區(qū)”,讓學(xué)生在“獨立思考——集體交流——互相討論”的過程中,促使學(xué)生學(xué)會有序思考,從而形成基本的技能與方法,既關(guān)注了過程,又關(guān)注了結(jié)果。

  找一個數(shù)的因數(shù)的方法是本節(jié)課的難點,在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流再讓學(xué)生尋找,這樣就用了很多時間,最后就沒有很多的時間去練習(xí),我認為雖然時間用的過多,但我認為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。

  先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導(dǎo)和總結(jié)。

 。ㄋ模┳兪酵卣,實踐應(yīng)用————促進智能內(nèi)化。

  練習(xí)的設(shè)計不僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。

 。ㄎ澹┲匾晹(shù)學(xué)意義的滲透與拓展,力求用數(shù)學(xué)的本質(zhì)吸引學(xué)生,樹立為學(xué)生的繼續(xù)學(xué)習(xí)和終身發(fā)展服務(wù)的意識。本節(jié)課的設(shè)計,我就關(guān)注了學(xué)生的學(xué)習(xí)后勁。如列舉法的介紹,有序思考的解決問題的策略等。

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我讓學(xué)生先進性了預(yù)習(xí),做好了一定的準(zhǔn)備工作。在第一部分認識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應(yīng)該及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應(yīng)該及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。

  因數(shù)和倍數(shù)的教學(xué)反思 篇2

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。

  數(shù)學(xué)課程標(biāo)準(zhǔn)“以人為本”的理念決定著數(shù)學(xué)教學(xué)目標(biāo)的指向:適應(yīng)并促進學(xué)生的發(fā)展。根據(jù)本節(jié)課知識的特點和學(xué)生的認知規(guī)律,我采用了角色轉(zhuǎn)換、數(shù)形結(jié)合、合作學(xué)習(xí)等發(fā)展性教學(xué)手段進行教學(xué),在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學(xué):

  (1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。

  因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達到了預(yù)期的.效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。

  (2)角色轉(zhuǎn)換,讓學(xué)生親身體驗數(shù)和數(shù)之間的聯(lián)系。

  因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點。

 。3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進數(shù)學(xué)課堂。

  “數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思想。對教師來說則是一種教學(xué)策略,是一種發(fā)展性課堂教學(xué)手段;對學(xué)生來說又是一種學(xué)習(xí)方法。如果長期滲透,運用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。開課教師引導(dǎo)學(xué)生進行空間想象。

 。4)重組教材,根據(jù)學(xué)生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。

  教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實際情況,我進行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學(xué)生說出20和24的因數(shù),達到了鞏固練習(xí)的目的。這樣設(shè)計由易到難,由淺入深,符合了學(xué)生的認知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。

 。5)趣味活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。

  只有讓學(xué)生親身感受到數(shù)學(xué)知識內(nèi)在的智取因素,數(shù)學(xué)學(xué)習(xí)的無窮魅力才能深深地打動學(xué)生。這節(jié)課的練習(xí)設(shè)計緊緊把握概念的內(nèi)涵與外延,設(shè)計有效練習(xí),拓展知識空間。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達到充分地練習(xí)效果。

  因數(shù)和倍數(shù)的教學(xué)反思 篇3

  這個單元課時數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓(xùn)練。通過一個單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點的學(xué)習(xí)和掌握上還存在一些問題:

  1、最大公因數(shù)和最小公倍數(shù)

  教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:

  一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù)。

  二是介紹短除法。

  三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。

  根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實,將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時每節(jié)課都有三到五個訓(xùn)練,并進行專項過關(guān)。在應(yīng)用這個知識解決實際問題時,有少數(shù)后進生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。

  2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)

  這四個概念按照兩個不同的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。

  3、235倍數(shù)的特征

  如果單獨讓學(xué)生去說去判斷一個數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的.進行反應(yīng),數(shù)的感覺不佳。

  以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓(xùn)練。多給學(xué)生一點耐心,再堅持一份恒心,相信學(xué)生們會有提高,會有改變。

  因數(shù)和倍數(shù)的教學(xué)反思 篇4

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對于同學(xué)來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。

  一是教材雖然不是從過去的整除定義動身,而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但實質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的`“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強調(diào),協(xié)助小朋友們認真理解辨析,所以同學(xué)一節(jié)課下來對這組概念就理解透徹了,不會模糊了。

  因數(shù)和倍數(shù)的教學(xué)反思 篇5

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進行。第一課時只讓學(xué)生認識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。

  一、設(shè)計情境,引起思考。

  改變教材的情境圖,用學(xué)生有興趣的'情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。

  二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。

  如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。

  根據(jù)學(xué)生的學(xué)習(xí)特點,靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進行,才能達到教學(xué)的目的。

  因數(shù)和倍數(shù)的教學(xué)反思 篇6

  本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識的基礎(chǔ)上進行教學(xué)的。

  課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進行分類,同時思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的'倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  其次,厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。

  本節(jié)課的不足之處:

  1、練習(xí)設(shè)計容量少了一些,導(dǎo)致課堂有剩余時間。

  2、對因數(shù)和倍數(shù)的含義還應(yīng)該進行歸納總結(jié)上升到用字母來表示。

  因數(shù)和倍數(shù)的教學(xué)反思 篇7

  倍數(shù)和因數(shù)本教材與原教材大不相同。在舊教材中,首先確立了除法的概念,然后在此基礎(chǔ)上認識了因子倍數(shù)。目前,在不知道劃分的情況下,直接識別倍數(shù)和因子。數(shù)學(xué)中的“初始概念”通常很難教授。這部分信息是學(xué)生第一次很難掌握的。首先,這個名字相對抽象,在現(xiàn)實生活中不常接觸。對于這樣的概念教學(xué),學(xué)生要真正理解、掌握和確定它,需要一個長期的消化和理解過程。

  在本課程中,我充分體現(xiàn)了學(xué)生是主體,為學(xué)生的探索和發(fā)現(xiàn)提供了充足的時間和空間,并提供了適當(dāng)?shù)闹笇?dǎo)。同時,為了提高課堂教學(xué)的有效性,我在本課程的教學(xué)中體現(xiàn)了自主性、主動性、合作性和親和力,做到了以下幾點:

 。ㄒ唬┎僮鲗嵺`,實例內(nèi)化,對倍數(shù)和因子的理解

  我創(chuàng)造了一個有效的數(shù)學(xué)學(xué)習(xí)環(huán)境,將數(shù)字與形狀結(jié)合起來,并將抽象化為直覺。首先,讓學(xué)生操作,將12個小正方形放入不同的矩形中,然后讓學(xué)生寫出不同的乘法公式,從而得出因子和倍數(shù)的含義。這樣,在學(xué)生已有知識的基礎(chǔ)上,從動手操作到直觀感知,概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),使學(xué)生能夠獨立體驗數(shù)與形的結(jié)合,然后形成要素和倍數(shù)的含義。使學(xué)生初步建立“因素與多元”的概念。這樣,我們就可以充分學(xué)習(xí)、利用和挖掘教材,利用學(xué)生已有的數(shù)學(xué)知識,引出新的知識,減緩難度,效果良好。

 。ǘ┳灾魈骄、意義建構(gòu)、發(fā)現(xiàn)倍數(shù)和因素

  整個教學(xué)過程試圖反映學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者和參與者。在整個課堂上,教師總是為學(xué)生營造一種輕松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)和理解倍數(shù)和因子的意義,探索和掌握尋找一個數(shù)的倍數(shù)和因子的`方法,引導(dǎo)學(xué)生滿口獨立獲取知識,手和腦。

  新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式。多元合作教學(xué)不僅能使學(xué)生在合作中表達自己的觀點、參與討論、獲取知識、發(fā)現(xiàn)特色,還能培養(yǎng)學(xué)生的合作學(xué)習(xí)技能,初步形成合作與競爭意識。

  查找數(shù)字因子是本課的難點。在教學(xué)過程中,讓學(xué)生自主探究。在隨后的檢查中,我發(fā)現(xiàn)很多學(xué)生完成的不是很好,所以我決定先溝通,讓學(xué)生們發(fā)現(xiàn)。就這樣,花了很多時間。最后,我沒有太多時間練習(xí)。我認為雖然我用了太多的時間,但我認為學(xué)生們已經(jīng)充分探索和收獲了。對于剛剛對多因素有了感性認識的學(xué)生來說,如何在沒有重復(fù)和遺漏的情況下找到36個因素是一件很困難的事情,這樣他們才能充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。首先,讓學(xué)生獨立找出36的因子。我檢查了三分之一的學(xué)生可以有序地思考,大多數(shù)學(xué)生沒有按照必要的順序?qū)懝健H缓笞寣W(xué)生討論兩個問題

  因數(shù)和倍數(shù)的教學(xué)反思 篇8

  《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊的知識點,主要教學(xué)因數(shù)和倍數(shù)的認識,以及找一個數(shù)的因數(shù)和倍數(shù)的方法!兑驍(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。

 。1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。

 。2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認真研讀教材,通過學(xué)習(xí)了解到以下信息:鑒于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。

  數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。

  一、教學(xué)過程的反思

  今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的因數(shù)和倍數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認識因數(shù)和倍數(shù)的關(guān)系。層層推進,引入教學(xué),留下懸念,充分調(diào)動了學(xué)生的積極性和求知欲。在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大。

  在教學(xué)時,先讓學(xué)生“用12個同樣大小的正方形,擺成一個長方形,并用乘法算式把自己的擺法表示出來”,讓學(xué)生動手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出因數(shù)和倍數(shù)的概念。這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗和動手操作能力,很好的調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。

  對于找一個數(shù)的倍數(shù)比找一個數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個數(shù)的倍數(shù),在學(xué)生學(xué)會了找一個數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。

  在處理本節(jié)課的難點“找36的因數(shù)”時,我原來是放手讓學(xué)生自己去找的。結(jié)果試時很多學(xué)生沒有頭緒,無從下手。時間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個的因數(shù)是學(xué)生以前從未遇到過的問題,自然不知道如何解決。再加上找一個數(shù)的因數(shù)比找一個數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時,如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認為要對學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤,學(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個數(shù)的倍數(shù)的方法有效的遷移到找一個數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的'思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。根據(jù)學(xué)生的實際情況,教學(xué)找一個數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

  二、教法的運用實踐

  1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍,因此,對于學(xué)生和第一

  接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分數(shù)無關(guān),與負數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時強調(diào)——非0——因為0乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3×4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。

  2、在進行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù),在板書要講究一個格式與對稱性,這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時應(yīng)該要注意的細節(jié),這對于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的

  新課標(biāo)實施的過程是一個不斷學(xué)習(xí)、探究、研究和提高的過程,在這個過程中,需要我們認真反思、獨立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對話,在實踐和探索中不斷前進。

  因數(shù)和倍數(shù)的教學(xué)反思 篇9

  《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  同時這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。

  本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個學(xué)生都能參加到數(shù)學(xué)知識的學(xué)習(xí)中去,調(diào)動學(xué)生學(xué)習(xí)的興趣和主動性。本節(jié)課主要從以下幾個方面進行教學(xué)的。

  一:動手操作,探究方法.

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的.知識基礎(chǔ)上,從動手操作,直觀感知,變抽象為具體。

  二、倍數(shù)教學(xué),發(fā)現(xiàn)特點。

  利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:

 。1)3的倍數(shù)應(yīng)該是3與一個數(shù)相乘的積。

 。2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時也為接下來的討論倍數(shù)的特點奠定基礎(chǔ)。

  三、討論發(fā)現(xiàn):

  (1)一個數(shù)的倍數(shù)個數(shù)是無限的(要用省略號)。

  (2)一個數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。

  四、因數(shù)教學(xué),發(fā)現(xiàn)特點。

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點。找一個數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進一步理解。強調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的`特點:

  (1)一個數(shù)因數(shù)的個數(shù)是有限的。

  (2)一個數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).

  五、練習(xí)反饋情況

  從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯的,有部分基礎(chǔ)差的學(xué)生,有如下幾點錯誤出現(xiàn):

  1、倍數(shù)沒有加省略號。

  2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。

  3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補差工作;同時要注意教學(xué)中細節(jié)的處理。

  因數(shù)和倍數(shù)的教學(xué)反思 篇10

  本課程的教材涉及許多概念,這些概念抽象且容易混淆。如何使學(xué)生更容易理解這些概念,理清概念之間的關(guān)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系,是本課程教學(xué)的重點和難點。同時,學(xué)習(xí)整理知識是這門課教學(xué)的靈魂。

  成功:

  1、構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的關(guān)系。通過課前的安排,發(fā)揮了小組合作與交流的作用。在相互交流中,學(xué)生相互學(xué)習(xí),相互學(xué)習(xí),逐漸對這些概念之間的關(guān)系有了進一步的理解。然后,在選擇了幾個學(xué)生的作品進行展示和評價后,最后,教師和學(xué)生一起組織和調(diào)整,最后完善知識之間的網(wǎng)絡(luò)體系。

  2、教學(xué)生如何組織知識。

  第一,觀察和分析這些概念,哪些概念是密切相關(guān)的;

  第二,根據(jù)這些概念之間的密切關(guān)系,它們可以分為幾個類別;

  第三,它們可以用你喜歡的方式表達,也可以用數(shù)學(xué)手寫報紙的形式呈現(xiàn)。課前設(shè)計完成后,我提前收集了一些有代表性的作品,放在課件中,供學(xué)生欣賞,互相學(xué)習(xí),互相學(xué)習(xí),共同提高。

  通過小組討論和課堂交流,教師和學(xué)生一起整理和總結(jié)本單元的概念,并繪制知識網(wǎng)絡(luò)圖。在本課程的整個設(shè)計過程中,通過學(xué)生的聯(lián)想,回憶以前學(xué)到的知識,并在他們的頭腦中建立知識之間的關(guān)系,從而揭示出這個知識網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握這一方法后,我們可以系統(tǒng)地梳理數(shù)學(xué)中的每一個單元、每一卷知識、小學(xué)數(shù)學(xué)知識,讓學(xué)生體會思維導(dǎo)圖法的威力。學(xué)生在感嘆這種方法的魅力的同時,也可以將這種方法推廣到其他學(xué)科,讓學(xué)生真正掌握知識整理的方法,并將其應(yīng)用到以后的單元知識整理中。

  3、進一步回顧實踐中的概念。在實踐環(huán)節(jié),我根據(jù)這些概念設(shè)計了一些相應(yīng)的`練習(xí)。目的是通過實踐促進復(fù)習(xí),在實踐中更好地理解這些概念的具體含義,加深學(xué)生對概念的理解和掌握。在實踐過程中,學(xué)生不僅掌握了知識排序的方法,而且對知識的語境有了深刻的理解,對每個知識點的概念有了更清晰的理解,起到了復(fù)習(xí)和復(fù)習(xí)舊知識的作用。

  缺點:

  1、個別學(xué)生不會在展覽評價中進行評價,而只是思考設(shè)計的美,而不是解釋知識之間的關(guān)系。老師應(yīng)該在這一點上給他們指導(dǎo)。

  2、有些學(xué)生甚至連最小的偶數(shù)都不懂,因為第二單元的知識是在開學(xué)時學(xué)的,有些知識點已經(jīng)忘記了。因此,他們在學(xué)習(xí)每一單元后,會繼續(xù)鞏固和實踐自己的知識。

  3、由于知識點太多,實踐時間不足,基本實踐時間可以保證,但需要擴展的知識沒有得到更好的呈現(xiàn)。

  再教育設(shè)計:

  1。掌握數(shù)學(xué)知識的本質(zhì)。漂亮的排序表單只是外部的,而不是關(guān)鍵的。注重引導(dǎo)學(xué)生從數(shù)學(xué)本質(zhì)出發(fā)思考問題,排除數(shù)學(xué)本質(zhì)以外的東西,激發(fā)思維,從而形成良好的數(shù)學(xué)思維品質(zhì)。

  2.我們應(yīng)該繼續(xù)深入探索數(shù)學(xué)的思想、靈魂和方法來指導(dǎo)課堂教學(xué),讓學(xué)生掌握未來學(xué)習(xí)知識的鑰匙,學(xué)會打開知識的大門。

  因數(shù)和倍數(shù)的教學(xué)反思 篇11

  《因數(shù)和倍數(shù)》是人教版五年級下冊第二章第一課時所學(xué)內(nèi)容,這一內(nèi)容與原來教材比有了很大的不同,舊教材中是先建立整除的概念,再在此基礎(chǔ)上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識因數(shù)和倍數(shù)的,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。上完這節(jié)課覺得有以下幾點做得較好:

  1、通過操作實踐,認識因數(shù)和倍數(shù)

  我開門見山,直接入題,創(chuàng)設(shè)了有效的數(shù)學(xué)學(xué)習(xí)情境,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的'意義,這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念,減緩難度,效果較好。

  2、通過自主化、活動化、合作化,找因數(shù)和倍數(shù)

  整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、引導(dǎo)者、參與者,。整節(jié)課中,我始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解因數(shù)和倍數(shù)的意義,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。

  3、通過變式拓展,培養(yǎng)學(xué)生能力

  課前我精心設(shè)計練習(xí)題,力求不僅圍繞教學(xué)重點,而且注意到練習(xí)的層次性,趣味性。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂,感悟數(shù)學(xué)的魅力。

  但是還存在一些不可忽視的問題:

  1、課上應(yīng)該及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。

  2、課堂用語還不夠精煉,應(yīng)該進一步規(guī)范課堂用語,做到不拖泥帶水。

  3、教者評價應(yīng)及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來,避免單一化。

  因數(shù)和倍數(shù)的教學(xué)反思 篇12

  因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認識了乘法各部分名稱,對“倍”葉有了初步的認識,從而本課由此入手,讓學(xué)生由熟悉的知識經(jīng)驗開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識結(jié)構(gòu),體會到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。

  在探索找一個數(shù)的因數(shù)的方法時,為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動),2、9(閃動),3、6(閃動)學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學(xué)生難以真正理解的地方。

  本課中還要注意到的就是學(xué)生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學(xué)生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時學(xué)生還不知道這些數(shù)的`概念,但這時給學(xué)生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。

  因數(shù)和倍數(shù)的教學(xué)反思 篇13

  本單元注意以下幾個方面的教學(xué),可以促進學(xué)生鞏固基礎(chǔ)知識,促進學(xué)生發(fā)展基本思維能力。

  1.加強概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。

  本冊新教材采用整數(shù)除法的表示形式教學(xué),便于學(xué)生感知因數(shù)和倍數(shù)的本質(zhì)意義。注意因數(shù)與倍數(shù)的相互依存的關(guān)系;質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系;偶數(shù)、奇數(shù)與2的倍數(shù)的關(guān)系等,形成概念鏈,依靠理解促進記憶!

  2.注意培養(yǎng)學(xué)生的抽象概括與歸納推理能力

  關(guān)注由從具體到抽象、由特殊到一般的概括、歸納過程,即從個別性知識推出一般性結(jié)論。如質(zhì)數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進行歸納推理,熟悉20以內(nèi)的質(zhì)數(shù),制作100以內(nèi)質(zhì)數(shù)表。

  3.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣。

  4.加強解決問題的教與學(xué),新教材增加了探索兩數(shù)之和的奇偶性的'純數(shù)學(xué)問題,可以根據(jù)兩數(shù)之和的奇偶性的規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。

  5.拓展學(xué)生的知識面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開拓視野,發(fā)展思維!。

  因數(shù)和倍數(shù)的教學(xué)反思 篇14

  簡單的內(nèi)容中蘊藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時,對于求一個數(shù)的因數(shù),及理解一個數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個數(shù)的因數(shù)的個數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時,對求一個數(shù)的倍數(shù)及理解一個數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學(xué)生判斷為對。練習(xí)中:18是的倍數(shù),個別學(xué)生選擇了18、36、54……。針對這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個問題:

  1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。

  2、觀察比較,會打消列問題:一個數(shù)的因數(shù)和它本身的'關(guān)系,

  3、為什么一個數(shù)的因數(shù)的個數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。

  通過對這幾個問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個數(shù)的因數(shù)和倍數(shù)

  因數(shù)和倍數(shù)的教學(xué)反思 篇15

  一.數(shù)形結(jié)合減緩難度

  《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  二.自主探究,合作學(xué)習(xí)

  放手讓每個同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點。

  三.在游戲中體驗學(xué)習(xí)的快樂

  在最后的'環(huán)節(jié)中我設(shè)計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。

  這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。

  因數(shù)和倍數(shù)的教學(xué)反思 篇16

  聽了陶老師執(zhí)教的《倍數(shù)和因數(shù)》一課,我有以下幾點體會。

  1、倍數(shù)和因數(shù)是一個比較抽象的知識。在教學(xué)中,陶老師讓學(xué)生擺出圖形,通過乘法算式來認識倍數(shù)和因數(shù)。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據(jù)乘法算式,從學(xué)生已有知識出發(fā),學(xué)習(xí)倍數(shù)和因數(shù),初步體會其意義。在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會倍數(shù)和因數(shù)的含義。在學(xué)生初步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,陶老師還設(shè)計了讓學(xué)生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),讓學(xué)生明白除法算式中也能找出倍數(shù)和因數(shù)。最后,陶老師出示了五個數(shù),讓學(xué)生從中找找,說說誰是誰的倍數(shù),誰是誰的因數(shù)。這一設(shè)計既是對上面內(nèi)容的'提升,又引出了下面的內(nèi)容。

  2、一個數(shù)的因數(shù)和倍數(shù)的尋找,課本上是安排先教學(xué)倍數(shù)后教學(xué)因數(shù)的。陶老師在教學(xué)時,打破了教材的安排,首先教學(xué)找一個數(shù)的因數(shù)。我覺得這樣做比較好,找因數(shù)的方法比較難一點點,它需要學(xué)生的逆向思維,所以陶老師一步一步的引導(dǎo)著學(xué)生,扶放結(jié)合地讓學(xué)生去探索找一個數(shù)因數(shù)的方法,隨后再去教學(xué)找一個數(shù)的倍數(shù),學(xué)生就容易找準(zhǔn)了。這樣安排既承接了上面的內(nèi)容,又為學(xué)生一個數(shù)的倍數(shù)提供了方法。

  因數(shù)和倍數(shù)的教學(xué)反思 篇17

  通過今天的學(xué)習(xí),你有什么收獲?

  課后作業(yè) :課后自已或與同學(xué)合作制作一個含有因數(shù)和倍數(shù)知識的轉(zhuǎn)盤。

  教后反思:

  40分鐘的時間一閃而過,輕松愉悅的課堂氣氛,讓學(xué)生的學(xué)習(xí)情緒空前高漲,學(xué)生的學(xué)習(xí)熱情,學(xué)習(xí)過程中數(shù)學(xué)思維的提升,都在這短短的時間內(nèi)讓我感覺無盡的驚喜。

  課堂導(dǎo)入,親切,有效,讓學(xué)生先在腦海中留下“關(guān)系”這種印象,學(xué)生通過自己閱讀明白誰是誰的因數(shù),誰是誰的倍數(shù),然后通過試一試、練習(xí)、特別是(8是倍數(shù),4是因數(shù)…… 的辨析,讓學(xué)生明白:在說倍數(shù)(或因數(shù))時,必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨說誰是倍數(shù)(或因數(shù))。

  因數(shù)和倍數(shù)不能單獨存在。

  通過尋找一個數(shù)的`因數(shù),和一個數(shù)的倍數(shù),讓學(xué)生通過多個實例找到規(guī)律。

  在教學(xué)中由于過分依賴課件,致使有的環(huán)節(jié)沒有深入,沒有給學(xué)生時間進行

  因數(shù)和倍數(shù)的教學(xué)反思 篇18

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  1、是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。

  2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的.整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

  3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣。可以說"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.的倍數(shù)"。在課堂中反復(fù)強調(diào),幫助學(xué)生認真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。

  因數(shù)和倍數(shù)的教學(xué)反思 篇19

  我執(zhí)教的《因數(shù)和倍數(shù)》一節(jié),是一節(jié)概念課。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先以拼圖比賽為素材,讓學(xué)生動手操作快速把12個小正方形擺出一個長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。

  能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的'因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進作用。

  這節(jié)課另一個給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。

  由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強,學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。

  因數(shù)和倍數(shù)的教學(xué)反思 篇20

  本單元涉及到的因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內(nèi)容。是學(xué)生通過四年多數(shù)學(xué)學(xué)習(xí),已經(jīng)掌握了大量的整數(shù)知識,包括整數(shù)的認識、整數(shù)四則運算的基礎(chǔ)上進一步探索整數(shù)的性質(zhì)。

  在教學(xué)中,通過教授學(xué)生認識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。

  接下來學(xué)習(xí)“2、3、5的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的規(guī)律和特點。在此之前還要向?qū)W生教學(xué)什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學(xué)習(xí)“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導(dǎo)學(xué)生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。

  那么,又如何讓學(xué)生學(xué)習(xí)掌握質(zhì)數(shù)與合數(shù)呢?在教學(xué)中,我主要是讓學(xué)生把1~

  20的因數(shù)分別寫出來,并按照奇數(shù)為一列偶數(shù)為一列來讓學(xué)生進行觀察比較,然后歸類整理:只有1個因數(shù)的有哪些數(shù)?有兩個因數(shù)的'有哪些數(shù)?有3個以上因數(shù)的有哪些數(shù)?學(xué)生分好之后,教師明確:向這樣只有2個因數(shù)的數(shù)叫做質(zhì)數(shù),有2個以上因數(shù)個數(shù)的數(shù)叫合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。那么自然數(shù)按因數(shù)的個數(shù)來分就可以分為“1、質(zhì)數(shù)、合數(shù)”三大類。

  為了讓學(xué)生鞏固質(zhì)數(shù)與合數(shù),再讓學(xué)生找出1~100以內(nèi)的所有質(zhì)數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質(zhì)數(shù),并且讓學(xué)生數(shù)出、記住100以內(nèi)有25個質(zhì)數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質(zhì)數(shù)還是合數(shù)。

  最后,再學(xué)生講解介紹“分解質(zhì)因數(shù)”,知道用短除法來分解質(zhì)因數(shù)。然后對整個單元所學(xué)的知識進行梳理、歸類,讓學(xué)生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習(xí),加強的后進生的關(guān)注和輔導(dǎo)。

  因數(shù)和倍數(shù)的教學(xué)反思 篇21

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)“自主——合作——探究”的學(xué)習(xí)方式,強調(diào)學(xué)習(xí)是一個主動建構(gòu)的過程。因此,應(yīng)注重培養(yǎng)學(xué)生學(xué)習(xí)的獨立性和自主性,讓學(xué)生在教師的指導(dǎo)下主動地參與學(xué)習(xí),親歷學(xué)習(xí)過程,從而學(xué)會學(xué)習(xí)。

  1、以“理”為基點,將學(xué)生帶入新知的學(xué)習(xí)。

  概念教學(xué)重在“理”。學(xué)生理解“因數(shù)”、“倍數(shù)”概念有個逐步形成的過程,為了促進這一意識建構(gòu),我先讓學(xué)生通過自己已有的認知結(jié)構(gòu),經(jīng)過“排列整齊的隊形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學(xué)生在輕松、簡約并充滿自信中學(xué)習(xí)新知,在數(shù)與形的結(jié)合中,深刻體驗因數(shù)倍數(shù)的概念。

  2、以“序”為站點,培養(yǎng)學(xué)生的思維方式。

  概念形成得在“序”。學(xué)生對于概念的形成是一個由表及里、由形象到抽象的過程。當(dāng)學(xué)生對概念有了初步認識后,讓學(xué)生探索如何找一個數(shù)的倍數(shù)的因數(shù),這既是對概念內(nèi)涵的深化,也是對概念外延的探索。這時思維和排列上的有序性是教學(xué)的關(guān)鍵,也是本節(jié)課的深度之一。在教學(xué)時,分為兩個層次:第一個層次是讓學(xué)生在已有的知識基礎(chǔ)上找12的因數(shù),并在交流中,經(jīng)歷了一個從無序到有序、從把握個別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學(xué)的難點“如何找全,并且不重復(fù)不遺漏”,讓學(xué)生自由地說,再引導(dǎo)學(xué)生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實質(zhì)上是思維的提高和方法的優(yōu)化,并讓學(xué)生在對比中感受“一對一對”找因數(shù)的方法,經(jīng)歷了互相討論、相互補充、對比優(yōu)化的過程。第二個層次是在學(xué)生已經(jīng)有了探索一個數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學(xué)生“能像找因數(shù)那樣有序的.找一個數(shù)的倍數(shù)”,提高了學(xué)生的思維能力。

  3、以“思”為落腳點,培養(yǎng)學(xué)生發(fā)現(xiàn)思考的能力。

  概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導(dǎo)”,一定會讓學(xué)生收獲更多,感悟更多。因此設(shè)計時,我借助了“找自己學(xué)號的因數(shù)和倍數(shù)”這個活動,在大量的有代表性的例子面前,在學(xué)生親自的嘗試中,在有目的的對比觀察中,學(xué)生的思維被逐步引導(dǎo)到了最深處,知道了一個數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學(xué)生對所學(xué)的概念進行了有意義的建構(gòu),促進和發(fā)展了他們的思維。

  因數(shù)和倍數(shù)的教學(xué)反思 篇22

  1、立足于學(xué)生的思維特點。中年級學(xué)生的思維特點是由具體形象思維到抽象概括思維過渡的重要年齡段。因此,我放棄了用12個小正方形擺長方形的動手實踐活動,而選用了看12個小正方形在腦中想象擺法。在留有短暫時間讓學(xué)生思考,腦中逐漸有了長方形的圖象紛紛舉手之后,我又不急于提問,而是追問:你能不能用一道乘法算式來表示?當(dāng)學(xué)生說出乘法算式時,也不急于就此,還讓其余同學(xué)想想他是如何擺的,做到全員參與。這種由形象到抽象,再由抽象到形象的過程,是符合學(xué)生的思維特點的,對于發(fā)展學(xué)生的抽象概括思維是有利的。

  2、層層輔墊,為學(xué)生自主探索打下了堅實的基礎(chǔ)。探索36的所有因數(shù)是本節(jié)課的重難點,我在這之前做了層層的輔墊。

 。1)3個乘法算式的呈現(xiàn)我作了調(diào)整:1×12=12,2×6=12,3×4=12。潛移默化的影響學(xué)生的有序思考。

 。2)在學(xué)生根據(jù)其余兩算式說因數(shù)和倍數(shù)的關(guān)系之后,我對12的所有因數(shù)進行了小結(jié):12的因數(shù)有1,12,2,6,3,4。讓學(xué)生感受到一道乘法算式中蘊藏著兩個因數(shù)。

 。3)36這個數(shù)比較大,學(xué)生找起36的所有因數(shù)時有點困難,我設(shè)計了從3,5,18,20,36五個數(shù)中選擇兩個數(shù)來說說誰是誰的因數(shù),誰是誰的倍數(shù)?這一教學(xué)環(huán)節(jié),減輕了學(xué)生的困難,同時也能檢驗學(xué)生對因數(shù)和倍數(shù)概念是否已正確認識。當(dāng)學(xué)生會說3是36的因數(shù),36是3的倍數(shù)時,說明他們腦中已經(jīng)有了判斷的依據(jù):3×12=36。

 。4)在學(xué)生獨立探索前,我又提醒學(xué)生,在找36的所有因數(shù)時,如果遇到困難,不要忘了我們已經(jīng)尋找過12這個數(shù)的所有因數(shù),可以作為參考。

  這四個方面的準(zhǔn)備,學(xué)生的獨立思考才有了思維的依托,遇到困難,他們就會自我想辦法,自我解決問題,這樣的探索就會有效,不會浮于表面,流于形勢。

  3、有層次的呈現(xiàn)作業(yè),給學(xué)生以正面引導(dǎo)為主。在概括總結(jié)找36所有因數(shù)的`方法時,我找了三份的作業(yè),第一份是有序,成對思考的1,36,2,18,3,12,4,9,6。在交流中讓學(xué)生明確只有有序的,成對的思考才會做到既不遺漏,又能快捷方便,第二份作業(yè)是所有的因數(shù)按順序排列的1,2,3,4,6,9,12,18,36。結(jié)果作業(yè)中漏了一個4,這是個時機,在表揚了這個學(xué)生能按順序的排列,做到美觀這個優(yōu)點之后,提出問題:美中不足的是什么?學(xué)生:一個一個找麻煩,還容易丟。我接著追問;我們能給他提些建議嗎?第三份是無序的有遺漏的,也讓學(xué)生給他提建議,讓他也能做到一個不漏。這三份作業(yè)對比下來,先教給學(xué)生正確的思考方法,再以正確的方法判斷其他同學(xué)思考不當(dāng)?shù)牡胤,并提出建議。尋找一個數(shù)所有因數(shù)的方法也能深刻地印在學(xué)生腦里。

  4、大膽放手,產(chǎn)生矛盾沖突,發(fā)現(xiàn)問題,想辦法解決問題。在找3的倍數(shù)時,我想學(xué)生有了前面的學(xué)習(xí)基礎(chǔ),我直接拋出問題:你能像上面這樣有序的從小到大的找出3的倍數(shù)嗎?學(xué)生在找中發(fā)現(xiàn):3的倍數(shù)有很多,寫不完。我追問;那怎么辦,有辦法嗎?通過一會兒的沉默思考后,紛紛有學(xué)生提出省略號。

  5、趣味練習(xí),聯(lián)想,探索。練習(xí)中我設(shè)計了兩道題,一是猜我的電話號碼,激發(fā)起學(xué)生的興趣,二是探索計數(shù)器的奧秘,多位老師問起我的設(shè)計意圖,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉,牛頓看到蘋果落地,通過聯(lián)想,最終發(fā)現(xiàn)了萬有引力定律,瓦特看到茶壺里冒出蒸氣,通過聯(lián)想,最終發(fā)明了蒸氣機…這與一個人的認真觀察,善于聯(lián)想,勇于探索是分不開的。

  因數(shù)和倍數(shù)的教學(xué)反思 篇23

  開學(xué)后上第一節(jié)課年級組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點不習(xí)慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還可以。

  因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎(chǔ)上教學(xué)因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學(xué)前,我是先讓學(xué)生進行了預(yù)習(xí),開課伊始,就揭示課題,讓學(xué)生談自己對因數(shù)與倍數(shù)的理解。學(xué)生結(jié)合一個乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時間。學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。

  能不重復(fù)、不遺漏找出一個數(shù)的因數(shù)是本課的難點,絕大部分學(xué)生都能仿照找12的因數(shù)去找,孩子都能一對一對的找,可遺漏的多,在這里我強調(diào)按順序找,也就是從“1”開始,依次找,這樣效果很好。

  為了得出因數(shù)的特點,我出了“24的因數(shù),36的因數(shù),18的因數(shù)”,并認真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時間不夠,我只要求孩子從因數(shù)的個數(shù),最小,最大的因數(shù)考慮,沒有對質(zhì)數(shù),合數(shù),公因數(shù)進行滲透。找一個數(shù)的倍數(shù)因為方法比較易于掌握,沒有過多的.練習(xí),二是激發(fā)他們想象一個數(shù)的倍數(shù)有什么特點。

  針對這節(jié)課,課后老師們就這堂課認真評析,真誠的說出自己的觀點,特別就知識的生長點、教學(xué)的重難點展開了討論,特別是找一個數(shù)的因數(shù),應(yīng)注重方法的指導(dǎo)。由此,我們數(shù)學(xué)課堂教學(xué)應(yīng)注意一下幾點:知識的滲透點、練習(xí)發(fā)展點、層次切入點、設(shè)計巧妙點、教法多樣點、語言動聽點、管理到位點、應(yīng)變靈活點。

  這幾點既是目標(biāo)也是方向,相信我們在新的一學(xué)期,團結(jié)協(xié)作,勤奮務(wù)實,努力朝著目標(biāo)前進。

  因數(shù)和倍數(shù)的教學(xué)反思 篇24

  《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學(xué)后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。

  一、領(lǐng)會意圖,做到用教材教。

  我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的'因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。

  但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導(dǎo)?磥盱`活的運用教材,深放領(lǐng)會意圖,才能使教學(xué)更為輕松、高效!

  二、模式運用,做到靈活自然。

  模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學(xué)生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。

  如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計出兩個“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!

  因數(shù)和倍數(shù)的教學(xué)反思 篇25

  本節(jié)課的內(nèi)容涉及的概念非常多,即抽象又容易混淆,如何使學(xué)生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系是本節(jié)課教學(xué)的重難點。

  成功之處:

  1.構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的相互聯(lián)系。在教學(xué)中,我首先通過一個聯(lián)想接龍的游戲調(diào)動學(xué)生學(xué)習(xí)的興趣,讓學(xué)生利用因數(shù)和倍數(shù)單元的知識來描述數(shù)字2,學(xué)生非常容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個位是0、2、4、6、8的數(shù),通過學(xué)生的回答教師及時抓住其中的關(guān)鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2、3、5的'倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡潔、更加有序、更加能體現(xiàn)知識之間的聯(lián)系呢?通過學(xué)生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學(xué)生相互學(xué)習(xí)、相互借鑒,逐漸對這些概念的聯(lián)系有了更進一步的認識,然后通過選取幾名同學(xué)的作品進行展評,最后教師和學(xué)生共同進行整理和調(diào)整,最終來完善知識之間的網(wǎng)絡(luò)體系。

  2.在練習(xí)中進一步對概念進行有針對性的復(fù)習(xí)。在練習(xí)環(huán)節(jié)中,我根據(jù)這些概念設(shè)計了一些相應(yīng)的練習(xí)。目的是以練習(xí)促復(fù)習(xí),在練習(xí)中更好的體會這些概念的具體含義,加深學(xué)生對概念的理解和掌握。

  不足之處:

  個別學(xué)生在展評中不會去評價,只是從設(shè)計的美觀上去思考,而沒有從體現(xiàn)知識之間的聯(lián)系上去進行說明。

  再教設(shè)計:

  抓住數(shù)學(xué)知識的本質(zhì),美觀的整理形式只是一些外在的,并不是重點。

【因數(shù)和倍數(shù)的教學(xué)反思】相關(guān)文章:

倍數(shù)和因數(shù)教學(xué)反思03-20

因數(shù)和倍數(shù)教學(xué)反思04-02

《因數(shù)和倍數(shù)》教學(xué)反思02-06

因數(shù)和倍數(shù)教學(xué)反思01-28

倍數(shù)和因數(shù)教學(xué)反思01-16

《倍數(shù)和因數(shù)》教學(xué)反思04-11

《倍數(shù)和因數(shù)》教學(xué)反思(精選3篇)03-09

《因數(shù)和倍數(shù)》教學(xué)反思(精選3篇)03-10

因數(shù)和倍數(shù)教學(xué)反思15篇01-29

因數(shù)和倍數(shù)教學(xué)反思(15篇)02-07