- 相關(guān)推薦
電磁爐主諧振電路研究與功率控制
摘要:詳細分析了電磁爐主諧振電路的拓撲結(jié)構(gòu)和工作過程,基于模糊控制理論,給出了負載變化時控制功率穩(wěn)定的智能控制方法。關(guān)鍵詞:電磁爐;主諧振電路;模糊控制
引言
由電力電子電路組成的電磁爐(Inductioncooker)是一種利用電磁感應加?原理,對鍋體進行渦流加熱的新型灶具。由于具有熱效率高、使用方便、無煙熏、無煤氣污染、安全衛(wèi)生等優(yōu)點,非常適合現(xiàn)代家庭使用。電磁爐的主電路是一個AC/DC/AC變換器,由橋式整流器和電壓諧振變換器構(gòu)成,本文分析了電磁爐主諧振電路的拓撲結(jié)構(gòu)和工作過程。
圖1
當電磁爐負載(鍋具)的大小和材質(zhì)發(fā)生變化時,負載的等效電感會發(fā)生變化,這將造成電磁爐主電路諧振頻率變化,這樣電磁爐的輸出功率會不穩(wěn)定,常會使功率管IGBT過壓損壞。針對這種情況,本文提出了一種雙閉環(huán)控制結(jié)構(gòu)和模糊控制方法,使負載變化時保持電磁爐的輸出功率穩(wěn)定。實際運行結(jié)果證明了該設(shè)計的有效性和可靠性。
(范文先生網(wǎng)www.gymyzhishaji.com收集整理)
1 電磁爐主電路拓撲結(jié)構(gòu)與工作過程
1.1 電磁爐主電路拓撲結(jié)構(gòu)
電磁爐的主電路如圖1所示,市電經(jīng)橋式整流器變換為直流電,再經(jīng)電壓諧振變換器變換成頻率為20~30kHz的交流電。電壓諧振變換器是低開關(guān)損耗的零電壓型(ZVS)變換器,功率開關(guān)管的開關(guān)動作由單片機控制,并通過驅(qū)動電路完成。
電磁爐的加熱線圈盤與負載鍋具可以看作是一個空心變壓器,次級負載具有等效的電感和電阻,將次級的負載電阻和電感折合到初級,可以得到圖2所示的等效電路。其中R*是次級電阻反射到初級的等效負載電阻;L*是次級電感反射到初級并與初級電感L相疊加后的等效電感。
1.2 電磁爐主電路的工作過程
電磁爐主電路的工作過程可以分成3個階段,各階段的等效電路如圖3所?。研究一個工作周期的情況,定義主開關(guān)開通的時刻為t0。時序波形如圖4所示。
圖4
1.2.1 [t0,t1]主開關(guān)導通階段
按主開關(guān)零電壓開通的特點,t0時刻,主開關(guān)上的電壓uce=0,則Cr上的電壓uc=uce-Udc=-Udc。如圖3(a)所示,主開關(guān)開通后,電源電壓Udc加在R*及L*支路和Cr兩端。由于Cr上的電壓已經(jīng)是-Udc,故Cr中的電流為0。電流僅從R*及L*支路流過。流過IGBT的電流is與流過L*的電流iL相等。由圖3(a)得式(1)。
可見,iL按照指數(shù)規(guī)律單調(diào)增加。流過R*形成了功率輸出,流過L*而儲存了能量。到達t1時刻,IGBT關(guān)斷,iL達到最大值Im。這時,仍有uc=-Udc,uce=0。iL換向開始流入Cr,但Cr兩端的電壓不能突變,因此,IGBT為零電壓關(guān)斷。
1.2.2 [t1,t2]諧振階段
IGBT關(guān)斷之后,L*和Cr相互交換能量而發(fā)生諧振,同時在R*上消耗能量,形成功率輸出。等效電路如圖3(b)及圖3(c)所示,我們也將其分為兩個階段來討論。波形如圖4中的iL和uc。
由圖3(b)、圖3(c)的等效電路可得到式(3)方程組。
L*(di/dt)+iLR*+uc=0
Cr(duc/dt)=iL (3)
由初始條件iL(t1)=Im,uc(t1)=-Udc,
解微分方程組式(3)并代入初始條件,可得下列結(jié)果:
IGBT上的電壓
式中:δ=R*/2L*為衰減系數(shù);
φ是由電路的初始狀態(tài)和電路參數(shù)決定的初相角;
β是僅由電路參數(shù)決定的iL滯后于uc的相位角。
由上面的結(jié)果可以看到,當IGBT關(guān)斷之后,uc和iL呈現(xiàn)衰減的正弦振蕩,uce是Udc與uc的疊加,它呈現(xiàn)以Udc為軸心的衰減正弦振蕩,其第一個正峰值是加在IGBT上的最高電壓。首先是L*釋放能量,Cr吸收能量,iL正向流動,部分能量消耗在R*上。在t1a時刻,ω(t-t1a)=?+β,iL=0,L*的能量釋放完畢,uc達到最大值Ucm,于是,IGBT上的電壓也達到最大值uce=Ucm+Udc。這時Cr開始放電,L*吸收能量,當ω(t-t1)=φ時,uc=0,Cr的能量釋放完畢,L*又開始釋放能量,一部分消耗在R*上,一部分向Cr充電,使uc反向上升,如圖4所示。
然后,Cr開始釋放能量,使iL反向流動,一部分消耗在R*上,一部分轉(zhuǎn)變成磁場能。在uc接近0之前,ω(t-t1)=φ+2β之時,iL達到負的最大值。當ω(t-t1)=π+φ時,uc=0,Cr的能量釋放完畢,轉(zhuǎn)由L*釋放能量,使iL繼續(xù)反向流動,一部分消耗在R*上,一部分向Cr反向充電。由于Cr左端的電位被電源箝位于Udc,故右端電位不斷下降。當ω(t-t1)=ω(t2-t1),即t=t2時,uc=-Udc,uce=0,二極管D開始導通,使Cr左端電位不能再下降而箝位于0。于是,uc不再變化,充電結(jié)束。但是,L*中還有剩余能量,iL并不為0,t2時刻iL(t2)=-I2。這時,在主控制器的控制下,主開關(guān)開始導通。因此,是零電壓開通。
1.2.3 [t2,t3]電感放電階段
如圖3(d)所示,可得方程:L*+iLR*=Udc初始條件為:iL(t2)=-I2。
解此微分方程并代入初始條件,可得:
L*中的剩余能量,一部分消耗在R*上,一部分返回電源,iL的絕對值按指數(shù)規(guī)律衰減,在t3時刻,iL=0,L*中的能量釋放完畢,二極管自然阻斷。在uc=-Udc即uce=0時,主開關(guān)已經(jīng)開通,在電源Udc的激勵下,iL又從0開始正向流動,重復[t0,t1]階段的過程。
2 仿真與實驗波形
主諧振電路仿真波形如圖5所示,實驗波形如圖6所示,試驗參數(shù)為:L=144μH,C=0.27μF。
3 功率控制
通過上面的分析我們可以看到當負載變化,也就是鍋具的等效電感和電阻變化時,電磁爐的諧振頻率會發(fā)生變化,電磁爐的輸出功率會不穩(wěn)定,實驗測得不銹鋼鍋和鐵鍋功率可以差別300W,為此,我們采用模糊控制技術(shù)來控制電磁爐的輸出功率,取得了滿意的效果。圖7是電磁爐的控制結(jié)構(gòu)圖。圖8是電磁爐模糊控制器的結(jié)構(gòu)圖,控制器的輸入分別為給定功率與輸出功率的誤差信號X和誤差的變化量Y。為了提高實時響應速度,采用控制表方式的模糊控制器。
4 結(jié)語
詳細分析了電磁爐主諧振電路的工作過程,分析結(jié)果與實驗波形是一致的。針對負載變化,輸出功率變化的情況,本文提出的模糊控制方法取得了滿意的效果。在研制的電磁爐中使用這種準諧振電路和本文提出的控制方法,產(chǎn)品已經(jīng)生產(chǎn),經(jīng)長時間測試,效果良好。
【電磁爐主諧振電路研究與功率控制】相關(guān)文章:
一種具有恒功率控制的單級功率因數(shù)校正電路08-06
交流調(diào)速的功率控制原理08-06
新型反激變換器準諧振控制器ICE1QS01及其應用電路與設(shè)計08-06
一種新穎的電流連續(xù)模式功率因數(shù)校正電路的研究08-06
各種光源控制電路的設(shè)計08-06
微機控制的大功率充電電源的研制08-06
采用超高頻點燈克服金鹵燈聲諧振問題的電子鎮(zhèn)流器研究08-06
IPM驅(qū)動和保護電路的研究08-06