- 相關(guān)推薦
基于IIS總線的嵌入式音頻系統(tǒng)設(shè)計
摘要:介紹了基于IIS總線的嵌入式音頻設(shè)備的硬件體系結(jié)構(gòu)及其Linux驅(qū)動程序的設(shè)計。在音頻驅(qū)動程序設(shè)計綜合使用了DMA、分段多緩存區(qū)和內(nèi)存映射技術(shù)以提高系統(tǒng)性能,滿足音頻實時性的要求。關(guān)鍵詞:音頻設(shè)備驅(qū)動程序 IIS總線 嵌入式Linux DMA 內(nèi)存映射
嵌入式音頻系統(tǒng)廣泛應(yīng)用于GPS自動導(dǎo)航、PDA、3G手機等嵌入式領(lǐng)域,但目前國內(nèi)在這方面的研究較少。
音頻系統(tǒng)設(shè)計包括軟件設(shè)計和硬件設(shè)計兩方面,在硬件上使用了基于IIS總線的音頻系統(tǒng)體系結(jié)構(gòu)。IIS(Inter-IC Sound bus)又稱I2S,是菲利浦公司提出的串行數(shù)字音頻總線協(xié)議。目前很多音頻芯片和MCU都提供了對IIS的支持。
在軟件上,作為一個功能復(fù)雜的嵌入式系統(tǒng),需要有嵌入式操作系統(tǒng)支撐。Linux是一個源代碼開放的類UNIX系統(tǒng),由于其具有內(nèi)核可裁剪性,且提供對包括ARM、PPC在內(nèi)的多種嵌入式處理器的支持,所以廣泛應(yīng)用于嵌入式高端產(chǎn)品中。雖然Linux提供了眾多API來降低驅(qū)動程序制作的復(fù)雜度,但是由于音頻應(yīng)用對實時性有很高的要求,且需要處理的數(shù)據(jù)量較大,所以必須合理分配資源,使用合適的算法。本文針對三星公司的S3C44B0 ARM處理器構(gòu)造了基于lis的音頻系統(tǒng),并介紹了該音頻系統(tǒng)基于Linux2.4.0內(nèi)核的驅(qū)動程序構(gòu)造技術(shù)。
(范文先生網(wǎng)www.gymyzhishaji.com收集整理)
1 硬件體系結(jié)構(gòu)
IIS總線只處理聲音數(shù)據(jù)。其他信號(如控制信號)必須單獨傳輸。為了使芯片的引出管腳盡可能少,IIS只使用了三根串行總線。這三根線分別是:提供分時復(fù)用功能的數(shù)據(jù)線、字段選擇線(聲道選擇)、時鐘信號線。
在三星公司的ARM芯片中,為了實現(xiàn)全雙工模式,使用了兩條串行數(shù)據(jù)線,分別作為輸入和輸出。此外三星公司的IIS接口提供三種數(shù)據(jù)傳輸模式:
· 正常傳輸模式。此模式基于FIFO寄存器。該模式下CPU將通過輪詢方式訪問FIFO寄存器,通過IISCON寄存器的第七位控制FIFO。
· DMA模式。此模式是一種外部設(shè)備控制方式。它使用竊取總線控制權(quán)的方法使外部設(shè)備與主存交換數(shù)據(jù),從而提高系統(tǒng)的吞吐能力。
在三星公司的ARM芯片中有4個通道DMA控制器用于控制各種外部設(shè)備,其中IIS與其他串行外設(shè)共用兩個橋聯(lián)DMA(BDMA)類型的DMA通道。通過設(shè)置CPU的IISFCON寄存器可以使IIS接口工作在DMA模式下。此模式下FIFO寄存器組的控制權(quán)掌握在DMA控制器上。當(dāng)FIFO滿時,由DMA控制器對FIFO中的數(shù)據(jù)進行處理。DMA模式的選擇由IISCON寄存器的第四和第五位控制。
· 傳輸/接收模式。該模式下,IIS數(shù)據(jù)線將通過雙通道DMA同時接收和發(fā)送音頻數(shù)據(jù)。本系統(tǒng)使用該數(shù)據(jù)傳輸模式。
圖1是44BOX芯片與菲利浦公司的UDAl341TS音頻芯片的連接示意圖。
在這個體系結(jié)構(gòu)中,為了實現(xiàn)全雙工,數(shù)據(jù)傳輸使用兩個BDMA通道。數(shù)據(jù)傳輸(以回放為例)先由內(nèi)部總線送到內(nèi)存,然后傳到BDMA控制器通道0,再通過IIS控制器寫入IIS總線并傳輸給音頻芯片。通道1用來錄音。
三星公司的BDMA控制器沒有內(nèi)置的存儲區(qū)域,在驅(qū)動程序中必須為音頻設(shè)備分配DMA緩存區(qū)。緩存區(qū)的地址在通道DMA控制器的地址寄存器中設(shè)置。
UDAl341TS芯片除了提供IIS接口和麥克風(fēng)揚聲器接口,還提供L3接口控制音量等。L3接口分別連到S3C44B0的3個通用數(shù)據(jù)輸出引腳上。
2 音頻設(shè)備底層軟件設(shè)計
嵌入式系統(tǒng)硬件設(shè)備種類繁多,且缺乏PC中標(biāo)準的體系結(jié)構(gòu),所以必須為各種設(shè)備編寫驅(qū)動程序。
驅(qū)動程序的主要任務(wù)是控制音頻數(shù)據(jù)在硬件中流動,并為音頻應(yīng)用提供標(biāo)準接口。由于嵌入式系統(tǒng)資源有限,且處理器能力不強,所以在音頻設(shè)備的驅(qū)動程序設(shè)計中,合理分配系統(tǒng)資源是難點。
需要注意的是,在三星公司的ARM芯片中,I/O設(shè)備的寄存器作為內(nèi)存空間的一部分,可以使用普通的內(nèi)存訪問語句讀寫I/O寄存器,進而控制外部設(shè)備。這是該嵌入式系統(tǒng)與傳統(tǒng)的基于Intel處理器的PC最大的不同。
2.1 驅(qū)動程序功能
設(shè)備驅(qū)動程序中需要完成的任務(wù)包括:對設(shè)備以及對應(yīng)資源初始化和釋放;讀取應(yīng)用程序傳送給設(shè)備文件的數(shù)據(jù)并
回送應(yīng)用程序請求的數(shù)據(jù)。這需要在用戶空間、內(nèi)核空間、總線及外設(shè)之間傳輸數(shù)據(jù)。
2.2 驅(qū)動程序構(gòu)架
Linux驅(qū)動程序中將音頻設(shè)備按功能分成不同類型,每種類型對應(yīng)不同的驅(qū)動程序。UDAl341TS音頻芯片提供如下功能:
· 數(shù)字化音頻。這個功能有時被稱為DSP或Codec設(shè)備。其功能是實現(xiàn)播放數(shù)字化聲音文件或錄制聲音。
· 混頻器。用來控制各種輸入輸出的音量大小,在本系統(tǒng)中對應(yīng)L3接口。
在Linux設(shè)備驅(qū)動程序?qū)⒃O(shè)備看成文件,在驅(qū)動程序中將結(jié)構(gòu)file_operations中的各個函數(shù)指針與驅(qū)動程序?qū)?yīng)例程函數(shù)綁定,以實現(xiàn)虛擬文件系統(tǒng)VFS對邏輯文件的操作。數(shù)字音頻設(shè)備(audio)、混頻器(mixer)對應(yīng)的設(shè)備文件分別是/dev/dsp和/dev/mixer。
2.3 設(shè)備的初始化和卸載
/dev/dsp的驅(qū)動設(shè)計主要包含:設(shè)備的初始化和卸載、內(nèi)存與DMA緩存區(qū)的管理、設(shè)備無關(guān)操作(例程)的實現(xiàn)以及中斷處理程序。
在設(shè)備初始化中對音頻設(shè)備的相關(guān)寄存器初始化,并在設(shè)備注冊中使用了兩個設(shè)備注冊函數(shù)register sound_dsp()和regiter_sound_mixer()注冊音頻設(shè)備和混頻器設(shè)備。這兩個函數(shù)在2.2以上版本的內(nèi)核drivers/sound/sound_core.c文件中實現(xiàn)。其作用是注冊設(shè)備,得到設(shè)備標(biāo)識,并且實現(xiàn)設(shè)備無關(guān)操作的綁定。在這些注冊函數(shù)里使用的第一個參數(shù)都是struct file_operations類型的參數(shù)。該參數(shù)定義了設(shè)備無關(guān)接口的操作。
設(shè)備卸載時使用注銷函數(shù)。注銷時用輸入注冊時得到的設(shè)備號即可。在注銷時還必須釋放驅(qū)動程序使用的各種系統(tǒng)資源包括DMA、設(shè)備中斷等。
2.4 DMA緩存區(qū)設(shè)計和內(nèi)存管理
在音頻設(shè)備的驅(qū)動程序設(shè)計中,DMA緩存區(qū)設(shè)計和內(nèi)存管理部分最為復(fù)雜。由于音頻設(shè)備有很高的實時性要求,所以合理地使用內(nèi)存能加快對音頻數(shù)據(jù)的處理,并減少時延。
三星公司的BDMA控制器沒有內(nèi)置DMA存儲區(qū)域,在驅(qū)動程序中必須為音頻設(shè)備分配DMA緩存區(qū)。這樣就能通過DMA直接將需要回放或是錄制的聲音數(shù)據(jù)存放在內(nèi)核的DMA緩存區(qū)中。
為了方便各種物·理設(shè)備使用DMA資源,在程序中使用strcut s3c44b_DMA數(shù)據(jù)結(jié)構(gòu)管理系統(tǒng)各個DMA通道的資源,如圖2。每個DMA通道被多個外部設(shè)備共用,為各個外設(shè)分配的DMA緩存區(qū)的大小和數(shù)目可能不·一致,所有分配的數(shù)據(jù)塊使用DMA緩存數(shù)據(jù)塊DMA_buf管理。各個不同設(shè)備申請的數(shù)據(jù)緩存區(qū)形成一個單向鏈表,每個鏈表節(jié)點包含一個起點字段,存放實際DMA緩存起始位置的物理地址。在設(shè)備第一次使用DMA時,使用kmalloc函數(shù)為DM A_buf分配內(nèi)存,并且使用consistent_alloc函數(shù)為DMA分配實際的連續(xù)物理緩存區(qū),然后將節(jié)點插入隊列中。從第二次開始通過緩存區(qū)的標(biāo)示符對緩存區(qū)進行操作。
內(nèi)存管理中的重要問題是緩存區(qū)塊設(shè)計。常見的設(shè)計思路是使用一個緩存區(qū),CPU先對緩存區(qū)處理,然后掛起,音頻設(shè)備對緩存區(qū)操作,音頻設(shè)備處理完后喚醒CPU,如此循環(huán)。需要處理大量音頻數(shù)據(jù)的音頻設(shè)備驅(qū)動程序,可以使用雙緩沖。以錄音為例,系統(tǒng)使用緩存2存放音頻設(shè)備量化好的聲音,CPU(應(yīng)用程序)則處理緩存1中的聲音數(shù)據(jù);當(dāng)Codec設(shè)備填充完緩存2,它移向緩存1填充數(shù)據(jù),而CPU轉(zhuǎn)向處理緩存2里的數(shù)據(jù);不斷交替循環(huán),如圖3(a)、(b)所示。
使用這種方法處理音頻數(shù)據(jù),能夠提高系統(tǒng)的并行能力。應(yīng)用程序可以在音頻工作的同時處理傳輸進來的音頻數(shù)據(jù)。 由于實際系統(tǒng)被設(shè)計成支持全雙工的音頻系統(tǒng),所以必須為輸入和輸出同時分配內(nèi)存,對應(yīng)的數(shù)據(jù)結(jié)構(gòu)設(shè)計如圖4所示。
圖4中音頻設(shè)備緩存控制塊管理音頻設(shè)備的緩存區(qū)。在控制塊中輸入/輸出緩存指針分別指向輸入和輸出緩存結(jié)構(gòu)audio_buf,輸入輸出控制塊指針分別指向?qū)?yīng)的DMA控制塊。因為輸人輸出使用了不同DMA通道,所以音頻設(shè)備緩存控制塊有兩個DMA控制塊控制指針。在audio_buf中分別有兩個DMA起點字段分別指向雙緩存區(qū)的起始物理地址。緩存區(qū)狀態(tài)字段包含緩存.區(qū)是否被映射、是否激活、是否暫停等信息。 應(yīng)用程序處理緩存中數(shù)據(jù)的速度依賴于緩存的大小和數(shù)據(jù)傳輸速度。例如使用"8kHz/8位/單工" 的采洋方式錄音,音頻芯片產(chǎn)生64kbps的數(shù)據(jù)流量。如果是兩個4K字節(jié)的緩存,那么應(yīng)用程序就只有0.5s處理緩存中的數(shù)據(jù)并把它存到Flash芯片中(或者傳輸?shù)狡渌O(shè)備中)。若0.5s內(nèi)不能處理這些數(shù)據(jù),緩存就會溢出。若采用高品質(zhì)的采樣,例如使用CD音質(zhì)的采樣,那么Codec產(chǎn)生數(shù)據(jù)的速度將達1376kbps,CPU處理音頻數(shù)據(jù)的時間就只有23ms。在CPU負載較大的情況下,將可能出現(xiàn)數(shù)據(jù)丟失的問題。
為了解決音頻應(yīng)用I/O數(shù)據(jù)量大的問題,最簡單易行的方法是使用比較大的緩存區(qū)域。但實際上大的緩存區(qū)需要更長的填充時間,在使用時會出現(xiàn)延時,并可能占用過多CPU資源。為了解決延時的問題,使用多段緩存機制。在這種機制下,將可用的緩存區(qū)分割成若干個相同大小的塊。對較大的緩存區(qū)的操作轉(zhuǎn)變成對較小的緩沖區(qū)塊的操作,在不增加緩存區(qū)操作時間的情
況下提供較大的緩存。不同的音頻應(yīng)用,精度不一樣,需要的緩存大小也不一樣。所以在應(yīng)用程序?qū)由,?qū)動程序還必須提供接口讓應(yīng)用程序改變塊的大小和個數(shù)。這個接口可以在ioctl中實現(xiàn)。對緩存區(qū)塊的大小控制通過對audio_buf中的對應(yīng)字段設(shè)置實現(xiàn)。
使用內(nèi)存映射(mmap)技術(shù)是另一種提高系統(tǒng)性能的途徑。Linux系統(tǒng)的內(nèi)存空間分為內(nèi)核?臻g和用戶空間,驅(qū)動程序工作在內(nèi)核空間,并負責(zé)在內(nèi)核空間和用戶空間傳輸數(shù)據(jù)。音頻應(yīng)用一般數(shù)據(jù)量比較大,而且有較高的質(zhì)量要求,在驅(qū)動程序中還可以使用內(nèi)存映射進一步提高CPU的利用率。內(nèi)存映射通過remap page_range將分配給DMA緩存區(qū)的內(nèi)核空間的內(nèi)存映射到用戶空間,用戶不需使用copy_to_user和copy_from_user將數(shù)據(jù)在內(nèi)核空間與用戶空間中拷貝。圖4中緩存區(qū)狀態(tài)和緩存區(qū)起點兩個字段也用于內(nèi)存映射服務(wù)。在實現(xiàn)時由于DMA的緩存結(jié)構(gòu)復(fù)雜,需要將每個緩存塊分別映射。
2.5 設(shè)備無關(guān)操作
設(shè)備無關(guān)操作對應(yīng)于file_operations指向的各個例程,它讓用戶用訪問文件的方式訪問設(shè)備。對設(shè)備的打開和讀寫是啟動程序為用戶程序提供的最主要接口,分別對應(yīng)于file_eratlons中的open、read和write例程。在open例程中需要完成的任務(wù)主要是設(shè)備初始化,包括:
· 通過設(shè)置IIS寄存器控制音頻設(shè)備的初始化,并且初始化設(shè)備的工作參數(shù)(包括速度、聲道、采樣寬度);
· 為設(shè)備分配DMA通道;
· 根據(jù)采樣參數(shù)計算出緩存內(nèi)段的大小(程序也可以指定緩存內(nèi)段的大小);
當(dāng)緩存區(qū)和DMA設(shè)置好后,讀寫操作主要對緩存操作。 對設(shè)備的操作除了讀寫操作外,還有音頻播放中的暫停和繼續(xù)。這兩個操作在ioctl接口中實現(xiàn),通過對相應(yīng)的IIS總線控制器(IISCON寄存器)操作實現(xiàn)。
此外,在對音頻操作時還要注意:一次采樣得到的數(shù)據(jù)必須一次處理,否則不能正確播放數(shù)據(jù)。
【基于IIS總線的嵌入式音頻系統(tǒng)設(shè)計】相關(guān)文章:
基于PCI總線的嵌入式實時DSP圖像采集系統(tǒng)08-06
基于PCI總線加密卡硬件設(shè)計08-06
基于PCI總線的CAN卡的設(shè)計與實現(xiàn)08-06
基于FPGA的總線型LVDS通信系統(tǒng)設(shè)計08-06
CAN總線的嵌入式Web服務(wù)器設(shè)計08-06