天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教學(xué)論文>數(shù)學(xué)論文>數(shù)學(xué)建模優(yōu)秀論文

數(shù)學(xué)建模優(yōu)秀論文

時(shí)間:2024-11-16 08:30:49 數(shù)學(xué)論文 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)建模優(yōu)秀論文

  在學(xué)習(xí)、工作中,大家一定都接觸過論文吧,論文是指進(jìn)行各個(gè)學(xué)術(shù)領(lǐng)域的研究和描述學(xué)術(shù)研究成果的文章。你知道論文怎樣才能寫的好嗎?以下是小編整理的數(shù)學(xué)建模優(yōu)秀論文,歡迎大家借鑒與參考,希望對大家有所幫助。

數(shù)學(xué)建模優(yōu)秀論文

  數(shù)學(xué)建模優(yōu)秀論文 篇1

  各位老師,下午好! 我叫XXX,是20xx級**班的學(xué)生,我的論文題目是《數(shù)學(xué)建模教學(xué)培養(yǎng)高中生創(chuàng)造性思維能力的實(shí)驗(yàn)研究》,論文是在鐘育彬?qū)煹南ば闹更c(diǎn)下完成的,在這里我向我的導(dǎo)師表示深深的謝意,向各位老師不辭辛苦參加我的論文答辯表示衷心的感謝,并對三年來我有機(jī)會聆聽教誨的各位老師表示由衷的敬意。下面我將本論文設(shè)計(jì)的目的和主要內(nèi)容向各位老師作一匯報(bào),懇請各位老師批評指導(dǎo)。

  首先,我想談?wù)勥@個(gè)畢業(yè)論文設(shè)計(jì)的目的及意義。

  在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維能力是必要的和必需的。如何在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維能力,是數(shù)學(xué)教育的重大課題。培養(yǎng)與訓(xùn)練學(xué)生的`創(chuàng)造性思維能力并不是高不可攀的,而是能夠在數(shù)學(xué)教學(xué)中腳踏實(shí)地做好的。數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維能力可以讓學(xué)生憑借數(shù)學(xué)專業(yè)領(lǐng)域的知識經(jīng)驗(yàn),不斷深化與發(fā)展,逐漸有量變到質(zhì)變,向較深層次跳躍,以便為以后的發(fā)展打好基礎(chǔ)。

  數(shù)學(xué)建模法是研究數(shù)學(xué)的基本方法之一,數(shù)學(xué)模型的建構(gòu)自身就是一個(gè)創(chuàng)新的過程,進(jìn)行數(shù)學(xué)建模教學(xué)不僅能夠使學(xué)生構(gòu)建數(shù)學(xué)知識基礎(chǔ),更是讓學(xué)生進(jìn)行創(chuàng)造性思維培養(yǎng)的重要途徑和手段,是培養(yǎng)學(xué)生創(chuàng)造性思維能力的重要方法,對學(xué)生形成數(shù)學(xué)素養(yǎng)具有重要作用。

  數(shù)學(xué)建模成為培養(yǎng)學(xué)生創(chuàng)造性思維能力的有效途徑之一。事實(shí)上,我國的一些教育工作者在這一領(lǐng)域已經(jīng)做了初步的研究工作,但是這些研究大多局限于理論的探討,而對于數(shù)學(xué)建模與創(chuàng)造性思維能力的關(guān)系,特別是如何通過數(shù)學(xué)建模教學(xué)培養(yǎng)高中生的創(chuàng)造性思維能力方面的研究還很少,并且大都不夠深入,不夠系統(tǒng),研究結(jié)論缺少實(shí)證研究的有力支持。

  本文嘗試開展實(shí)驗(yàn)研究去探討數(shù)學(xué)建模與高中生創(chuàng)造性思維能力之間的關(guān)系,并做出假設(shè):數(shù)學(xué)建模教學(xué)有利于培養(yǎng)高中生的創(chuàng)造性思維能力。本文通過驗(yàn)證假設(shè)目的是證明數(shù)學(xué)建模教學(xué)培養(yǎng)高中生創(chuàng)造性思維能力的有效性,從而給廣大高中數(shù)學(xué)教師一定的教學(xué)啟示,推動(dòng)他們積極開展數(shù)學(xué)建模教學(xué),培養(yǎng)學(xué)生的創(chuàng)造性思維能力,為加快培養(yǎng)創(chuàng)造性人才做出貢獻(xiàn)。

  其次,我想談?wù)勥@篇論文的結(jié)構(gòu)和主要內(nèi)容。

  基于以上問題和現(xiàn)狀,本文嘗試開展實(shí)驗(yàn)研究去探討數(shù)學(xué)建模與高中生創(chuàng)造性思維能力之間的關(guān)系,并做出假設(shè):數(shù)學(xué)建模教學(xué)有利于培養(yǎng)高中生的創(chuàng)造性思維能力。

  首先,本文介紹了研究背景,研究目的和意義,其次,綜述了關(guān)于創(chuàng)造性思維能力和數(shù)學(xué)建模的理論基礎(chǔ),探討了數(shù)學(xué)建模教學(xué)培養(yǎng)高中生創(chuàng)造性思維能力的教學(xué)思路,接著進(jìn)一步開展了為期十六周的實(shí)驗(yàn)研究。在一所普通高中的二年級中選擇兩個(gè)平行班作為實(shí)驗(yàn)班和控制班。作者在實(shí)驗(yàn)班開展數(shù)學(xué)建模教學(xué),而在控制班仍然實(shí)施傳統(tǒng)數(shù)學(xué)教學(xué)。教學(xué)實(shí)驗(yàn)前對學(xué)生的數(shù)學(xué)建模能力和創(chuàng)造性思維能力測試,確保兩個(gè)班無明顯差異。實(shí)驗(yàn)后對學(xué)生的數(shù)學(xué)建模能力和創(chuàng)造性思維能力測試,開展數(shù)據(jù)分析并對結(jié)果進(jìn)行分析與討論,研究證明了實(shí)驗(yàn)班學(xué)生的創(chuàng)造性思維能力有了明顯的提高。研究表明,數(shù)學(xué)建模教學(xué)有利于培養(yǎng)高中學(xué)生的創(chuàng)造性思維能力。最后,指出了本研究的主要結(jié)論,提供了關(guān)于數(shù)學(xué)建模培養(yǎng)高中生創(chuàng)造性思維能力的一些教學(xué)啟示,同時(shí)對于本研究的局限性做了一一說明。

  最后,我想談?wù)勥@篇論文存在的不足。

  這篇論文的寫作以及系統(tǒng)開發(fā)的過程,也是我越來越認(rèn)識到自己知識與經(jīng)驗(yàn)缺乏的過程。雖然,我盡可能地收集材料,竭盡所能運(yùn)用自己所學(xué)的知識進(jìn)行論文寫作和系統(tǒng)開發(fā),但論文還是存在許多不足之處,系統(tǒng)功能并不完備,有待改進(jìn)。請各位評委老師多批評指正,讓我在今后的學(xué)習(xí)中學(xué)到更多。

  謝謝!

  數(shù)學(xué)建模優(yōu)秀論文 篇2

  一、數(shù)學(xué)建模教學(xué)現(xiàn)狀分析

  在數(shù)學(xué)建模教學(xué)中,“講授法”還是主流教學(xué)法,雖也有啟發(fā),借助多媒體輔助教學(xué),但由于互動(dòng)不足,學(xué)生自主參與較少,主動(dòng)性和積極性沒能有效調(diào)動(dòng)起來,導(dǎo)致教學(xué)效果不夠理想,學(xué)生沒懂多少,沒有理解掌握數(shù)學(xué)建模的思想和方法。

  二、數(shù)學(xué)建模教學(xué)的改革舉措

  1.加強(qiáng)宣傳。為了讓更多的學(xué)生了解數(shù)學(xué)建模,可通過紙質(zhì)媒體、電子媒體進(jìn)行宣傳,還可通過組建學(xué)生數(shù)學(xué)建模協(xié)會開展活動(dòng)廣而告之,還可通過在高等數(shù)學(xué)的教學(xué)中融入數(shù)學(xué)建模的案例,讓學(xué)生初步了解數(shù)學(xué)建模及其特點(diǎn),產(chǎn)生學(xué)習(xí)數(shù)學(xué)建模的興趣。2.分類開課。為了讓更多學(xué)生受益,雖有競賽任務(wù),數(shù)學(xué)建模選修課還是不應(yīng)限定選課學(xué)生范圍,比如只限定一年級學(xué)生或者有意參賽的學(xué)生,而應(yīng)面向全體學(xué)生開設(shè),又考慮到選課的學(xué)生不全是以參加競賽為目的,不全是對數(shù)學(xué)建模感興趣,甚至有些是因?yàn)闆]得選而又必須完成選修課學(xué)分的要求,可將選修課班級分“普及班”和“競賽班”兩類供學(xué)生選擇,既滿足學(xué)生選課的需求又兼顧競賽的需要,對不同班級提出不同的教學(xué)要求。3.優(yōu)化教學(xué)內(nèi)容。在選擇教學(xué)內(nèi)容時(shí),應(yīng)注意如下幾點(diǎn):一是模型類型不宜太多,不要搞得太復(fù)雜,比如只講初等模型、簡單的優(yōu)化模型;二是模型數(shù)量不宜太多,以4-6個(gè)為宜;三是難度不宜太大,還應(yīng)循序漸進(jìn),內(nèi)容最好為學(xué)生了解、喜聞樂見,所選模型應(yīng)有利于培養(yǎng)學(xué)生求異思維、創(chuàng)新思維;四是加入數(shù)學(xué)軟件的教學(xué),讓學(xué)生“玩起來”,初步學(xué)會數(shù)學(xué)軟件的使用,體會數(shù)學(xué)建模與普通數(shù)學(xué)的不同之處,體驗(yàn)到數(shù)學(xué)的用武之地。4.改進(jìn)教學(xué)方法。傳統(tǒng)的講授式教學(xué)法,學(xué)生一般處于被動(dòng)狀態(tài),不利于發(fā)揮學(xué)生的主觀能動(dòng)性,而要學(xué)好數(shù)學(xué)建模需要學(xué)生主動(dòng)積極參與,更多參與到教學(xué)過程當(dāng)中來,因此應(yīng)該采用任務(wù)驅(qū)動(dòng)教學(xué)法、互動(dòng)式教學(xué)法、研討式教學(xué)法等。

  三、收獲與體會

  從20xx年開始,我們在數(shù)學(xué)建模選修課教學(xué)中進(jìn)行了實(shí)踐,取得了良好效果,有如下收獲和體會:

  數(shù)學(xué)建模課堂教學(xué)面貌換然一新。任務(wù)驅(qū)動(dòng)、互動(dòng)式、研討式等教學(xué)法的綜合運(yùn)用,改變了以往“教師講,學(xué)生聽”,學(xué)生被動(dòng)的教學(xué)模式,轉(zhuǎn)變?yōu)閷W(xué)生主動(dòng)參與、自主協(xié)作、積極探索的新型學(xué)習(xí)模式,踐行了“教師為主導(dǎo)、學(xué)生為主體”教育精神;通過教師引導(dǎo)學(xué)生進(jìn)行研究學(xué)習(xí),讓學(xué)生親歷知識產(chǎn)生與形成的過程,學(xué)會獨(dú)立運(yùn)用其所學(xué)的數(shù)學(xué)知識解決實(shí)際問題,從而實(shí)現(xiàn)知識發(fā)現(xiàn)與重構(gòu),激發(fā)學(xué)生的學(xué)習(xí)潛能和學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的.學(xué)習(xí)能力和應(yīng)用能力,使課堂充滿活力。2.樹立了學(xué)生學(xué)好數(shù)學(xué)建模的自信心。由于教法得當(dāng),優(yōu)化了教學(xué)內(nèi)容,加入了數(shù)學(xué)軟件的學(xué)習(xí),使學(xué)生成為了學(xué)習(xí)的主人,不再是知識的被動(dòng)接受者,而是通過親身實(shí)踐、主動(dòng)探索去學(xué)習(xí)發(fā)現(xiàn)知識,從中體驗(yàn)到了成功的喜悅,克服困難的樂趣;降低了學(xué)習(xí)的難度,漸進(jìn)的內(nèi)容安排,使學(xué)生不再覺得數(shù)學(xué)建模難以學(xué)習(xí);而且內(nèi)容貼近生活實(shí)際,使學(xué)生不再認(rèn)為數(shù)學(xué)無用武之地,變要我學(xué)為我要學(xué)。

  3.教師要善于組織、指導(dǎo)、監(jiān)控。教師組織安排教學(xué)內(nèi)容時(shí),必須要對教學(xué)內(nèi)容要有透徹的理解,教學(xué)設(shè)計(jì)要有較強(qiáng)針對性,切實(shí)可行,要使學(xué)生通過完成任務(wù),實(shí)現(xiàn)教學(xué)目標(biāo)、達(dá)到教學(xué)目的;在學(xué)生自主協(xié)作學(xué)習(xí)過程中,教師要注意監(jiān)控學(xué)生的學(xué)習(xí)進(jìn)程,了解學(xué)生學(xué)習(xí)過程中碰到有哪些困難,給予學(xué)生適當(dāng)?shù)闹笇?dǎo)或組織學(xué)生攻堅(jiān)克難。

  數(shù)學(xué)建模優(yōu)秀論文 篇3

  1. 問題重述:(略)

  2. 問題背景:

  交待問題背景,說明處理此問題的意義和必要性。

  優(yōu)點(diǎn):敘述詳盡,條理清楚,論證充分

  缺點(diǎn):前兩段過于冗長,可作適當(dāng)刪節(jié)

  3. 問題分析:

  進(jìn)一步闡述解決此問題的意義所在,分析了問題,簡述要解決此問題需要哪些條件和大體的解決途徑

  優(yōu)點(diǎn):條理比較清晰,論述符合邏輯,表達(dá)清楚

  缺點(diǎn):似乎不夠詳細(xì),尤其是第三段有些過于概括。

  4. 模型的假設(shè)與約定:

  共有8條比較合理的假設(shè)

  優(yōu)點(diǎn):假設(shè)有依據(jù),合情合理。比如第3條對上座率的假設(shè),參考了上屆奧運(yùn)會的情況并充分考慮了我國國情,客觀真實(shí)。第8條假設(shè)用了分塊規(guī)劃和割補(bǔ)的方法,估計(jì)面積形狀比較合理,而且達(dá)到了充分花劍問題的作用。

  缺點(diǎn):有些假設(shè)闡述不太清楚也存在不合理之處,第4條假設(shè)中面積在50-100之間,下面的假設(shè)應(yīng)該是介于50-100之間的數(shù),假設(shè)為最小的50平方米,有失一般性。第6條假設(shè)中,假設(shè)MS最大營業(yè)額為20萬,沒有說明是多長時(shí)間內(nèi)的,而且此處沒有對下文提到的LMS作以說明。

  5. 符號說明及名詞定義

  優(yōu)點(diǎn):比較詳細(xì)清楚,考慮周全,而且較合理地將定性指標(biāo)數(shù)量化。

  缺點(diǎn):有些地方?jīng)]有標(biāo)注量綱,比如A和B的量綱不明確。

  6. 模型建立與求解

  6.1問題一:

  對所給數(shù)據(jù)驚醒處理和統(tǒng)計(jì),得出規(guī)律,找到聯(lián)系。

  優(yōu)點(diǎn):統(tǒng)計(jì)方法合理,所統(tǒng)計(jì)數(shù)據(jù)對解決問題確實(shí)必不可少,而且用圖表和條形圖的方式反映不同量的變化趨勢,圖文并茂,敘述清楚而且簡明扼要,除了對數(shù)據(jù)統(tǒng)計(jì)情況進(jìn)行報(bào)告以外,還就他們之間相關(guān)量之間的關(guān)系進(jìn)行了詳細(xì)闡述,使數(shù)據(jù)統(tǒng)計(jì)更具實(shí)效性。

  6.2問題二:

  6.2.1最短路的確定

  為確定最短路徑又提出了一系列假設(shè)并闡述了理由,在這些假設(shè)下規(guī)定了最短路徑

  優(yōu)點(diǎn):假設(shè)有根據(jù),理由合情合理

  缺點(diǎn):第4條中假設(shè)觀眾消費(fèi)是單向的,雖然簡化了問題但有失一般性,事實(shí)上觀眾往返經(jīng)過商業(yè)區(qū)消費(fèi)的概率是相差比較大的,我認(rèn)為應(yīng)改為假設(shè)觀眾在往返過程中消費(fèi)且僅消費(fèi)一次。

  6.2.2計(jì)算人流量的追蹤模型

  給出計(jì)算人流量的方法,并計(jì)算了各區(qū)人流量,并對計(jì)算結(jié)果進(jìn)行了分析。

  優(yōu)點(diǎn):分情況討論,并且取了兩個(gè)典型的具有代表性的例子進(jìn)行了具體闡述,沒有全部羅列所有數(shù)據(jù)的計(jì)算過程,使文章清晰簡明,不至于繁冗拖沓,這在以后我們寫論文是極其值得借鑒。對結(jié)果的分析有針對性,合情合理而且用條形圖直觀地反映了人流量的數(shù)值和各地區(qū)間的差異。

  缺點(diǎn):分析還不夠詳細(xì),考慮因素還不夠周到。

  6.3問題三

  進(jìn)一步對問題作以簡化,將問題的解決最終歸結(jié)為一個(gè)焦點(diǎn),并對解決這個(gè)問題所需確定的因素進(jìn)行了討論,最后得出結(jié)論。

  6.3.1商區(qū)消費(fèi)額的確定

  闡述了為什么要計(jì)算這個(gè)量,計(jì)算這個(gè)量對解決問題有什么至關(guān)重要的作用并且采用了Huff模型并且結(jié)合本問題的具體情況來求解數(shù)據(jù)。

  優(yōu)點(diǎn):論證充分合理且模型和經(jīng)濟(jì)學(xué)知識應(yīng)用恰當(dāng),所得數(shù)據(jù)有效可信,考慮周到而不繁雜,抓住了事物的主要矛盾,而且對Huff模型的解釋較為充分。

  缺點(diǎn):對于各商業(yè)區(qū)的總消費(fèi)額我們更看重?cái)?shù)量而文中用條形圖的方式卻著重體現(xiàn)了各地區(qū)之間的數(shù)量差異,有喧賓奪主之嫌,改稱圖表形式可以更好地反映數(shù)據(jù)量的值

  6.3.2各個(gè)商區(qū)MS數(shù)量的概略確定

  確定了確定MS個(gè)數(shù)的方案,在不失一般性的前提下對問題進(jìn)行進(jìn)一步簡化,縮小解決問題的范圍并對問題進(jìn)行了求解

  優(yōu)點(diǎn):簡潔明了,論述合理。

  6.3.3

  引入了一個(gè)重要的確定數(shù)量的參數(shù),且對解決問題方法的合理性及此數(shù)據(jù)對問題的解的影響及行了數(shù)值分析和理論論證,提出了改進(jìn)方案,得出結(jié)果,并對結(jié)果進(jìn)行分析。

  優(yōu)點(diǎn):條理清晰,邏輯嚴(yán)謹(jǐn),論證充分,詳盡而不冗長,使本篇論文的精華部分。分析合理且充分考慮到了實(shí)際情況使結(jié)果更具可信性。

  6.3.4LMS和MS的分配情況討論

  對二者關(guān)系提出了幾條假設(shè)。

  優(yōu)點(diǎn):論述充分,假設(shè)合理而且用圖表反映結(jié)果,簡單明了,情況考慮全面周到。

  6.4問題四

  分析了方法的科學(xué)性和結(jié)果的貼近實(shí)際性

  優(yōu)點(diǎn):條理清晰,分析有依據(jù),措辭嚴(yán)謹(jǐn),邏輯嚴(yán)密而且對前面所述方法進(jìn)行了分別闡述。這使得對方法科學(xué)性的'論述更加充分可信。對貼近事實(shí)性的論述,理論和事實(shí)相結(jié)合,敘述數(shù)據(jù)來源,并采用舉例論證法論證結(jié)果的貼近實(shí)際性。

  缺點(diǎn):結(jié)果的貼近實(shí)際性的論證中,應(yīng)詳細(xì)羅列一下數(shù)據(jù)的來源,也許更加可信。

  7. 模型的進(jìn)一步討論

  為簡化抽象現(xiàn)實(shí)一邊建構(gòu)模型而忽略掉的一些因素進(jìn)行了考慮,對于一些可能影響討論結(jié)果的因素給出了算法和解決方案

  優(yōu)點(diǎn):考慮全面,善于抓住主要矛盾,表述簡明客觀。

  8. 模型檢驗(yàn)

  與某些近似且已妥善解決的問題進(jìn)行了比較,用事實(shí)說明處理方案的正確性。

  優(yōu)點(diǎn):采用了較好的參照對象,采用圖像對比的方法,使問題清晰明了。

  缺點(diǎn):應(yīng)該簡述一下雅典奧運(yùn)會采用的方案是成功的,否則比照就失去了意義,還有由于舉辦地點(diǎn)不同,地區(qū)上的差異使這種單純與雅典奧運(yùn)會進(jìn)行得比較稍顯單薄。

  9. 模型優(yōu)缺點(diǎn)

  總結(jié)模型建立并解決問題的過程中的優(yōu)點(diǎn)和缺點(diǎn)

  優(yōu)點(diǎn):簡明扼要,客觀實(shí)在

  10. 附錄(略)

  參考文獻(xiàn)

  數(shù)學(xué)建模優(yōu)秀論文 篇4

  【摘 要】首先闡述數(shù)學(xué)建模內(nèi)涵;其次分析數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的關(guān)系;最后總結(jié)出提高數(shù)學(xué)教學(xué)效果的幾點(diǎn)思考。

  【關(guān)鍵詞】數(shù)學(xué)建模;數(shù)學(xué)教學(xué);教學(xué)模式

  什么是數(shù)學(xué)建模,為什么要把數(shù)學(xué)建模的思想運(yùn)用到數(shù)學(xué)課堂教學(xué)中去?經(jīng)過反復(fù)閱讀有關(guān)數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的文章,仔細(xì)研修數(shù)十個(gè)高校的數(shù)學(xué)建模精品課程,數(shù)學(xué)建模優(yōu)秀教學(xué)案例等,筆者對數(shù)學(xué)教學(xué)與數(shù)學(xué)建模進(jìn)行初步探索,形成一定認(rèn)識。

  一、數(shù)學(xué)建模

  數(shù)學(xué)建模即運(yùn)用數(shù)學(xué)知識與數(shù)學(xué)思想,通過對實(shí)際問題數(shù)學(xué)化,建立數(shù)學(xué)模型,并運(yùn)用計(jì)算機(jī)計(jì)算出結(jié)果,對實(shí)際問題給出合理解決方案、建議等。系統(tǒng)的談數(shù)學(xué)建模需從以下三個(gè)方面談起。

  1.數(shù)學(xué)建模課程。

  “數(shù)學(xué)建!闭n程特色鮮明,以綜合門類為基礎(chǔ),重實(shí)踐,重應(yīng)用。旨在使學(xué)生打好數(shù)學(xué)基礎(chǔ),增強(qiáng)應(yīng)用數(shù)學(xué)意識,提高實(shí)踐能力,建立數(shù)學(xué)模型解決實(shí)際問題。注重培養(yǎng)學(xué)生參與現(xiàn)代科研活動(dòng)主動(dòng)性與參與工程技術(shù)開發(fā)興趣,注重培養(yǎng)學(xué)生創(chuàng)新思維及創(chuàng)新能力等相關(guān)素質(zhì)。

  2.數(shù)學(xué)建模競賽。

  1985年,美國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會發(fā)起的一項(xiàng)大學(xué)生競賽活動(dòng)名為“數(shù)學(xué)建模競賽”。旨在提高學(xué)生學(xué)習(xí)數(shù)學(xué)主動(dòng)性,提高學(xué)生運(yùn)用計(jì)算機(jī)技術(shù)與數(shù)學(xué)知識和數(shù)學(xué)思想解決實(shí)際問題綜合能力。學(xué)生參與這項(xiàng)活動(dòng)可以拓寬知識面,培養(yǎng)自己團(tuán)隊(duì)意識與創(chuàng)新精神。同時(shí)這項(xiàng)活動(dòng)推動(dòng)了數(shù)學(xué)教師與數(shù)學(xué)教學(xué)專家對數(shù)學(xué)體系、教學(xué)方式與教學(xué)知識重新認(rèn)識。1992年,教育部高教司和中國工業(yè)與數(shù)學(xué)學(xué)會創(chuàng)辦了“全國大學(xué)生數(shù)學(xué)建模競賽”。截止20xx年10月已舉辦有21屆。大力推進(jìn)了我國高校數(shù)學(xué)教學(xué)改革進(jìn)程。

  3.數(shù)學(xué)建模與創(chuàng)新教育。

  創(chuàng)新教育是現(xiàn)代教育思想的靈魂。數(shù)學(xué)建模競賽是實(shí)現(xiàn)數(shù)學(xué)教育創(chuàng)新的重要載體。如20xx年A題,葡萄酒的評價(jià)中,要求學(xué)生對葡萄酒原料與釀造、儲存于葡萄酒色澤、口味等有全面認(rèn)識;而20xx年D題,機(jī)器人行走避障問題,要求學(xué)生了解對機(jī)器人行走特點(diǎn);20xx年B題,乘公交看奧運(yùn),要求學(xué)生了解公交換乘系統(tǒng)。大學(xué)生數(shù)學(xué)建模競賽試題涉及不是單一數(shù)學(xué)知識。因此數(shù)學(xué)教師在數(shù)學(xué)教學(xué)中必須融合其它學(xué)科知識。同時(shí)學(xué)生參與數(shù)學(xué)建模競賽有助于增強(qiáng)其積極思考應(yīng)用數(shù)學(xué)知識創(chuàng)造性解決實(shí)際問題的意識。

  二、數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的關(guān)系

  數(shù)學(xué)建模是數(shù)學(xué)應(yīng)用與實(shí)踐的重要載體;數(shù)學(xué)教學(xué)旨在傳授數(shù)學(xué)知識與數(shù)學(xué)思想,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的意識。數(shù)學(xué)建模與數(shù)學(xué)教學(xué)相輔相成,數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)將有助于提高教學(xué)效果,反之傳統(tǒng)應(yīng)試扼殺了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣與主觀能動(dòng)性;數(shù)學(xué)教學(xué)效果,在數(shù)學(xué)建模過程中體現(xiàn)顯著。

  三、數(shù)學(xué)教學(xué)

  1.數(shù)學(xué)教學(xué)“教”什么。電子科技大學(xué)的黃廷祝老師說:“數(shù)學(xué)教學(xué),最重要的就是數(shù)學(xué)的精神、思想和方法,而數(shù)學(xué)知識是第二位的。”因此數(shù)學(xué)教師不僅要傳授數(shù)學(xué)知識,更要讓學(xué)生知道數(shù)學(xué)的來龍去脈,領(lǐng)會數(shù)學(xué)精神實(shí)質(zhì)。

  2.如何提高數(shù)學(xué)教學(xué)效果。提高數(shù)學(xué)教師自身素質(zhì)是關(guān)鍵,創(chuàng)新數(shù)學(xué)教學(xué)模式是手段,革新評價(jià)機(jī)制是保障。

 、偬岣邤(shù)學(xué)教師自身素質(zhì)。

  數(shù)學(xué)教師自身素質(zhì)是提高數(shù)學(xué)教學(xué)效果的關(guān)鍵。20xx年胡書記在《國務(wù)院關(guān)于加強(qiáng)教師隊(duì)伍建設(shè)的意見》中明確提出,我國教育出了問題,問題關(guān)鍵在教師隊(duì)伍。數(shù)學(xué)學(xué)科特點(diǎn)鮮明。若數(shù)學(xué)教師數(shù)學(xué)素養(yǎng)與綜合能力不強(qiáng),則提高數(shù)學(xué)教學(xué)效果將無從談起。因此數(shù)學(xué)教師需通過如參加培訓(xùn)、學(xué)習(xí)精品課程、同行評教、與專家探討等途徑努力提高自身素養(yǎng)。

 、趧(chuàng)新數(shù)學(xué)教學(xué)模式 。

  (1)必須轉(zhuǎn)變教學(xué)理念。首先要轉(zhuǎn)變繼承性教育理念,注重培養(yǎng)學(xué)生綜合素質(zhì)與實(shí)際操作能力。其次要轉(zhuǎn)變注入式教育理念,注重發(fā)揮學(xué)生主體能動(dòng)性。再次要轉(zhuǎn)變應(yīng)試教育理念。注重素質(zhì)的培養(yǎng)是長久發(fā)展之計(jì)。最后要轉(zhuǎn)變傳統(tǒng)教學(xué)模式?萍及l(fā)展為教育教學(xué)實(shí)現(xiàn)提供多種選擇。教育工作者應(yīng)提供多種教學(xué)模式以提高學(xué)習(xí)效果。

  (2)必須改革數(shù)學(xué)教學(xué)模式。傳統(tǒng)講授式教學(xué)模式有很多不足,學(xué)生參與不夠,不能發(fā)揮學(xué)生的'主體能動(dòng)性。因此,在今后數(shù)學(xué)教學(xué)中,要注重發(fā)揮學(xué)生的主體能動(dòng)性,如增加課題互動(dòng)環(huán)節(jié),采用小組討論,教師引導(dǎo)等方式。

  在數(shù)學(xué)教學(xué)過程中,要巧用提問。教師可針對某一具體教學(xué)內(nèi)容根據(jù)數(shù)學(xué)思維方式特點(diǎn)巧設(shè)提問,讓學(xué)生回答,教師在關(guān)鍵的地方進(jìn)行啟發(fā)點(diǎn)撥,并適當(dāng)?shù)目偨Y(jié)。在問答過程中,培養(yǎng)學(xué)生分析和思考問題、解決問題能力;在數(shù)學(xué)教學(xué)過程中,可采用分組討論形式。采用小組討論與集體展示、互評相結(jié)合。旨在教育學(xué)生學(xué)會傾聽,分析不同;學(xué)會表達(dá),勇于提出見解,培養(yǎng)學(xué)生團(tuán)隊(duì)意識。

  在數(shù)學(xué)課堂上可通過對典型案例的剖析,使學(xué)生親歷發(fā)現(xiàn)問題、認(rèn)識問題和解決問題的過程。培養(yǎng)學(xué)生實(shí)際動(dòng)手操作能力。

  (3)建立多元化評價(jià)機(jī)制。一是要建立多元化教師教學(xué)評價(jià)機(jī)制。采用多元化考核、綜合評定教師教學(xué)效果的方法,有利于教師發(fā)展。二是要建立多元化學(xué)生學(xué)習(xí)效果評價(jià)機(jī)制。多元化評價(jià)機(jī)制對學(xué)生評價(jià)更客觀、公正,有利于發(fā)揮學(xué)生主觀能動(dòng)性。

  數(shù)學(xué)建模優(yōu)秀論文 篇5

  初中數(shù)學(xué)建模論文;有意義地利用“壓歲錢”;在正月里,長輩們每年都會給我們壓歲錢,而大多數(shù)同;假如平均每年按照200元壓歲錢存入銀行,初中三年;初一學(xué)生存三年的利息:;(200×2.60%×3)×(60×16)=14;初二學(xué)生存二年的利息:;(200×2.40%×2)×(60×16)=92;初三學(xué)生存一年的利息:;(200×2.25%×1)×(60×16)=4

  初中數(shù)學(xué)建模論文

  有意義地利用“壓歲錢”

  在正月里,長輩們每年都會給我們壓歲錢,而大多數(shù)同學(xué)都把壓歲錢當(dāng)做了零花錢,沒有意義。為了能幫助失學(xué)兒童,學(xué)校辦一個(gè)“壓歲錢小銀行”,要求同學(xué)們有多少錢存多少錢,存入學(xué)校里“壓歲錢小銀行”,學(xué)校統(tǒng)一將同學(xué)們的壓歲錢存入銀行。畢業(yè)時(shí)本金還給同學(xué)們,利息捐給經(jīng)濟(jì)有困難的同學(xué)。

  假如平均每年按照200元壓歲錢存入銀行,初中三年每個(gè)學(xué)生總共存入600元計(jì)算,若初一、初二、初三各16個(gè)班,每班按60人計(jì)算,初三的.存一年,初二的存兩年,初一的存三年,年利率分別按2.25%、2.40%、2.60%計(jì)算,則:

  初一學(xué)生存三年的利息:

 。200×2.60%×3)×(60×16)=14976(元);

  初二學(xué)生存二年的利息:

 。200×2.40%×2)×(60×16)=9216(元);

  初三學(xué)生存一年的利息:

 。200×2.25%×1)×(60×16)=4320(元);

  一年全校利息合計(jì):

  14976+9216+4320=28512(元)。

  假設(shè)學(xué)校每年招生班級以及人數(shù)都不變,則學(xué)校每年都有28512元利息,日照市有那么多所中學(xué),假如每所中學(xué)都建立“壓歲錢小銀行”,假如小學(xué)也建立“壓歲錢小銀行”,那么,每個(gè)學(xué)生六年下來,每年全校利息將比中學(xué)利息要高上好幾倍。所以成立“壓歲錢小銀行”很有意義與必要。為了災(zāi)區(qū)兒童有良好的讀書環(huán)境,為了國家更繁榮,昌盛,同學(xué)們行動(dòng)起來吧,拿出你們的壓歲錢,奉獻(xiàn)我們的一片愛心。

  數(shù)學(xué)建模優(yōu)秀論文 篇6

  一、層次分析法的基本原理

  層次分析法是解決定性事件定量化或定性與定量相結(jié)合問題的有力決策分析方法。它主要是將人們的思維過程層次化、,逐層比較其間的相關(guān)因素并逐層檢驗(yàn)比較結(jié)果是否合理,從而為分析決策提供較具說服力的定量依據(jù)。層次分析法不僅可用于確定評價(jià)指標(biāo)體系的權(quán)重,而且還可用于直接評價(jià)決策問題,對研究對象排序,實(shí)施評價(jià)排序的評價(jià)內(nèi)容。

  用AHP分析問題大體要經(jīng)過以下七個(gè)步驟:

  ⑴建立層次結(jié)構(gòu)模型;

  首先要將所包含的因素分組,每一組作為一個(gè)層次,按照最高層、若干有關(guān)的中間層和最低層的形式排列起來。對于決策問題,通常可以將其劃分成層次結(jié)構(gòu)模型,如圖1所示。

  其中,最高層:表示解決問題的目的,即應(yīng)用AHP所要達(dá)到的目標(biāo)。

  中間層:它表示采用某種措施和政策來實(shí)現(xiàn)預(yù)定目標(biāo)所涉及的中間環(huán)節(jié),一般又分為策略層、約束層、準(zhǔn)則層等。

  最低層:表示解決問題的措施或政策(即方案)。

 、茦(gòu)造判斷矩陣;

  設(shè)有某層有n個(gè)元素,X={Xx1,x2,x3……xn}要比較它們對上一層某一準(zhǔn)則(或目標(biāo))的影響程度,確定在該層中相對于某一準(zhǔn)則所占的比重。(即把n個(gè)因素對上層某一目標(biāo)的影響程度排序。上述比較是兩兩因素之間進(jìn)行的比較,比較時(shí)取1~9尺度。

  用表示第i個(gè)因素相對于第j個(gè)因素的比較結(jié)果,則

  A則稱為成對比較矩陣

  比較尺度:(1~9尺度的含義)

  如果數(shù)值為2,4,6,8表示第i個(gè)因素相對于第j個(gè)因素的影響介于上述兩個(gè)相鄰等級之間。

  倒數(shù):若j因素和i因素比較,得到的判斷值為

 、怯煤头e法或方根法等求得特征向量W(向量W的分量Wi即為層次單排序)并計(jì)算最大特征根λmax;

 、扔(jì)算一致性指標(biāo)CI、RI、CR并判斷是否具有滿意的一致性。其中RI是

  其中

  平均隨機(jī)一致性指標(biāo)RI的數(shù)值:

  矩陣階數(shù)3 4 5 6 7 8 9 10 11

  RI 0.5149 0.8931 1.1185 1.2494 1.3450 1.4200 1.4616 1.49 1.51

  CR=CI/RI,一般地當(dāng)一致性比率CR

 、蓪哟慰偱判,如表1所示。

  ⑹層次總排序一致性檢驗(yàn),如前所述。

 、烁鶕(jù)需要進(jìn)行調(diào)整對于層次單排序結(jié)果和層次總排序結(jié)果,只要符合滿意一致性即隨機(jī)一致性比例CR≤ 0.10就可以結(jié)束計(jì)算并認(rèn)同排序結(jié)果,否則就要返回調(diào)整不符合一致性的判斷矩陣。

  二、層次分析法Excel模型設(shè)計(jì)過程案例:某人欲到蘇州、杭州、桂林三地旅游,選擇要考慮的因素包括四個(gè)方面:景色、費(fèi)用、居住和飲食,用層次分析法選一個(gè)適合自己情況的'旅游點(diǎn)。

 、备鶕(jù)題意可以建立層次結(jié)構(gòu)模型如圖1所示。

 、睧xcel實(shí)現(xiàn)過程⑴將準(zhǔn)則層的各因素對目標(biāo)層的影響兩兩比較結(jié)果輸入Excel表格中,進(jìn)行單排序及一致性檢驗(yàn)如圖2所示。其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各單元格連乘,復(fù)制公式至F7單元格。 G4=POWER(F4,1/4),表示將F4單元格的值開4次方,復(fù)制公式至G7單元格G8=SUM(G4:G7),表示求和H4=G4/$G$8,復(fù)制公式至H7單元格I4= B4*H$4+C4*H$5+D4*H$6+E4*H$7,復(fù)制公式至I7單元格J4= I4/H4 λmax= AVERAGE(J4:J7)。 CI=(J8-4)/(4-1),CR=CI/0.8931=0.0080101

  ⑵按同樣的方法分別計(jì)算出方案層對景色、費(fèi)用、居住、飲食的判斷矩陣及一致性檢驗(yàn),如圖3所示。 ⑶層次總排序,由于蘇州數(shù)值最高,故選擇的旅游地為蘇州,如圖4所示。其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:這是一個(gè)數(shù)組函數(shù)需按ctrl+shift+enter三鍵確定。

  三、基于Excel的層次分析法模型設(shè)計(jì)的優(yōu)勢

 、艑哟畏治龇‥xcel算法以廣泛使用的辦公軟件Excel作為運(yùn)算平臺,無需掌握深?yuàn)W的計(jì)算機(jī)專業(yè)知識和術(shù)語,有很好的推廣應(yīng)用基礎(chǔ)。

 、茖哟畏治龇‥xcel算法的所有計(jì)算結(jié)果和數(shù)據(jù)均保留最高位數(shù)的精確度,可以不在任何環(huán)節(jié)進(jìn)行四舍五入,當(dāng)然也可以根據(jù)需要設(shè)置小數(shù)位,從而最大限度地減少了誤差。

  ⑶層次分析法Excel算法的計(jì)算步驟設(shè)計(jì)成環(huán)環(huán)相扣、步步跟蹤,步驟設(shè)計(jì)完畢后,可以按需要填充或變更,其余數(shù)據(jù)和結(jié)果均可以在填充或變更判斷矩陣之后立即得出,使得整個(gè)運(yùn)算過程簡捷、輕松。另外,相似的矩陣區(qū)和計(jì)算區(qū)可以通過復(fù)制完成,只需改動(dòng)少量單元格。

 、葘哟畏治龇‥xcel算法將一致性檢驗(yàn)也同時(shí)計(jì)算出來,決策者和判斷者可以即時(shí)知道自己的判斷是否具有滿意的一致性并可以隨時(shí)和簡單地進(jìn)行調(diào)整直到符合滿意一致性。

 、扇绻恢滦灾笜(biāo)不能令人滿意,用本方法可以比較容易地實(shí)現(xiàn)對判斷矩陣的調(diào)整,可以實(shí)現(xiàn)對判斷的“微調(diào)”,使得逼近最大程度的“滿意一致性”甚至“完全一致性”而又不必進(jìn)行繁重運(yùn)算成為可能。

  數(shù)學(xué)建模優(yōu)秀論文 篇7

  論文關(guān)鍵詞:數(shù)學(xué)建模數(shù)學(xué)應(yīng)用意識數(shù)學(xué)建模教學(xué)

  論文摘要:為增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識,切實(shí)培養(yǎng)學(xué)生解決實(shí)際問題的能力,分析了高中數(shù)學(xué)建模的必要性,并通過對高中學(xué)生數(shù)學(xué)建模能力的調(diào)查分析,發(fā)現(xiàn)學(xué)生數(shù)學(xué)應(yīng)用及數(shù)學(xué)建模方面存在的問題,并針對問題提出了關(guān)于高中進(jìn)行數(shù)學(xué)建模教學(xué)的幾點(diǎn)意見。

  數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長河中,一直是和各種各樣的應(yīng)用問題緊密相關(guān)的。數(shù)學(xué)的特點(diǎn)不僅在于概念的抽象性、邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,自進(jìn)入21世紀(jì)的知識經(jīng)濟(jì)時(shí)代以來,數(shù)學(xué)科學(xué)的地位發(fā)生了巨大的變化,它正在從國家經(jīng)濟(jì)和科技的后備走到了前沿。經(jīng)濟(jì)發(fā)展的全球化、計(jì)算機(jī)的迅猛發(fā)展,數(shù)學(xué)理論與方法的不斷擴(kuò)充使得數(shù)學(xué)已成為當(dāng)代高科技的一個(gè)重要組成部分,數(shù)學(xué)已成為一種能夠普遍實(shí)施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力也成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。

  目前國際數(shù)學(xué)界普遍贊同通過開展數(shù)學(xué)建;顒(dòng)和在數(shù)學(xué)教學(xué)中推廣使用現(xiàn)代化技術(shù)來推動(dòng)數(shù)學(xué)教育改革。美國、德國、日本等發(fā)達(dá)國家普遍都十分重視數(shù)學(xué)建模教學(xué),把數(shù)學(xué)建;顒(dòng)從大學(xué)生向中學(xué)生轉(zhuǎn)移是近年國際數(shù)學(xué)教育發(fā)展的一種趨勢!拔覈臄(shù)學(xué)教育在很長一段時(shí)間內(nèi)對于數(shù)學(xué)與實(shí)際、數(shù)學(xué)與其它學(xué)科的聯(lián)系未能給予充分的重視,因此,高中數(shù)學(xué)在數(shù)學(xué)應(yīng)用和聯(lián)系實(shí)際方面需要大力加強(qiáng)。”我國普通高中新的數(shù)學(xué)教學(xué)大綱中也明確提出要切實(shí)培養(yǎng)學(xué)生解決實(shí)際問題的能力,要求增強(qiáng)應(yīng)用數(shù)學(xué)的意識,能初步運(yùn)用數(shù)學(xué)模型解決實(shí)際問題。這些要求不僅符合數(shù)學(xué)本身發(fā)展的需要,也是社會發(fā)展的需要。因此我們的數(shù)學(xué)教學(xué)不僅要使學(xué)生知道許多重要的數(shù)學(xué)概念、方法和結(jié)論,而且要提高學(xué)生的思維能力,培養(yǎng)學(xué)生自覺地運(yùn)用數(shù)學(xué)知識去處理和解決日常生活中所遇到的問題,從而形成良好的思維品質(zhì)。而數(shù)學(xué)建模通過"從實(shí)際情境中抽象出數(shù)學(xué)問題,求解數(shù)學(xué)模型,回到現(xiàn)實(shí)中進(jìn)行檢驗(yàn),必要時(shí)修改模型使之更切合實(shí)際"這一過程,促使學(xué)生圍繞實(shí)際問題查閱資料、收集信息、整理加工、獲取新知識,從而拓寬了學(xué)生的知識面和能力。數(shù)學(xué)建模將各種知識綜合應(yīng)用于解決實(shí)際問題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識分析問題、解決問題的能力的必備手段之一,是改善學(xué)生學(xué)習(xí)方式的突破口。因此有計(jì)劃地開展數(shù)學(xué)建;顒(dòng),將有效地培養(yǎng)學(xué)生的能力,提高學(xué)生的綜合素質(zhì)。

  數(shù)學(xué)建?梢蕴岣邔W(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生不怕吃苦、敢于戰(zhàn)勝困難的堅(jiān)強(qiáng)意志,培養(yǎng)自律、團(tuán)結(jié)的優(yōu)秀品質(zhì),培養(yǎng)正確的數(shù)學(xué)觀。具體的調(diào)查表明,大部分學(xué)生對數(shù)學(xué)建模比較感興趣,并不同程度地促進(jìn)了他們對于數(shù)學(xué)及其他課程的學(xué)習(xí).有許多學(xué)生認(rèn)為:"數(shù)學(xué)源于生活,生活依靠數(shù)學(xué),平時(shí)做的題都是理論性較強(qiáng),實(shí)際性較弱的題,都是在理想化狀態(tài)下進(jìn)行討論,而數(shù)學(xué)建模問題貼近生活,充滿趣味性";"數(shù)學(xué)建模使我更深切地感受到數(shù)學(xué)與實(shí)際的聯(lián)系,感受到數(shù)學(xué)問題的廣泛,使我們對于學(xué)習(xí)數(shù)學(xué)的重要性理解得更為深刻"。數(shù)學(xué)建模能培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)進(jìn)行分析、推理、證明和計(jì)算的能力;用數(shù)學(xué)語言表達(dá)實(shí)際問題及用普通人能理解的語言表達(dá)數(shù)學(xué)結(jié)果的能力;應(yīng)用計(jì)算機(jī)及相應(yīng)數(shù)學(xué)軟件的能力;獨(dú)立查找文獻(xiàn),自學(xué)的能力,組織、協(xié)調(diào)、管理的能力;創(chuàng)造力、想象力、聯(lián)想力和洞察力。由此,在高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模知識是很有必要的'。

  那么當(dāng)前我國高中學(xué)生的數(shù)學(xué)建模意識和建模能力如何呢?下面是節(jié)自有關(guān)人士對某次競賽中的一道建模題目學(xué)生的作答情況所作的抽樣調(diào)查。題目內(nèi)容如下:

  某市教育局組織了一項(xiàng)競賽,聘請了來自不同學(xué)校的數(shù)名教師做評委組成評判組。本次競賽制定四條評分規(guī)則,內(nèi)容如下:

 。1)評委對本校選手不打分。

 。2)每位評委對每位參賽選手(除本校選手外)都必須打分,且所打分?jǐn)?shù)不相同。

 。3)評委打分方法為:倒數(shù)第一名記1分,倒數(shù)第二名記2分,依次類推。

 。4)比賽結(jié)束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競賽的名次,以平均分最高者為第一名,依次類推。

  本次比賽中,選手甲所在學(xué)校有一名評委,這位評委將不參加對選手甲的評分,其他選手所在學(xué)校無人擔(dān)任評委。

 。á瘢┕荚u分規(guī)則后,其他選手覺得這種評分規(guī)則對甲更有利,請問這種看法是否有道理?(請說明理由)

 。á颍┠芊窠o這次比賽制定更公平的評分規(guī)則?若能,請你給出一個(gè)更公平的評分規(guī)則,并說明理由。

  本題是一道開放性很強(qiáng)的好題,給學(xué)生留有很大的發(fā)揮空間,不少學(xué)生都有精彩的表現(xiàn),例如關(guān)于評分規(guī)則的修正,就有下列幾種方案:

  方案1:將選手甲所在學(xué)校評委的評分方法改為倒數(shù)第一名記1+分,倒數(shù)第二名記2+,…依次類推;(評分標(biāo)準(zhǔn))

  方案2:將選手甲所在學(xué)校評委的評分方法改為在原來的基礎(chǔ)上乘以;

  方案3:對甲評分時(shí),用其他評委的平均分計(jì)做甲所在學(xué)校評委的打分;

  然而也有不少學(xué)生為空白,究其原因可能除了時(shí)間因素,學(xué)生對于較長的文字表述產(chǎn)生畏懼心理、不能正確閱讀是重要因素。同時(shí),一些學(xué)生由于不能正確理解規(guī)則(3),得出選手甲的平均得分為,其他選手的平均得分為

  ,從而得出錯(cuò)誤結(jié)論.不少學(xué)生出現(xiàn)“甲所在學(xué)校的評委會故意壓低其他選手的分?jǐn)?shù),因而對甲有利”的解釋,而沒有意識到作出必要的假設(shè)是數(shù)學(xué)建模方法中的重要且必要的一環(huán)。有些學(xué)生在正確理解題意的基礎(chǔ)上,提出了“規(guī)則對甲有利”的理由,例如:排名在甲前的同學(xué)少得了1分;甲所在學(xué)校的評委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當(dāng)于甲所在學(xué)校的評委把最高分給了甲;甲少拿一個(gè)分?jǐn)?shù),若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學(xué)生僅僅停留在這些感性認(rèn)識和文字說明上,沒能進(jìn)一步引進(jìn)數(shù)學(xué)模型和數(shù)學(xué)符號去進(jìn)行理性的分析。如何衡量規(guī)則的公平性是本題的關(guān)鍵,也是建模的原則。很少有學(xué)生能夠明確提出這個(gè)原則,有些學(xué)生在第2問評分規(guī)則的修正中,提出“將甲所在學(xué)校的評委從評判組中剔除掉”,這種辦法違背實(shí)際的要求。有些學(xué)生被生活中一些現(xiàn)象誤導(dǎo),提出“去掉最高分和最低分”的評分規(guī)則修正方法,而不去從數(shù)學(xué)的角度分析和研究。

  通過對這道高中數(shù)學(xué)知識應(yīng)用競賽題解答情況的分析,我們了解到學(xué)生數(shù)學(xué)建模意識和建模能力的現(xiàn)狀不容樂觀。學(xué)生在數(shù)學(xué)應(yīng)用能力上存在的一些問題:(1)數(shù)學(xué)閱讀能力差,誤解題意。(2)數(shù)學(xué)建模方法需要提高。(3)數(shù)學(xué)應(yīng)用意識不盡人意數(shù)學(xué)建模意識很有待加強(qiáng)。新課程標(biāo)準(zhǔn)給數(shù)學(xué)建模提出了更高的要求,也為中學(xué)數(shù)學(xué)建模的發(fā)展提供了很好的契機(jī),相信隨著新課程的實(shí)施,我們高中生的數(shù)學(xué)建模意識和建模能力會有大的提高!

  那么高中的數(shù)學(xué)建模教學(xué)應(yīng)如何進(jìn)行呢?數(shù)學(xué)建模的教學(xué)本身是一個(gè)不斷探索、不斷創(chuàng)新、不斷完善和提高的過程。不同于傳統(tǒng)的教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實(shí)驗(yàn)室為基礎(chǔ)、以學(xué)生為中心、以問題為主線、以培養(yǎng)能力為目標(biāo)來組織教學(xué)工作。通過教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識與能力。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計(jì)好的問題,引導(dǎo)學(xué)生主動(dòng)查閱文獻(xiàn)資料和學(xué)習(xí)新知識,鼓勵(lì)學(xué)生積極開展討論和辯論,主動(dòng)探索解決之法。教學(xué)過程的重點(diǎn)是創(chuàng)造一個(gè)環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強(qiáng)他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,強(qiáng)調(diào)的是獲取新知識的能力,是解決問題的過程,而不是知識與結(jié)果。

  (一)在教學(xué)中傳授學(xué)生初步的數(shù)學(xué)建模知識。

  中學(xué)數(shù)學(xué)建模的目的旨在培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,掌握數(shù)學(xué)建模的方法,為將來的學(xué)習(xí)、工作打下堅(jiān)實(shí)的基礎(chǔ)。在教學(xué)時(shí)將數(shù)學(xué)建模中最基本的過程教給學(xué)生:利用現(xiàn)行的數(shù)學(xué)教材,向?qū)W生介紹一些常用的、典型的數(shù)學(xué)模型。如函數(shù)模型、不等式模型、數(shù)列模型、幾何模型、三角模型、方程模型等。教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些數(shù)學(xué)基本模型問題,如儲蓄問題、信用貸款問題可結(jié)合在數(shù)列教學(xué)中。教師可以通過教材中一些不大復(fù)雜的應(yīng)用問題,帶著學(xué)生一起來完成數(shù)學(xué)化的過程,給學(xué)生一些數(shù)學(xué)應(yīng)用和數(shù)學(xué)建模的初步體驗(yàn)。

  例如在學(xué)習(xí)了二次函數(shù)的最值問題后,通過下面的應(yīng)用題讓學(xué)生懂得如何用數(shù)學(xué)建模的方法來解決實(shí)際問題。例:客房的定價(jià)問題。一個(gè)星級旅館有150個(gè)客房,經(jīng)過一段時(shí)間的經(jīng)營實(shí)踐,旅館經(jīng)理得到了一些數(shù)據(jù):每間客房定價(jià)為160元時(shí),住房率為55%,每間客房定價(jià)為140元時(shí),住房率為65%,

  每間客房定價(jià)為120元時(shí),住房率為75%,每間客房定價(jià)為100元時(shí),住房率為85%。欲使旅館每天收入最高,每間客房應(yīng)如何定價(jià)?

  [簡化假設(shè)]

 。1)每間客房最高定價(jià)為160元;

 。2)設(shè)隨著房價(jià)的下降,住房率呈線性增長;

 。3)設(shè)旅館每間客房定價(jià)相等。

  [建立模型]

  設(shè)y表示旅館一天的總收入,與160元相比每間客房降低的房價(jià)為x元。由假設(shè)(2)可得,每降價(jià)1元,住房率就增加。因此由可知于是問題轉(zhuǎn)化為:當(dāng)時(shí),y的最大值是多少?

  [求解模型]

  利用二次函數(shù)求最值可得到當(dāng)x=25即住房定價(jià)為135元時(shí),y取最大值13668.75(元),

  [討論與驗(yàn)證]

  (1)容易驗(yàn)證此收入在各種已知定價(jià)對應(yīng)的收入中是最大的。如果為了便于管理,定價(jià)為140元也是可以的,因?yàn)榇藭r(shí)它與最高收入只差18.75元。

 。2)如果定價(jià)為180元,住房率應(yīng)為45%,相應(yīng)的收入只有12150元,因此假設(shè)(1)是合理的。

  (二)培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,增強(qiáng)數(shù)學(xué)建模意識。

  首先,學(xué)生的應(yīng)用意識體現(xiàn)在以下兩個(gè)方面:一是面對實(shí)際問題,能主動(dòng)嘗試從數(shù)學(xué)的角度運(yùn)用所學(xué)知識和方法尋求解決問題的策略,學(xué)習(xí)者在學(xué)習(xí)的過程中能夠認(rèn)識到數(shù)學(xué)是有用的。二是認(rèn)識到現(xiàn)實(shí)生活中蘊(yùn)含著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實(shí)世界中有著廣泛的應(yīng)用:生活中處處有數(shù)學(xué),數(shù)學(xué)就在他的身邊。其次,關(guān)于如何培養(yǎng)學(xué)生的應(yīng)用意識:在數(shù)學(xué)教學(xué)和對學(xué)生數(shù)學(xué)學(xué)習(xí)的指導(dǎo)中,介紹知識的來龍去脈時(shí)多與實(shí)際生活相聯(lián)系。例如,日常生活中存在著“不同形式的等量關(guān)系和不等量關(guān)系”以及“變量間的函數(shù)對應(yīng)關(guān)系”、“變相間的非確切的相關(guān)關(guān)系”、“事物發(fā)生的可預(yù)測性,可能性大小”等,這些正是數(shù)學(xué)中引入“方程”、“不等式”、“函數(shù)”“變量間的線性相關(guān)”、“概率”的實(shí)際背景。另外鍛煉學(xué)生學(xué)會運(yùn)用數(shù)學(xué)語言描述周圍世界出現(xiàn)的數(shù)學(xué)現(xiàn)象。數(shù)學(xué)是一種“世界通用語言”它能夠準(zhǔn)確、清楚、間接地刻畫和描述日常生活中的許多現(xiàn)象。應(yīng)讓學(xué)生養(yǎng)成運(yùn)用數(shù)學(xué)語言進(jìn)行交流的習(xí)慣。例如,當(dāng)學(xué)生乘坐出租車時(shí),他應(yīng)能意識到付費(fèi)與行駛時(shí)間或路程之間具有一定的函數(shù)關(guān)系。鼓勵(lì)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問題。首先通過觀察分析、提煉出實(shí)際問題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識系統(tǒng)去處理,當(dāng)然這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來解決實(shí)際問題,使數(shù)學(xué)建模意識成為學(xué)生思考問題的方法和習(xí)慣。通過教師的潛移默化,經(jīng)常滲透數(shù)學(xué)建模意識,學(xué)生可以從各類大量的建模問題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識進(jìn)行建模的能力。

 。ㄈ┰诮虒W(xué)中注意聯(lián)系相關(guān)學(xué)科加以運(yùn)用

  在數(shù)學(xué)建模教學(xué)中應(yīng)該重視選用數(shù)學(xué)與物理、化學(xué)、生物、美學(xué)等知識相結(jié)合的跨學(xué)科問題和大量與日常生活相聯(lián)系(如投資買賣、銀行儲蓄、測量、乘車、運(yùn)動(dòng)等方面)的數(shù)學(xué)問題,從其它學(xué)科中選擇應(yīng)用題,通過構(gòu)建模型,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)工具解決該學(xué)科難題的能力。例如,高中生物學(xué)科以描述性的語言為主,有的學(xué)生往往以為學(xué)好生物學(xué)是與數(shù)學(xué)沒有關(guān)系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數(shù)學(xué)上的排列與組合來分析減數(shù)分裂過程配子的基因組成;也不會用數(shù)學(xué)上的概率的相加、相乘原理來解決一些遺傳病機(jī)率的計(jì)算等等。這些需要教師在平時(shí)相應(yīng)的課堂內(nèi)容教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此我們在教學(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識的一個(gè)不可忽視的途徑。又例如教了正弦函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)寫出物理中振動(dòng)圖象或交流圖象的數(shù)學(xué)表達(dá)式。

  最后,為了培養(yǎng)學(xué)生的建模意識,中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動(dòng)態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識應(yīng)用于現(xiàn)實(shí)生活。中學(xué)教師只有通過對數(shù)學(xué)建模的系統(tǒng)學(xué)習(xí)和研究,才能準(zhǔn)確地的把握數(shù)學(xué)建模問題的深度和難度,更好地推動(dòng)中學(xué)數(shù)學(xué)建模教學(xué)的發(fā)展。

【數(shù)學(xué)建模優(yōu)秀論文】相關(guān)文章:

數(shù)學(xué)建模論文07-05

數(shù)學(xué)建模論文模板07-21

數(shù)學(xué)建模賽后感03-01

數(shù)學(xué)建模論文[熱門]07-07

【優(yōu)】數(shù)學(xué)建模論文模板07-20

數(shù)學(xué)建模論文15篇(經(jīng)典)07-08

數(shù)學(xué)建模心得體會06-14

數(shù)學(xué)建模的心得體會08-15

數(shù)學(xué)建模心得體會10-20

暑期數(shù)學(xué)建模培訓(xùn)心得01-10