高二數(shù)學教學工作計劃范文匯編十篇
人生天地之間,若白駒過隙,忽然而已,成績已屬于過去,新一輪的工作即將來臨,為此需要好好地寫一份計劃了。相信大家又在為寫計劃犯愁了吧?下面是小編整理的高二數(shù)學教學工作計劃10篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高二數(shù)學教學工作計劃 篇1
本章是高考命題的主體內(nèi)容之一,應(yīng)切實進行全面、深入地復習,并在此基礎(chǔ)上,突出解決下述幾個問題:(1)等差、等比數(shù)列的證明須用定義證明,值得注意的是,若給出一個數(shù)列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數(shù)列計算是本章的中心內(nèi)容,利用等差數(shù)列和等比數(shù)列的通項公式、前 項和公式及其性質(zhì)熟練地進行計算,是高考命題重點考查的內(nèi)容.(3)解答有關(guān)數(shù)列問題時,經(jīng)常要運用各種數(shù)學思想.善于使用各種數(shù)學思想解答數(shù)列題,是我們復習應(yīng)達到的目標. ①函數(shù)思想:等差等比數(shù)列的通項公式求和公式都可以看作是 的函數(shù),所以等差等比數(shù)列的某些問題可以化為函數(shù)問題求解.
、诜诸愑懻撍枷耄河玫缺葦(shù)列求和公式應(yīng)分為 及 ;已知 求 時,也要進行分類;
、壅w思想:在解數(shù)列問題時,應(yīng)注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
。4)在解答有關(guān)的數(shù)列應(yīng)用題時,要認真地進行分析,將實際問題抽象化,轉(zhuǎn)化為數(shù)學問題,再利用有關(guān)數(shù)列知識和方法來解決.解答此類應(yīng)用題是數(shù)學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關(guān)的等比數(shù)列的第幾項不要弄錯.
一、基本概念:
1、 數(shù)列的定義及表示方法:
2、 數(shù)列的項與項數(shù):
3、 有窮數(shù)列與無窮數(shù)列:
4、 遞增(減)、擺動、循環(huán)數(shù)列:
5、 數(shù)列的通項公式an:
6、 數(shù)列的前n項和公式Sn:
7、 等差數(shù)列、公差d、等差數(shù)列的結(jié)構(gòu):
8、 等比數(shù)列、公比q、等比數(shù)列的結(jié)構(gòu):
二、基本公式:
9、一般數(shù)列的`通項an與前n項和Sn的關(guān)系:an=
10、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d0時,an是關(guān)于n的一次式;當d=0時,an是一個常數(shù)。
11、等差數(shù)列的前n項和公式:Sn= Sn= Sn=
當d0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當d=0時(a10),Sn=na1是關(guān)于n的正比例式。
12、等比數(shù)列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an0)
13、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1 (是關(guān)于n的正比例式);
當q1時,Sn= Sn=
三、有關(guān)等差、等比數(shù)列的結(jié)論
14、等差數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等差數(shù)列。
15、等差數(shù)列中,若m+n=p+q,則
16、等比數(shù)列中,若m+n=p+q,則
17、等比數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等比數(shù)列。
18、兩個等差數(shù)列與的和差的數(shù)列、仍為等差數(shù)列。
19、兩個等比數(shù)列與的積、商、倒數(shù)組成的數(shù)列
、 、 仍為等比數(shù)列。
20、等差數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。
21、等比數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。
22、三個數(shù)成等差的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
23、三個數(shù)成等比的設(shè)法:a/q,a,aq;
四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3
24、為等差數(shù)列,則 (c0)是等比數(shù)列。
25、(bn0)是等比數(shù)列,則 (c0且c 1) 是等差數(shù)列。
四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關(guān)鍵是找數(shù)列的通項結(jié)構(gòu)。
26、分組法求數(shù)列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數(shù)列的最大、最小項的方法:
① an+1-an= 如an= -2n2+29n-3
、 an=f(n) 研究函數(shù)f(n)的增減性
31、在等差數(shù)列 中,有關(guān)Sn 的最值問題常用鄰項變號法求解:
(1)當 0時,滿足 的項數(shù)m使得 取最大值.
(2)當 0時,滿足 的項數(shù)m使得 取最小值。
在解含絕對值的數(shù)列最值問題時,注意轉(zhuǎn)化思想的應(yīng)用。
以上就是高二數(shù)學學習:高二數(shù)學數(shù)列的所有內(nèi)容,希望對大家有所幫助!
高二數(shù)學教學工作計劃 篇2
一、指導思想:
貫徹教育部的有關(guān)教育教學計劃,在學校、年級組的直接領(lǐng)導下,認真執(zhí)行學校的各項教育教學制度和要求,認真完成各項任務(wù)。教學的宗旨是使學生在獲得作為一個現(xiàn)代公民所必須的基本數(shù)學知識和技能的同時,在情感、態(tài)度、價值觀和一般能力等方面都能獲得充分的發(fā)展,為學生的終身學習、終身受益奠定良好的基礎(chǔ)。
二.學情分析:
上學期期末考學生的數(shù)學成績相對于高一期末考有進步,但還不是很理想,理科生數(shù)學學習的難度本學期將增大,加上學業(yè)水平考試,所以本學期學生面臨的`壓力將更大,任務(wù)艱巨。
三.教學目的任務(wù)要求分析:
本學期教學的主要任務(wù)是數(shù)學選修2-2,2-3和學考復習。(1)認真把握“標準”的教學要求。(2)通過建立相關(guān)知識的聯(lián)系,滲透“數(shù)形結(jié)合”等思想方法。(3)關(guān)注現(xiàn)代信息技術(shù)的運用。(4)把握學考大綱復習標準
四、主要措施
1.明確一個觀念:高考好才是真的好。平時不好高考肯定不好,但平時紅旗飄飄高考時未必紅旗不倒。這就要求我們在日常工作中在照顧到學生實際的前提下起點要高,注意培養(yǎng)后勁,從整體上把握好的自己的教學。
2.以老師的精心備課與充滿激情的教學,換取學生學習高效率。 3.將學校和教研組安排的有關(guān)工作落到實處。
高二數(shù)學教學工作計劃 篇3
一、教材依據(jù)
本節(jié)課是湘教版數(shù)學(必修三)第二章《解析幾何初步》第二節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。
二、教材分析
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題——求直線方程問題。在引入,過程中要讓學生弄清直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。
在推導直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。
三、教學目標
知識與技能:(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。
過程與方法:在已知直角坐標系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學生通過對比理解“截距”與“距離”的區(qū)別。
情態(tài)與價值觀:通過讓學生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)學生數(shù)形結(jié)合的思想,滲透數(shù)學中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學生能用聯(lián)系的觀點看問題。
四、教學重點
重點:直線的點斜式方程和斜截式方程。
五、教學難點
難點:直線的點斜式方程和斜截式方程的應(yīng)用。
要點:運用數(shù)形結(jié)合的思想方法,幫助學生分析描述幾何圖形。
六、教學準備
1.教學方法的選擇:啟發(fā)、引導、討論.
創(chuàng)設(shè)問題情境,采用啟發(fā)誘導式的教學模式引導學生探索討論,學生主動參與提出問題、探索問題和解決問題的過程,突出以學生為主體的探究性學習活動。
2.通過讓學生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學建模的思想;學生要學會用“數(shù)形結(jié)合”的方法建立起代數(shù)問題與幾何問題間的密切聯(lián)系。為使學生積極參與課堂學習,我主要指導了以下的學習方法:
、.讓學生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學生的參與意識和數(shù)學表達能力。
、.分組討論。
七、教學過程
問 題
師生活動
設(shè)計意圖
1、在直線坐標系內(nèi)確定一條直線,應(yīng)知道哪些條件?
學生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標 滿足的關(guān)系式。
使學生在已有知識和經(jīng)驗的基礎(chǔ)上,探索新知。
2、直線 經(jīng)過點 ,且斜率為 。設(shè)點 是直線 上的任意一點,請建立 與 之間的關(guān)系。
學生根據(jù)斜率公式,可以得到,當 時, ,即
(1)
教師對基礎(chǔ)薄弱的學生給予關(guān)注、引導,使每個學生都能推導出這個方程。
培養(yǎng)學生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標 滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。
3、(1)過點 ,斜率是 的直線 上的點,其坐標都滿足方程(1)嗎?
學生驗證,教師引導。
使學生了解方程為直線方程必須滿兩個條件。
(2)坐標滿足方程(1)的點都在經(jīng)過 ,斜率為 的直線 上嗎?
學生驗證,教師引導。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式.
使學生了解方程為直線方程必須滿兩個條件。
4、直線的點斜式方程能否表示坐標平面上的所有直線呢?
學生分組互相討論,然后說明理由。
使學生理解直線的點斜式方程的適用范圍。
5、(1) 軸所在直線的方程是什么? 軸所在直線的方程是什么?
(2)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
(3)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
教師學生引導通過畫圖分析,求得問題的解決。
進一步使學生理解直線的點斜式方程的適用范圍,掌握特殊直線方程的表示形式。
6、例2、例4的教學。
教師引導學生分析要用點斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標平面內(nèi),要畫一條直線可以怎樣去畫。
學會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的.方法。
7、例3的教學。
求經(jīng)過點 ,斜率為 的直線 的方程。
學生獨立求出直線 的方程:
(2)
在此基礎(chǔ)上,教師給出截距的概念,引導學生分析方程(2)由哪兩個條件確定,讓學生理解斜截式方程概念的內(nèi)涵。
引入斜截式方程,讓學生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。
8、觀察方程 ,它的形式具有什么特點?
學生討論,教師及時給予評價。
深入理解和掌握斜截式方程的特點?
9、直線 在 軸上的截距是什么?
學生思考回答,教師評價。
使學生理解“截距”與“距離”兩個概念的區(qū)別。
10、你如何從直線方程的角度認識一次函數(shù) ?一次函數(shù)中 和 的幾何意義是什么?你能說出一次函數(shù) 圖象的特點嗎?
學生思考、討論,教師評價、歸納概括。
體會直線的斜截式方程與一次函數(shù)的關(guān)系.
11、課堂練習第65頁練習第1,2,3題。
學生獨立完成,教師檢查反饋。
鞏固本節(jié)課所學過的知識。
12、小結(jié)
教師引導學生概括:(1)本節(jié)課我們學過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?
使學生對本節(jié)課所學的知識有一個整體性的認識,了解知識的來龍去脈。
13、布置作業(yè):第77頁第5題
學生課后獨立完成。
鞏固深化
八、教學反思
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。
本節(jié)課的基本題形:
1、已知直線上一點及直線的傾斜角,求直線的方程并作圖;
2、已知直線上兩點,求直線的方程并作圖。教學時應(yīng)注意讓學生明確直線的傾斜角與斜率的關(guān)系,掌握過兩點的直線的斜率公式,訓練學生求直線方程的書寫格式及直線的規(guī)范作圖。
高二數(shù)學教學工作計劃 篇4
一,學生的基本情況
118班66人,115班48人。118班學習數(shù)學的氛圍很濃。但由于高一的函數(shù)部分基礎(chǔ)較差,對高二乃至整個高中的數(shù)學學習影響很大。數(shù)學成績或多或少都有尖子生,但如果能認真復習函數(shù)部分,學生努力,前途無量。如果我們能很好地引導他們,進一步培養(yǎng)他們的學習興趣,…
二,教學要求
(a)情感目標
(1)通過問題分析方法、一個不等式問題的多解、一個不等式問題的多解、一個不等式問題的多重證明的教學,培養(yǎng)學生的學習興趣。
(2)提供生活背景,讓學生體驗不等式、直線、圓以及圍繞它們的圓錐曲線,培養(yǎng)運用數(shù)學學習數(shù)學的意識。
(3)探究不等式和二次曲線的本質(zhì),體驗獲得數(shù)學規(guī)律的艱辛和樂趣,學會小組合作學習中的交流和相互評價,提高學生的合作意識
(4)以情感目標為基礎(chǔ),規(guī)范教學過程,增強學習信念和信心。
(5)給學生時間和空間、班級和探索發(fā)現(xiàn)的權(quán)利,給學生自主探索和合作的機會,在發(fā)展思維能力的同時,培養(yǎng)學生的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
(6)讓學生體驗“發(fā)現(xiàn)——個挫折3354個矛盾——個頓悟——個新發(fā)現(xiàn)”的科學發(fā)現(xiàn)過程的神奇
(2)能力要求
1.培養(yǎng)學生的記憶能力。
(1)在研究不等式的性質(zhì)、平均不等式、思維方法和邏輯模式時,進一步培養(yǎng)記憶能力。讓記憶準確持久,快速正確的重現(xiàn)。
(2)通過對定義和命題的整體結(jié)構(gòu)的教學,可以揭示它們的本質(zhì)特征和相互關(guān)系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實和具體數(shù)據(jù)的記憶。
(3)通過揭示解析幾何的概念、公式和視值之間的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2.培養(yǎng)學生的計算能力。
(1)通過解不等式和不等式組的訓練,訓練學生的運算能力。
(2)加強概念、公式、規(guī)則的清晰性和靈活性的教學,培養(yǎng)學生的計算能力。(3)通過分析方法的教學,提高學生在操作過程中清晰、合理、簡單的能力。
(4)通過一題多解、一題多變,培養(yǎng)正確、快速、合理、靈活的計算能力,促進知識的滲透和傳遞。(5)利用數(shù)字和形狀的結(jié)合,尋找另一種提高學生計算能力的'方法。
3.培養(yǎng)學生的思維能力。
(1)通過用參數(shù)求解不等式,培養(yǎng)學生的思維縝密和邏輯思維。
(2)通過多解、多解、多證分析幾何和不等式,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過推廣和普及不等式培養(yǎng)學生的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學生數(shù)形結(jié)合的能力。(5)通過解析幾何的概念教學,培養(yǎng)學生的正向思維和逆向思維能力。
(6)通過典型例題的不同思路分析,培養(yǎng)思維的靈活性是學生掌握思維轉(zhuǎn)化的途徑。
4.培養(yǎng)學生的觀察能力。
(1)在比較和鑒別中,提高觀察的準確性和完整性。(2)通過對人格特征的分析研究,提高觀察深度。(3)知識要求
1、掌握不等式的概念、性質(zhì)和證明不等式的方法,不等式的解法;
2.通過直線和圓的教學,學生可以了解解析幾何的基本思想,掌握
(2)難點1。不等式的解包括絕對值和不等式的證明。2.角度公式、點到直線距離公式的推導及簡單線性規(guī)劃的求解。
3.用坐標法研究幾何問題,尋找曲線方程的一般方法。
五.教學措施
1.在教學中,要將傳授知識與培養(yǎng)能力相結(jié)合,充分調(diào)動學生的學習主動性,培養(yǎng)學生的概括能力,使學生掌握數(shù)學的基本方法和技能。
2.堅持與高三接觸,踏實面對高考,以數(shù)學五大思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生學習負擔。
3.加強教育教學研究,堅持學生主體性原則,循序漸進,啟發(fā)性。研究并采用基于“發(fā)現(xiàn)教學模式”的教學方法,全面提高教學質(zhì)量。
4.積極參與和組織集體備課,共同學習,努力提高教學質(zhì)量
5.堅持聽同齡人講課,取長補短;ハ鄬W習,共同進步。
6.堅持學習方法,加強個別輔導(差生和優(yōu)等生),提高全體學生的整體數(shù)學水平,培養(yǎng)尖子生。
7.加強數(shù)學研究性課程的教學和研究指導,培養(yǎng)知識的實踐能力。
第六,課表
這學期有81個課時。1.不等式18課時
2.直線圓方程25課時
3.圓錐曲線20課時
4.研究班18小時
高二數(shù)學教學工作計劃 篇5
一.指導思想
根據(jù)湖北省的新課改教學實施指導意見,結(jié)合我們學校的實際教學情況,發(fā)揮備課組的集體力量,全力以赴的完成本學期的教學任務(wù)。同時加強對新課改理念的學習,相互協(xié)作,積極面對新課改的要求。
二.工作重點
認真落實組里每位老師的課堂常規(guī)教學任務(wù),努力加強老師的課外教學科研工作;積極學習新課改的理論知識,認真研究新教材的教法,做一個教學科研全方位的教師;同時發(fā)揮備課組全體成員的集體力量,積極研討新教材的教學內(nèi)容,全力提升高二年級的數(shù)學水平,縮小和其它學校的差距。
三.具體措施
(1)落實好組里每位老師的'兩節(jié)公開課的任務(wù),按照先議教案,再聽課堂,最后評價的程序嚴格落實到位。
(2)充分利用每個星期二下午的集體備課時間,商討教學中存在的問題,探究新教材的教法。同時爭取機會出去學習教改名校的數(shù)學學科課改教學的經(jīng)驗。
(3)做好每一次階段性的考試工作,考前認真準備,閱卷客觀公正,客觀評價教學質(zhì)量。
(4)分班落實數(shù)學學科的培優(yōu)補差工作,尤其是文科班數(shù)學的提升。
(5)準備參加5月份的全國高中數(shù)學聯(lián)賽的活動,積極安排年輕老師參加數(shù)學教學競賽工作。
四.教學進度
(1)2,3月份,文科完成選修1-1和選修3-1,理科完成選修2-1和3-1的教學任務(wù),建議把選修3-1的《數(shù)學史選講》參插講。
(2)4月份,理科完成選修2-2,文科完成選修4-5
(3)5月份,理科完成選修4-1,文科完成選修4-5。
(4)6月份,理科完成選修4-4,文科開始期末考試的復習。
說明:根據(jù)xx省新課程教學實施指導意見,本學期理科完成選修2-1和2-2的內(nèi)容,文科完成選修1-2和1-1的教學內(nèi)容,但是我們還是打算把選修3-1,4-5的內(nèi)容都上完,為高三復習做好準備,從時間上看,文科的教學時間是充足的,但是理科的教學時間比較緊,希望各位老師合理安排好教學時間,確實落實好每章每節(jié)的教學任務(wù)。
高二數(shù)學教學工作計劃 篇6
一、教學內(nèi)容與內(nèi)容解析
1.內(nèi)容:
統(tǒng)計,簡單隨機抽樣,抽簽法,隨機數(shù)表法。
2.內(nèi)容解析:
本節(jié)課是人教版《高中數(shù)學》第三冊(選修Ⅱ)的第一章“概率與統(tǒng)計”中的“抽樣方法”的第一課時:簡單隨機抽樣.其主要內(nèi)容是介紹簡單隨機抽樣的概念以及如何實施簡單隨機抽樣.數(shù)理統(tǒng)計學包括兩類問題,一類是如何從總體中抽取樣本,另一類是如何根據(jù)對樣本的整理、計算和分析,對總體的情況作出一種推斷.可見,抽樣方法是數(shù)理統(tǒng)計學中的重要內(nèi)容.簡單隨機抽樣作為一種簡單的抽樣方法,又在其中處于一種非常重要的地位.因此它對于學習后面的其它較復雜的抽樣方法奠定了基礎(chǔ),同時它強化對概率性質(zhì)的理解,加深了對概率公式的運用.因此它起到了承上啟下的作用,在教材中占有重要地位.
本節(jié)課是在學生初中已學習了統(tǒng)計初步知識的基礎(chǔ)上,系統(tǒng)學習統(tǒng)計的基本方法,體驗統(tǒng)計思想的第一課時.本節(jié)課通過結(jié)合具體的實際問題情景,使學生認識到隨機抽樣的必要性和重要性,進而分析得到簡單隨機抽樣的定義、常用實施方法.這些活動的實施就是想引導學生從現(xiàn)實生活或其它學科中提出具有一定價值的統(tǒng)計問題,初步形成運用統(tǒng)計的思想和方法(用數(shù)據(jù)說話)來思考問題和解決問題的習慣.。
本課題為“簡單隨機抽樣”,主要學習簡單隨機抽樣的理論與方法.從理論上講,“簡單”是指抽取的樣本為“簡單隨機樣本”,獲取簡單隨機樣本的抽樣方法稱為簡單隨機抽樣.簡單隨機抽樣要滿足以下兩個條件:(1)代表性,即要求樣本的每個分量Xi與所考察的總體X具有相同的概率分布F(X);(2)獨立性,X1,X2,…,Xn為相互獨立的隨機變量,也就是說,每個觀察結(jié)果不影響其它觀察結(jié)果,也不受其它觀察結(jié)果的影響.當然在有限總體中,樣本的各個觀察結(jié)果可以是不獨立的.在本節(jié)課中,要將這些關(guān)于隨機抽樣的理論,用淺顯的例子滲透在學生的學習過程中.因此,教學的內(nèi)容應(yīng)側(cè)重于如何使抽取的數(shù)據(jù)能代表總體,即抽取的樣本要能反映總體的本質(zhì)特征.要抓住兩個特征展開,要求抽取的樣本有代表性,樣本的容量要適當,太大沒有必要,太小不能反映總體的特征.其次,要體現(xiàn)獨立性,在簡單隨機抽取時,總體中每個個體被抽到的概率是相等的,說明這種抽樣的方法是獨立的.抽取的樣本的分布與總體分布相似度越高,樣本的代表就越大.這就為后續(xù)學習三種抽樣方法的形成與評價提供基礎(chǔ).
從知識的應(yīng)用價值來看,重視數(shù)學知識的應(yīng)用和關(guān)注人文內(nèi)涵是新教材的顯著特點.豐富的生活實例為學生用數(shù)學的眼光看待生活,體驗生活即數(shù)學的理念,體驗用算法思想解決模式化問題的作用,有助于學生對統(tǒng)計思想和方法的掌握,增加學生的感性認識.。
二、教學目標與目標解析
1.目標:
(1)通過實例,了解學習統(tǒng)計的意義,了解統(tǒng)計學的基本內(nèi)容和方法.
(2)通過實例,了解隨機抽樣的必要性.
(3)理解隨機抽樣的概念.這里隨機抽樣的概念在初中階段學生已經(jīng)學習過,但在此處學習正是體現(xiàn)知識的螺旋上升,這里提出的總體、個體和樣本的概念應(yīng)該更加理性.
(4)通過實例分析隨機抽樣應(yīng)滿足的基本條件.作為教師要明確學習隨機抽樣的主要目的是用樣本估計總體,要使所抽取的樣本能估計總體,抽取數(shù)據(jù)的方法要根據(jù)對數(shù)據(jù)的要求而定,方法應(yīng)該是量身定做的.
(5)體會簡單隨機抽樣的方法.教學過程應(yīng)該充分體現(xiàn)學生的主體作用,不囿于教材順序的限定,結(jié)合學生已有的.知識結(jié)構(gòu),充分展示學生的學習經(jīng)驗和能力.
2.目標解析:
教學目標(3)和(4)是本節(jié)課的教學重點也是難點。我們要建立一種數(shù)學的基本思維過程,也是人們學習和生活中經(jīng)常使用的思維方式。借助學生已有生活常識,形成推理的直觀認識;讓學生通過自己動手體驗數(shù)學的一種基本思維過程,經(jīng)歷人們學習和生活中經(jīng)常使用的思維活動。
教學目標(5)是學生初學時不易達到的目標,教學時要緊密地結(jié)合學生熟悉的已學過的數(shù)學實例和生活實例,是學生體會解決問題時應(yīng)該關(guān)注的要點,體會簡單隨機抽樣的方法.應(yīng)用簡單隨機抽樣的方法。
三、教學問題診斷分析
教學重點、難點
重點:簡單隨機抽樣的定義,抽樣方法,各種方法適用情況,及對比
難點:簡單隨機抽樣中的等可能性及簡單隨機抽樣的特點,隨機數(shù)表法應(yīng)用。
本節(jié)課是學生在義教階段學習了數(shù)據(jù)的收集、抽樣、總體、個體、樣本等統(tǒng)計概念以后,進一步學習統(tǒng)計知識的.這是義教階段統(tǒng)計知識的發(fā)展,因此教學過程不應(yīng)是一種簡單的重復,也不應(yīng)停留在對普查與抽樣優(yōu)劣的比較和方法的選擇,而應(yīng)該發(fā)展到對抽樣進一步思考上,主要應(yīng)集中的以下四個問題上:(1)為什么要進行隨機抽樣;(2)什么是隨機抽樣(數(shù)理統(tǒng)計上的隨機抽樣概念);(3)簡單隨機抽樣應(yīng)滿足什么樣的條件;(4)如何進行簡單隨機抽樣.教學的重點是使學生關(guān)注數(shù)據(jù)收集的方法應(yīng)該由目的與要求所決定的,任何數(shù)據(jù)的收集都有一定的目的,數(shù)據(jù)的抽取是隨機的.要更加理性地看待數(shù)據(jù)收集的方法,要從隨機現(xiàn)象本身的規(guī)律性來看待數(shù)據(jù)收集的方法.特別是要突出簡單隨機樣本的兩個特征.要改變學生僅從形式上來理解簡單隨機抽樣的問題.在教學中學生可能會產(chǎn)生隨機抽樣中簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣的雛形,教師不必進一步明確界定概念,可待后續(xù)的學習中進一步完善.
如何發(fā)現(xiàn)隨機抽樣的公平性,也就是“如何去觀察,才能發(fā)現(xiàn)規(guī)律”。學生可以很順利地得到幾個事實,但是如何去觀察,這是學生學習時遇到的第一個教學問題。也是本節(jié)課的教學難點之一。教學時,應(yīng)通過實例,幫助學生總結(jié)出觀察一定要有目標,并用具體問題讓學生練習進行體會。
四、教學支持條件
本節(jié)課教學支持條件首先是學生已經(jīng)學習過隨機抽樣的概念,因此教學可以在此基礎(chǔ)上展開.教材例題的選取都來自于學生的生活經(jīng)驗,便于學生理解.可以通過投影和計算機,擴展學生收集數(shù)據(jù)的方法.基于本節(jié)課內(nèi)容的特點和學生的心理及思維發(fā)展的特征,在教學中選擇問題引導、事例討論和歸納總結(jié)相結(jié)合的教學方法.與學生建立平等融洽的互動關(guān)系,營造合作交流的學習氛圍.在引導學生進行觀察、分析、抽象概括、練習鞏固各個環(huán)節(jié)中運用多媒體進行演示,增強直觀性,提高教學效率,激發(fā)學生的學習興趣.
五、教學過程設(shè)計
六、目標檢測設(shè)計
(1)利用隨機數(shù)表法從40件產(chǎn)品中抽取10件檢查。
(2)分小組進行社會問題的實際調(diào)查,題目自擬。
。ㄔO(shè)計意圖:通過訓練,鞏固本課所學知識,檢測運用所學知識解決問題的能力;實習作業(yè)的設(shè)置為了教會學生怎樣利用資料進行數(shù)學學習,同時讓學生了解網(wǎng)絡(luò)是自主學習和拓展知識面的一個重要平臺。這是本節(jié)內(nèi)容的一個提高與拓展。)
高二數(shù)學教學工作計劃 篇7
一、教材分析
1、教材地位、作用
安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。古典概型是一種特殊的數(shù)學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內(nèi)容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節(jié)課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、學情分析
學生基礎(chǔ)一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的'理解和方法的掌握在一些細節(jié)上不完備,反映在解題中就是思維不慎密,過程不完整。
二、教學目標
1、知識與技能目標
、、理解等可能事件的概念及概率計算公式。
⑵、能夠準確計算等可能事件的概率。
2、過程與方法
根據(jù)本節(jié)課的知識特點和學生的認知水平,教學中采用探究式和啟發(fā)式教學法,通過生活中常見的實際問題引入課題,層層設(shè)問,經(jīng)過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。
3、情感態(tài)度與價值觀
概率問題與實際生活聯(lián)系緊密,學生通過概率知識的學習,可以更好的理解隨機現(xiàn)象的本質(zhì),掌握隨機現(xiàn)象的規(guī)律,科學地分析、解釋生活中的一些現(xiàn)象,初步形成實事求是的科學態(tài)度和鍥而不舍的求學精神。
三、重點、難點
重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。
難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
四、教學過程
1、創(chuàng)設(shè)情境,提出問題。
師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?
【設(shè)計意圖】通過這個同學們經(jīng)常會遇到的問題,引導學生合作探索新知識,符合“學生為主體,老師為主導”的現(xiàn)代教育觀點,也符合學生的認知規(guī)律。隨著新問題的提出,激發(fā)了學生的求知欲望,使課堂的有效思維增加。
2、抽象思維,形成概念。
師:考察試驗一“拋擲一枚質(zhì)地均勻的骰子”,有幾種不同的結(jié)果,結(jié)果分別有哪些?
生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。
師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結(jié)果。
師:考察試驗二“拋擲一枚質(zhì)地均勻的硬幣”有哪些基本事件?
生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。
師:那基本事件有什么特點呢?
問題:
。1)在“拋擲一枚質(zhì)地均勻的骰子”試驗中,會同時出現(xiàn)“1點”和“2點”這兩個基本事件嗎?
。2)事件“出現(xiàn)偶數(shù)點”包含了哪幾個基本事件?
高二數(shù)學教學工作計劃 篇8
一、學情分析:
本學期我負責的是1班和6班的數(shù)學教學工作,這兩個班級共有學生78人。6班學習數(shù)學的氣氛較濃,但由于高一函數(shù)部分基礎(chǔ)特別差,對高二乃至整個高中的數(shù)學學習有很大的影響,數(shù)學成績尖子生多或少,但若能雜實復習好函數(shù)部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養(yǎng)他們的學習興趣。
二、教材分析:
1、不等式的主要內(nèi)容是:不等式性質(zhì)、不等式證明、不等式解法。不等式性質(zhì)是基礎(chǔ),不等式證明是在其基礎(chǔ)上進行的;不等式的解法是在這一基礎(chǔ)上、依據(jù)不等式的性及同解變形來完成的。不等式在整個高中數(shù)學中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學習圓錐曲線、導數(shù)和微分等知識的的基礎(chǔ)。,是直線方程的一個直接應(yīng)用。主要內(nèi)容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關(guān)系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數(shù)形結(jié)合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質(zhì),以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標準方程研究它們的性質(zhì)。
三、教學的重點與難點:
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關(guān)系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質(zhì)。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導,簡單線性規(guī)劃的問題的解法。
3、用坐標法研究幾何問題,求曲線方程的一般方法。
四、教學目標:
(一)情意目標
(1)通過分析問題的方法的教學、通過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。
(3)在探究不等式的性質(zhì)、圓錐曲線的性質(zhì),體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權(quán)給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的'自信心和追求數(shù)學的科學精神。
(6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程的幻妙多姿
(二)能力要求
1、培養(yǎng)學生記憶能力。
(1)在對不等式的性質(zhì)、平均不等式及思維方法與邏輯模式的學習中,進一步培養(yǎng)記憶能力。做到記憶準確、持久,用時再現(xiàn)得迅速、正確。
(2)通過定義、命題的總體結(jié)構(gòu)教學,揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)通過揭示解析幾何有關(guān)概念、公式和圖形直觀值見的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)通過解不等式及不等式組的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。 (3)通過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。 (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。 (5)利用數(shù)形結(jié)合,另辟蹊徑,提高學生運算能力。
3、培養(yǎng)學生的思維能力。
(1)通過含參不等式的求解,培養(yǎng)學生思維的周密性及思維的邏輯性。
(2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過不等式引伸、推廣,培養(yǎng)學生的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學生的數(shù)形結(jié)合的能力。
(5)通過解析幾何的概念教學,培養(yǎng)學生的正向思維與逆向思維的能力。
(6)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉(zhuǎn)化思想方法。
4、培養(yǎng)學生的觀察能力。
(1)在比較鑒別中,提高觀察的準確性和完整性。
(2)通過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質(zhì)及證明不等式的方法,不等式的解法;
2、通過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關(guān)系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質(zhì)。
五、教學措施:
1、積極參加與組織集體備課,共同研究,努力提高授課質(zhì)量
2、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。
3、堅持學法研討,加強個別輔導(差生與優(yōu)生),提高全體學生的整體數(shù)學水平,培育尖子學生。
4、加強數(shù)學研究課的教學研究指導,培養(yǎng)學識的動手能力。
5、教學中要傳授知識與培育能力相結(jié)合,充分調(diào)動學生學習的主動性,培育學生的概括能力,是學生掌握數(shù)學基本方法、基本技能。
6、堅持與高三聯(lián)系,切實面向高考,以五大數(shù)學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
7、加強教育教學研究,堅持學生主體性原則,堅持循序漸進原則,堅持啟發(fā)性原則。研究并采用以“發(fā)現(xiàn)式教學模式”為主的教學方法,全面提高教學質(zhì)量。
六、課時安排:
本學期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
4、研究課18課時。
高二數(shù)學教學工作計劃 篇9
20xx-20xx年度下學期工作已經(jīng)開始,在新的一學年內(nèi),我們將緊密團結(jié)在學校領(lǐng)導的周圍,齊心協(xié)力、踏踏實實做好教學的教育工作,在提高自己的教育教學的水平的同時,積極參與各項教育教學活動,組織和制定本學科的研究性課題,爭取在各種考試中取得理想的成績,F(xiàn)將這學期的計劃如下:
一、指導思想
“師者,傳道授業(yè)解惑也!苯逃呐d衰維系國家之興衰,孩子的進步與徘徊事觀家庭的喜怒和哀樂!數(shù)學這一科有著冰凍三尺非一日之寒的學科特點,在高考中的決定性作用亦舉重非輕!夸張一點說數(shù)學是強校之本,升學之源。鑒于此,我們當舉全組之力,充分發(fā)揮團隊精神,既分工又合作,立足高考,保質(zhì)保量地完成教育教學任務(wù),在原來良好的基礎(chǔ)上錦上添花。
三.主要措施
1.明確一個觀念:高考好才是真的好。平時不好高考肯定不好,但平時紅旗飄飄高考時未必紅旗不倒。這就要求我們在日常工作中在照顧到學生實際的前提下起點要高,注意培養(yǎng)后勁,從整體上把握好的自己的'教學。
2.以老師的精心備課與充滿激情的教學,換取學生學習高效率。 3.將學校和教研組安排的有關(guān)工作落到實處。
四.活動設(shè)想
1.按時完成學校(教導處,教研組)相關(guān)工作。
2.輪流出題,講求命題質(zhì)量,分章節(jié)搞好集體備課,形成電子化文稿。
3.每周集體備課一次,每次有中心發(fā)言人,組織進行教學研討。 4.互相聽課,以人之長,補己之短,完善自我。
5.認真組織好培優(yōu)輔差工作以及竟賽的組織工作。
6.認真組織數(shù)學興趣小組與數(shù)學選修課的開展。
高二數(shù)學教學工作計劃 篇10
教學目標:
1. 知識與技能目標:
(1)了解中國古代數(shù)學中求兩個正整數(shù)最大公約數(shù)的算法以及割圓術(shù)的算法;
(2)通過對“更相減損之術(shù)”及“割圓術(shù)”的學習,更好的理解將要解決的問題“算法化”
的思維方法,并注意理解推導“割圓術(shù)”的操作步驟。
2. 過程與方法目標:
(1)改變解決問題的思路,要將抽象的數(shù)學思維轉(zhuǎn)變?yōu)榫唧w的步驟化的思維方法,提高邏
輯思維能力;
(2)學會借助實例分析,探究數(shù)學問題。
3. 情感與價值目標:
(1)通過學生的主動參與,師生,生生的合作交流,提高學生興趣,激發(fā)其求知欲,培養(yǎng)探索精神;
(2)體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻,增強愛國主義情懷。
教學重點與難點:
重點:了解“更相減損之術(shù)”及“割圓術(shù)”的算法。
難點:體會算法案例中蘊含的算法思想,利用它解決具體問題。
教學方法:
通過典型實例,使學生經(jīng)歷算法設(shè)計的全過程,在解決具體問題的過程中學習一些基本邏輯
結(jié)構(gòu),學會有條理地思考問題、表達算法,并能將解決問題的過程整理成程序框圖。
教學過程:
教學
環(huán)節(jié) 教學內(nèi)容 師生互動 設(shè)計意圖
創(chuàng)設(shè) 情境
引入新課 引導學生回顧
人們在長期的生活,生產(chǎn)和勞動過程中,創(chuàng)造了整數(shù),分數(shù),小數(shù),正負數(shù)及其計算,以及無限逼近任一實數(shù)的方法,在代數(shù)學,幾何學方面,我國在宋,元之前也都處于世界的前列。我們在小學,中學學到的算術(shù),代數(shù),從記數(shù)到多元一次聯(lián)立方程的求根方法,都是我國古代數(shù)學家最先創(chuàng)造的。更為重要的是我國古代數(shù)學的發(fā)展有著自己鮮明的特色,也就是“寓理于算”,即把解決的問題“算法化”。本章的內(nèi)容是算法,特別是在中國古代也有著很多算法案例,我們來看一下并且進一步體會“算法”的概念。
教師引導,學生回顧。
教師啟發(fā)學生回憶小學初中時所學算術(shù)代數(shù)知識,共同創(chuàng)設(shè)情景,引入新課。
通過對以往所學數(shù)學知識的回顧,使學生理清知識脈絡(luò),并且向?qū)W生指明,我國古代數(shù)學的發(fā)展“寓理于算”,不同于西方數(shù)學,在今天看仍然有很大的優(yōu)越性,體會中國古代數(shù)學對世界數(shù)學發(fā)展的'貢獻,增強愛國主義情懷。
閱讀課本 探究新知
1. 求兩個正整數(shù)最大公約數(shù)的算法
學生通常會用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公約數(shù):
例1:求78和36的最大公約數(shù)
(1) 利用輾轉(zhuǎn)相除法
步驟:
計算出78 36的余數(shù)6,再將前面的除數(shù)36作為新的被除數(shù),36 6=6,余數(shù)為0,則此時的除數(shù)即為78和36的最大公約數(shù)。
理論依據(jù): ,得 與 有相同的公約數(shù)
(2) 更相減損之術(shù)
指導閱讀課本P ----P ,總結(jié)步驟
步驟:
以兩數(shù)中較大的數(shù)減去較小的數(shù),即78-36=42;以差數(shù)42和較小的數(shù)36構(gòu)成新的一對數(shù),對這一對數(shù)再用大數(shù)減去小數(shù),即42-36=6,再以差數(shù)6和較小的數(shù)36構(gòu)成新的一對數(shù),對這一對數(shù)再用大數(shù)減去小數(shù),即36-6=30,繼續(xù)這一過程,直到產(chǎn)生一對相等的數(shù),這個數(shù)就是最大公約數(shù)
即,理論依據(jù):由 ,得 與 有相同的公約數(shù)
算法: 輸入兩個正數(shù) ;
如果 ,則執(zhí)行 ,否則轉(zhuǎn)到 ;
將 的值賦予 ;
若 ,則把 賦予 ,把 賦予 ,否則把 賦予 ,重新執(zhí)行 ;
輸出最大公約數(shù)
程序:
a=input(“a=”)
b=input(“b=”)
while a<>b
if a>=b
a=a-b;
else
b=b-a
end
end
print(%io(2),a,b)
學生閱讀課本內(nèi)容,分析研究,獨立的解決問題。
教師巡視,加強對學生的個別指導。
由學生回答求最大公約數(shù)的兩種方法,簡要說明其步驟,并能說出其理論依據(jù)。
由學生寫出更相減損法和輾轉(zhuǎn)相除法的算法,并編出簡單程序。
教師將兩種算法同時顯示在屏幕上,以方便學生對比。
教師將程序顯示于屏幕上,使學生加以了解。 數(shù)學教學要有學生根據(jù)自己的經(jīng)驗,用自己的思維方式把要學的知識重新創(chuàng)造出來。這種再創(chuàng)造積累和發(fā)展到一定程度,就有可能發(fā)生質(zhì)的飛躍。在教學中應(yīng)創(chuàng)造自主探索與合作交流的學習環(huán)境,讓學生有充分的時間和空間去觀察,分析,動手實踐,從而主動發(fā)現(xiàn)和創(chuàng)造所學的數(shù)學知識。
求兩個正整數(shù)的最大公約數(shù)是本節(jié)課的一個重點,用學生非常熟悉的問題為載體來講解算法的有關(guān)知識,,強調(diào)了提供典型實例,使學生經(jīng)歷算法設(shè)計的全過程,在解決具體問題的過程中學習一些基本邏輯結(jié)構(gòu),學會有條理地思考問題、表達算法,并能將解決問題的過程整理成程序框圖。為了能在計算機上實現(xiàn),還適當展示了將自然語言或程序框圖翻譯成計算機語言的內(nèi)容?偟膩碚f,不追求形式上的嚴謹,通過案例引導學生理解相應(yīng)內(nèi)容所反映的數(shù)學思想與數(shù)學方法。
【高二數(shù)學教學工作計劃】相關(guān)文章:
高二數(shù)學教學工作計劃06-09
高二數(shù)學教學反思11-29
高二數(shù)學教學反思01-02
高二數(shù)學教學工作計劃模板04-26
【熱門】高二數(shù)學教學工作計劃01-27
【精】高二數(shù)學教學工作計劃01-27
【推薦】高二數(shù)學教學工作計劃01-28
高二數(shù)學教學工作計劃【精】01-25
高二數(shù)學教學工作計劃【熱門】01-30
【薦】高二數(shù)學教學工作計劃01-28