三上數(shù)學(xué)教學(xué)計(jì)劃
時(shí)光飛逝,時(shí)間在慢慢推演,我們的工作又進(jìn)入新的階段,為了今后更好的工作發(fā)展,該好好計(jì)劃一下接下來(lái)的工作了!你所接觸過(guò)的計(jì)劃都是什么樣子的呢?以下是小編收集整理的三上數(shù)學(xué)教學(xué)計(jì)劃,歡迎大家分享。
三上數(shù)學(xué)教學(xué)計(jì)劃1
單元教學(xué)目標(biāo)
1、結(jié)合生活實(shí)際,使學(xué)生經(jīng)歷實(shí)際測(cè)量的過(guò)程,在實(shí)踐活動(dòng)中認(rèn)識(shí)長(zhǎng)度單位毫米、分米和千米,建立1毫米、1分米的長(zhǎng)度觀念,明確毫米、厘米、分米、米和千米之間的進(jìn)率。認(rèn)識(shí)質(zhì)量單位噸,知道噸和千克之間的關(guān)系。
2、使學(xué)生知道常用的長(zhǎng)度單位間、質(zhì)量單位間的關(guān)系,會(huì)進(jìn)行簡(jiǎn)單的單位換算。
3、使學(xué)生能估計(jì)一些物體的長(zhǎng)度和質(zhì)量,會(huì)選擇合適的單位及工具進(jìn)行測(cè)量。
4、感受數(shù)學(xué)與生活的.密切聯(lián)系,了解用列表法分析問(wèn)題和解決問(wèn)題,體驗(yàn)與他人合作交流解決問(wèn)題的過(guò)程。
單元教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):知道毫米、分米和千米與米、厘米;噸和千克的進(jìn)率及換算。
教學(xué)難點(diǎn):初步建立毫米、分米、千米的長(zhǎng)度觀念以及噸的質(zhì)量觀念,應(yīng)用毫米、分米和千米來(lái)正確表示物體的長(zhǎng)度以及應(yīng)用噸來(lái)正確表示物體的質(zhì)量。
研討的問(wèn)題(教學(xué)中的困惑)
1、如何體驗(yàn)1千米的長(zhǎng)度
2、如何更好的認(rèn)識(shí)及感受1噸的重量
修訂意見(jiàn)
1、教師要組織學(xué)生真正到操場(chǎng)上量一量、走一走、估一估,體驗(yàn)1千米有多長(zhǎng),加深對(duì)1千米長(zhǎng)度觀念的理解。在安排學(xué)生的操作活動(dòng)時(shí),要有明確的目的,要提出活動(dòng)的要求。
2、應(yīng)組織各種活動(dòng)幫助學(xué)生體驗(yàn)和感受。例如,可以抬一抬25千克的大米,然后推算多少袋有1噸,可利用多媒體課件展示1噸貨物的多少,還可以組織學(xué)生互相背一背,感受一名學(xué)生的體重,然后在算一算、估一估多少名學(xué)生的體重是1噸。通過(guò)這些實(shí)踐活動(dòng),幫助學(xué)生更好地認(rèn)識(shí)1噸。
解決措施
1、教師要組織學(xué)生真正到操場(chǎng)上量一量、走一走、估一估,體驗(yàn)1千米有多長(zhǎng)。
2、應(yīng)組織各種活動(dòng)幫助學(xué)生體驗(yàn)和感受。例如,可以抬一抬25千克的大米,然后推算多少袋有1噸,可利用多媒體課件展示1噸貨物的多少,還可以組織學(xué)生互相背一背,感受一名學(xué)生的體重,然后在算一算、估一估多少名學(xué)生的體重是1噸。
反思總結(jié)
本單元的內(nèi)容與學(xué)生的生活實(shí)際有著密切的聯(lián)系,教師要從學(xué)生的生活經(jīng)驗(yàn)出發(fā),靈活選用教材提供的資源,創(chuàng)設(shè)生動(dòng)有趣的情境,。
三上數(shù)學(xué)教學(xué)計(jì)劃2
【學(xué)習(xí)目標(biāo)】
1.了解整式方程和一元二次方程的概念 。
2. 知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點(diǎn)、難點(diǎn)】
重點(diǎn):一元二次方程的概念和它的一般形式。
難點(diǎn):對(duì)一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定
【學(xué)習(xí)過(guò)程】
一、
知識(shí)回顧
1.什么是整式方程?_什么是-元二次方程呢?現(xiàn)在我們來(lái)觀察上面這個(gè)方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程。就這一點(diǎn)來(lái)說(shuō)它與一元一次方程沒(méi)有什么區(qū)別、也就是說(shuō)一元二次方程首先必須是一個(gè)整式方程,但是一個(gè)整式方程未必就是一個(gè)一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的`最高次數(shù)是2、這樣的整式方程叫做一元二次方程.
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的為: ___________ 以上是 一元一次方程的為_(kāi)_______
二、
探究新知[一]
1.一元二次方程的一般形式是( )
1).提問(wèn)a=0時(shí)方程還是一無(wú)二次方程嗎?為什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2).方程中ax2、bx、c各項(xiàng)的名稱及a、b的系數(shù)名稱各是什么?
3).強(qiáng)調(diào):一元二次方程的一般形式中"="的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是"="的右邊必須整理成0.
探究新知(二)
1.說(shuō)出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2.把下列方程先化成二元二次方程的一般形式,再寫(xiě)出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[學(xué)以致用:]
強(qiáng)化概念:
1. 說(shuō)出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2.把下列方程先化成二元二次方程的一般形式,再寫(xiě)出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知識(shí)總結(jié):]
(1) 什么是一元二次方程?是一元二次方程滿足哪幾個(gè)條件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左邊最多幾項(xiàng)、其中( )可以不出現(xiàn)、但( )必須存在。特別注意的是"="的右邊必須整理成( );
(3) 要很熟練地說(shuō)出隨便一個(gè)一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).如:(3x十2) 2=4(x-3)____________
診斷檢測(cè)題一:
1.一元二次方程的一般形式是_________,其中_____是二次項(xiàng),____是一次項(xiàng),_______是常數(shù)項(xiàng).
2.方程(3x-7)(2x+4)=4化為一般形式為_(kāi)____,其中二次項(xiàng)系數(shù)為_(kāi)____,一次項(xiàng)系數(shù)為_(kāi)______.
3.方程mx2+5x+n=0一定是( ).
A.一元二次方程 B.一元一次方程
C.整式方程 D.關(guān)于x的一元二次方程
4.關(guān)于x的方程(m+1)x2+2mx-3=0是一元二次方程,則m的取值范圍是( )
A.任意實(shí)數(shù) B. m≠-1 C. m>1 D. m>0
5.方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6.把下列方程化成一般形式,且指出其二次項(xiàng),一次項(xiàng)和常數(shù)項(xiàng)
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
診斷檢測(cè)題二:
1.方程 的二次項(xiàng)系數(shù)是 ,一次項(xiàng)系數(shù)是 ,常數(shù)項(xiàng)是 .
2.把一元二次方程 化成二次項(xiàng)系數(shù)大于零的一般式是 ,其中二次項(xiàng)系數(shù)是 ,一次項(xiàng)的系數(shù)是 ,常數(shù)項(xiàng)是 ;
3.一元二次方程 的一個(gè)根是3,則 ;
4. 是實(shí)數(shù),且 ,則 的值是 .
5.關(guān)于 的方程 是一元二次方程,則 .
6.方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③
三上數(shù)學(xué)教學(xué)計(jì)劃3
進(jìn)一步深化教育教學(xué)改革,樹(shù)立全新的語(yǔ)文教育觀,構(gòu)建全新而科學(xué)的語(yǔ)文教學(xué)目標(biāo)體系、教材體系、課堂體系,拉動(dòng)和促進(jìn)其他學(xué)科的教育改革,相互融合,共謀發(fā)展,制定初三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃。
一、基本情況分析:
上學(xué)年學(xué)生期末考試的成績(jī)總體來(lái)看比較好,但是優(yōu)生面不廣,尖子不尖。在學(xué)生所學(xué)知識(shí)的掌握程度上,良莠不齊,對(duì)優(yōu)生來(lái)說(shuō),能夠透徹理解知識(shí),知識(shí)間的內(nèi)在聯(lián)系也較為清楚,對(duì)差一點(diǎn)的學(xué)生來(lái)說(shuō),有些基礎(chǔ)知識(shí)還不能有效的掌握,學(xué)生仍然缺少大量的推理題訓(xùn)練,推理的思考方法與寫(xiě)法上均存在著一定的困難,對(duì)幾何有畏難情緒,相關(guān)知識(shí)學(xué)得不很透徹。在學(xué)習(xí)能力上,學(xué)生課外主動(dòng)獲取知識(shí)的能力較差,向深處學(xué)習(xí)知識(shí)的能力沒(méi)有得到很好的培養(yǎng)。在以后的教學(xué)中,培養(yǎng)學(xué)生課外主動(dòng)獲取知識(shí)的能力。學(xué)生的邏輯推理、邏輯思維能力,計(jì)算能力需要得到加強(qiáng),以提升學(xué)生的整體成績(jī),應(yīng)在合適的時(shí)候補(bǔ)充課外知識(shí),拓展學(xué)生的知識(shí)面,提升學(xué)生素質(zhì);在學(xué)習(xí)態(tài)度上,一部分學(xué)生上課能全神貫注,積極的投入到學(xué)習(xí)中去,大部分學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)好高鶩遠(yuǎn)、心浮氣躁,學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣還需培養(yǎng)。學(xué)生的學(xué)習(xí)習(xí)慣養(yǎng)成還不理想,預(yù)習(xí)的習(xí)慣,進(jìn)行總結(jié)的習(xí)慣,主動(dòng)糾正錯(cuò)誤的習(xí)慣,有些學(xué)生不具有或不夠重視,需要教師的督促才能做,陶行知說(shuō):教育就是培養(yǎng)習(xí)慣,這是本期教學(xué)中重點(diǎn)予以關(guān)注的。
二、指導(dǎo)思想:
通過(guò)九年數(shù)學(xué)的教學(xué),提供進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力、思維能力和空間想象能力,能夠運(yùn)用所學(xué)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題,教育學(xué)生掌握基礎(chǔ)知識(shí)與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡(jiǎn)單實(shí)際問(wèn)題的'能力,使學(xué)生逐步學(xué)會(huì)正確、合理地進(jìn)行運(yùn)算,逐步學(xué)會(huì)觀察分析、綜合、抽象、概括。會(huì)用歸納演繹、類比進(jìn)行較為復(fù)雜的推理。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。
四、教學(xué)措施:
1.認(rèn)真學(xué)習(xí)、鉆研教材,深入實(shí)施學(xué)案式教學(xué)。
2.引導(dǎo)學(xué)生積極參與知識(shí)的構(gòu)建,組織學(xué)生自主研學(xué)、合作探究。
3.加強(qiáng)課后單獨(dú)輔導(dǎo),幫助學(xué)生查漏補(bǔ)缺。
4.積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。
5.加強(qiáng)對(duì)優(yōu)生的監(jiān)督和培養(yǎng)。
6.復(fù)習(xí)階段多讓學(xué)生動(dòng)腦、動(dòng)手,通過(guò)各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識(shí)點(diǎn),并能熟練運(yùn)用。
三上數(shù)學(xué)教學(xué)計(jì)劃4
一、學(xué)情分析
三年級(jí)學(xué)生對(duì)一些基礎(chǔ)性的數(shù)學(xué)知識(shí)有了初步的認(rèn)識(shí),學(xué)生已經(jīng)比較習(xí)慣于新教材的學(xué)習(xí)思路和學(xué)習(xí)方法,大多數(shù)學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)無(wú)處不在,生活中處處有數(shù)學(xué),這為學(xué)生對(duì)本冊(cè)的學(xué)習(xí)打下了重要的基礎(chǔ),也為提高學(xué)生的解決問(wèn)題能力和實(shí)踐能力創(chuàng)造了條件。
二、教材分析
本學(xué)期教材內(nèi)容包括下面一些內(nèi)容:萬(wàn)以內(nèi)的加法和減法筆算,倍的認(rèn)識(shí),多位數(shù)乘一位數(shù),分?jǐn)?shù)的初步認(rèn)識(shí),長(zhǎng)方形和正方形,毫米、分米、千米和噸的認(rèn)識(shí),時(shí)、分、秒,數(shù)學(xué)廣角—集合(重疊問(wèn)題)和數(shù)學(xué)實(shí)踐活動(dòng)(數(shù)字編碼)等。
這學(xué)期本冊(cè)教材的重點(diǎn)教學(xué)內(nèi)容是萬(wàn)以內(nèi)的加法和減法筆算、多位數(shù)乘一位數(shù)以及四邊形,所以培養(yǎng)他們的計(jì)算能力及空間思維能力是關(guān)鍵。在教學(xué)中加強(qiáng)數(shù)學(xué)數(shù)量關(guān)系的分析,讓學(xué)生學(xué)會(huì)分析,學(xué)會(huì)審題,提高解題能力。最后在激發(fā)學(xué)生學(xué)習(xí)興趣方面多尋找方法,使他們樂(lè)學(xué),愿學(xué)。
本學(xué)期教學(xué)的指導(dǎo)思想
1、改進(jìn)筆算教學(xué)的編排,體現(xiàn)計(jì)算教學(xué)改革的理念,重視培養(yǎng)學(xué)生的數(shù)感。
2、量與計(jì)量的教學(xué)聯(lián)系生活實(shí)際,重視學(xué)生的感受和體驗(yàn)
3、空間與圖形的教學(xué),強(qiáng)調(diào)實(shí)際操作與自主探索,加強(qiáng)估測(cè)意識(shí)和能力的培養(yǎng)。
4、提供豐富的現(xiàn)實(shí)學(xué)習(xí)素材,體現(xiàn)知識(shí)的形成過(guò)程。
5、逐步發(fā)展學(xué)生綜合運(yùn)用知識(shí)的能力,注重情感、態(tài)度、價(jià)值觀的培養(yǎng)。
四、本學(xué)期教學(xué)的主要目的要求
。ㄒ唬┲R(shí)和技能方面
1、會(huì)正確筆算三位數(shù)的加、減法,會(huì)進(jìn)行相應(yīng)的.估算和驗(yàn)算。
2、會(huì)口算一位數(shù)乘整十、整百數(shù);會(huì)筆算一位數(shù)乘二、三位數(shù),并會(huì)進(jìn)行估算。
3、初步認(rèn)識(shí)簡(jiǎn)單的分?jǐn)?shù)(分母小于10),會(huì)讀、寫(xiě)分?jǐn)?shù)并知道各部分的名稱,初步認(rèn)識(shí)分?jǐn)?shù)的大小,會(huì)計(jì)算簡(jiǎn)單的同分母分?jǐn)?shù)的加減法,會(huì)解決簡(jiǎn)單的有關(guān)分?jǐn)?shù)的實(shí)際問(wèn)題。
4、會(huì)區(qū)分和辨認(rèn)四邊形,掌握長(zhǎng)方形和正方形的特征,會(huì)在方格紙上畫(huà)長(zhǎng)方形、正方形;知道周長(zhǎng)的含義,會(huì)計(jì)算長(zhǎng)方形、正方形的周長(zhǎng);能估計(jì)一些物體的長(zhǎng)度,并會(huì)進(jìn)行測(cè)量。
5、認(rèn)識(shí)長(zhǎng)度單位毫米、分米和千米,初步建立1毫米、1分米和1千米的長(zhǎng)度觀念,知1厘米=10毫米、1分米=10厘米、1千米=1000米;認(rèn)識(shí)質(zhì)量單位噸,初步建立1噸的質(zhì)量念,知道1噸=1000千克,會(huì)進(jìn)行簡(jiǎn)單的換算,會(huì)恰當(dāng)?shù)剡x擇單位;認(rèn)識(shí)時(shí)間單位秒,初步建立分、秒的時(shí)間觀念,知道1分=60秒,會(huì)進(jìn)行一些有關(guān)時(shí)間的簡(jiǎn)單計(jì)算。
6、理解“倍”的意義,掌握“求一個(gè)數(shù)是另一個(gè)數(shù)的幾倍”和“求一個(gè)數(shù)的幾倍”的實(shí)際問(wèn)題的方法。
7.學(xué)生會(huì)借助直觀圖,利用集合的思維方法解決簡(jiǎn)單的實(shí)際問(wèn)題。
。ǘ⿺(shù)學(xué)思考方面
1、體會(huì)數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,感受數(shù)學(xué)與生活的聯(lián)系,初步體會(huì)集合思維,逐步形成空間的觀念。
2、結(jié)合生活中的實(shí)際問(wèn)題,靈活運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)解決生活中的問(wèn)題。
3、結(jié)合具體情境,通過(guò)直觀操作,初步理解分?jǐn)?shù)的意義,體會(huì)學(xué)習(xí)分?jǐn)?shù)的必要性。
。ㄈ┙鉀Q問(wèn)題方面
1、經(jīng)歷從生活中發(fā)現(xiàn)并提出問(wèn)題、解決問(wèn)題的過(guò)程,體驗(yàn)數(shù)學(xué)與日常生活的密切聯(lián)系,感受數(shù)學(xué)在日常生活中的作用。
2、了解同一問(wèn)題可以有不同的解決辦法。
3、有與同學(xué)合作解決問(wèn)題的經(jīng)驗(yàn)。
4、初步學(xué)會(huì)表達(dá)解決問(wèn)題的大致過(guò)程和結(jié)果。
。ㄋ模┣楦信c態(tài)度方面
1、在他人的鼓勵(lì)和幫助下,對(duì)身邊與數(shù)學(xué)有關(guān)的某些事物有好奇心,能積極參與生動(dòng)、直觀的教學(xué)活動(dòng)。
2、在他人的鼓勵(lì)和幫助下,能克服在數(shù)學(xué)活動(dòng)中遇到的某些困難,獲得成功的體驗(yàn),有學(xué)好數(shù)學(xué)的信心。
3、經(jīng)歷觀察、操作、歸納等學(xué)習(xí)數(shù)學(xué)的過(guò)程,感受數(shù)學(xué)思考過(guò)程的合理性。
4、在他人的指導(dǎo)下,能夠發(fā)現(xiàn)數(shù)學(xué)活動(dòng)中的錯(cuò)誤,并及時(shí)改正。
5、體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,提高學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
6、養(yǎng)成認(rèn)真作業(yè)、書(shū)寫(xiě)整潔的良好習(xí)慣。
五、教學(xué)的重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):萬(wàn)以內(nèi)數(shù)的加法和減法、多位數(shù)乘一位數(shù)
2.教學(xué)難點(diǎn):時(shí)分秒的認(rèn)識(shí)、長(zhǎng)方形和正方形的周長(zhǎng)
六、提高教學(xué)質(zhì)量的具體措施
1、從學(xué)生的年齡特點(diǎn)出發(fā),多采取游戲式的教學(xué),引導(dǎo)學(xué)生樂(lè)于參與數(shù)學(xué)學(xué)習(xí)活動(dòng)。
2、在課堂教學(xué)中,注意多一些有利于孩子理解的問(wèn)題,而不是一味的難、廣。應(yīng)該考慮學(xué)生實(shí)際的思維水平,多照顧中等生以及思維偏慢的學(xué)生。
3、盡量布置一些比較有趣的作業(yè),比如動(dòng)手的作業(yè),少一些呆板的練習(xí);另外,對(duì)于不同層次的學(xué)生,布置難易程度不同的作業(yè)。
4、引導(dǎo)學(xué)生獨(dú)立思考、合作交流,讓學(xué)生體驗(yàn)探究的樂(lè)趣。恰當(dāng)、適時(shí)地運(yùn)用小組合作學(xué)習(xí)方式,重視培養(yǎng)學(xué)生的應(yīng)用意識(shí)和解決實(shí)際問(wèn)題的能力。
5、注重學(xué)生對(duì)計(jì)算過(guò)程和方法的理解,抓住重點(diǎn),突破難點(diǎn),使學(xué)生打下扎實(shí)的知識(shí)基礎(chǔ)。
6、加強(qiáng)家庭教育與學(xué)校教育的聯(lián)系,適當(dāng)教給家長(zhǎng)一些正確的指導(dǎo)孩子學(xué)習(xí)的方法。
七、教學(xué)進(jìn)度:
一、時(shí)、分、秒(4課時(shí))
秒的認(rèn)識(shí)……………………………………1課時(shí)
時(shí)間的計(jì)算…………………………………1課時(shí)
練習(xí)一………………………………………1課時(shí)
復(fù)習(xí)…………………………………………1課時(shí)
二、萬(wàn)以內(nèi)的加法和減法
(一)(5課時(shí))
兩位數(shù)加兩位數(shù)………………………… 1課時(shí)
兩位數(shù)減兩位數(shù)…………………………………………1課時(shí)
筆算幾百幾十加、減幾百幾十…………………………1課時(shí)
加、減法的估算…………………………………………1課時(shí)
整理和復(fù)習(xí)……………………………………………… 1課時(shí)
三、測(cè)量(8課時(shí))
毫米、分米的認(rèn)識(shí)………………………………………3課時(shí)
千米的認(rèn)識(shí)………………………………………………2課時(shí)
噸的認(rèn)識(shí)…………………………………………………1課時(shí)
3 解決問(wèn)題…………………………………………………1課時(shí)
復(fù)習(xí)………………………………………………………1課時(shí)
四、萬(wàn)以內(nèi)的加法和減法
(二)(6課時(shí))
1、加法…………………………………………2課時(shí)
2、減法…………………………………………3課時(shí)
整理和復(fù)習(xí)……………………………………1課時(shí)
五、倍的認(rèn)識(shí)(4課時(shí))
倍的認(rèn)識(shí)…………………………………………1課時(shí)
解決問(wèn)題…………………………………………2課時(shí)
復(fù)習(xí)………………………………………………1課時(shí)
六、多位數(shù)乘一位數(shù)(11課時(shí))
1、口算乘法………………………………………1課時(shí)
2、筆算乘法………………………………………8課時(shí)
整理和復(fù)習(xí)………………………………………1課時(shí)
數(shù)字編碼…………………………………………1課時(shí)
七、長(zhǎng)方形和正方形(4課時(shí))
四邊形……………………………………………1課時(shí)
周長(zhǎng)………………………………………………1課時(shí)
長(zhǎng)方形和正方形的周長(zhǎng)…………………………1課時(shí)
復(fù)習(xí)………………………………………………1課時(shí)
八、分?jǐn)?shù)的初步認(rèn)識(shí)(6課時(shí))
1、分?jǐn)?shù)的初步認(rèn)識(shí)………………………………2課時(shí)
2、分?jǐn)?shù)的簡(jiǎn)單計(jì)算………………………………1課時(shí)
3、分?jǐn)?shù)的簡(jiǎn)單應(yīng)用………………………………2課時(shí)
復(fù)習(xí)………………………………………………1課時(shí)
九、數(shù)學(xué)廣角—集合(2課時(shí))
十、總復(fù)習(xí)(4課時(shí))
三上數(shù)學(xué)教學(xué)計(jì)劃5
一、基本情況:
本學(xué)期是初中學(xué)習(xí)的關(guān)鍵時(shí)期本學(xué)期我擔(dān)任初三年級(jí)三(5、6)兩個(gè)班的數(shù)學(xué)教學(xué)工作,是新課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材,如何用新理念使用好新課程標(biāo)準(zhǔn)教材?如何在教學(xué)中貫徹新課標(biāo)精神?這要求在教學(xué)過(guò)程中的創(chuàng)新意識(shí)、引導(dǎo)學(xué)生進(jìn)行思考問(wèn)題方式都必須不同與以往的教學(xué)。因此,在完成教學(xué)任務(wù)的同時(shí),必須盡可能性的創(chuàng)設(shè)情景,讓學(xué)生經(jīng)歷探索、猜想、發(fā)現(xiàn)的過(guò)程。并結(jié)合教學(xué)內(nèi)容和學(xué)生實(shí)際,把握好重點(diǎn)、難點(diǎn)。樹(shù)立素質(zhì)教育觀念,以培養(yǎng)全面發(fā)展的高素質(zhì)人才為目標(biāo),面向全體學(xué)生,使學(xué)生在德、智、體、美、勞等諸方面都得到發(fā)展。為做好本學(xué)期的教育教學(xué)工作,特制定本計(jì)劃。
二、指導(dǎo)思想:
初三數(shù)學(xué)是以黨和國(guó)家的教育教學(xué)方針為指導(dǎo),按照九年義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)來(lái)實(shí)施的,其目的是教書(shū)育人,使每個(gè)學(xué)生都能夠在此數(shù)學(xué)學(xué)習(xí)過(guò)程中獲得最適合自己的發(fā)展。通過(guò)初三數(shù)學(xué)的教學(xué),提供參加生產(chǎn)和進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力、思維能力和空間想象能力,能夠運(yùn)用所學(xué)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識(shí)、良好個(gè)性品質(zhì)以及初步的唯物主義觀。
三、教學(xué)內(nèi)容:
本學(xué)期所教初三數(shù)學(xué)包括第一章 證明(二),第二章 一元二次方程,第三章 證明(三),第四章 視圖與投影,第五章 反比例函數(shù),第六章 頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關(guān)的。一元二次方程,反比例函數(shù) 這兩章是與數(shù)及數(shù)的運(yùn)用有關(guān)的。頻率與概率 則是與統(tǒng)計(jì)有關(guān)。
四、教學(xué)目的:
在新課方面通過(guò)講授《證明(二)》和《證明(三)》的有關(guān)知識(shí),使學(xué)生經(jīng)歷探索、猜測(cè)、證明的過(guò)程,進(jìn)一步發(fā)展學(xué)生的推理論證能力,并能運(yùn)用這些知識(shí)進(jìn)行論證、計(jì)算、和簡(jiǎn)單的作圖。進(jìn)一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關(guān)的性質(zhì)定理及判定定理,并能夠證明其他相關(guān)的結(jié)論。在《視圖與投影》這一章通過(guò)具體活動(dòng),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步增強(qiáng)學(xué)生的動(dòng)手能力發(fā)展學(xué)生的空間思維。在《頻率與概率》這一章》讓學(xué)生理解頻率與概率的關(guān)頻率與概率系進(jìn)一步體會(huì)概率是描述隨機(jī)現(xiàn)象的數(shù)學(xué)模型。
在《一元二次方程》和《反比例函數(shù)》這兩章,讓學(xué)生了解一元二次方程的各種解法,并能運(yùn)用一元二次方程和函數(shù)解決一些數(shù)學(xué)問(wèn)題逐步提高觀察和歸納分析能力,體驗(yàn)數(shù)學(xué)結(jié)合的數(shù)學(xué)方法。同時(shí)學(xué)會(huì)對(duì)知識(shí)的.歸納、整理、和運(yùn)用。從而培養(yǎng)學(xué)生的思維能力和應(yīng)變能力。
五、教學(xué)重點(diǎn)、難點(diǎn)
本冊(cè)教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》, 《反比例函數(shù)》。以及與統(tǒng)計(jì)有關(guān)的《頻率與概率》!蹲C明(二)》,《證明(三)》的重點(diǎn)是
1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會(huì)推理論證;
2、探索證明的思路和方法,提倡證明的多樣性。
難點(diǎn)是
1、引導(dǎo)學(xué)生探索、猜測(cè)、證明,體會(huì)證明的必要性;
2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想!兑晥D與投影》和重點(diǎn)是通過(guò)學(xué)習(xí)和實(shí)踐活動(dòng)判斷簡(jiǎn)單物體的三種視圖,并能根據(jù)三種圖形描述基本幾何體或?qū)嵨镌,?shí)現(xiàn)簡(jiǎn)單物體與其視圖之間的相互轉(zhuǎn)化。難點(diǎn)是理解平行投影與中心投影,明確視點(diǎn)、視線和盲區(qū)的內(nèi)容。
《一元二次方程》, 《反比例函數(shù)》的重點(diǎn)是
1、掌握一元二次方程的多種解法;
2、會(huì)畫(huà)出反比例函數(shù)的圖像,并能根據(jù)圖像和解析式探索和理解反比例函數(shù)的性質(zhì)。難占是1、會(huì)運(yùn)用方程和函數(shù)建立數(shù)學(xué)模型,鼓勵(lì)學(xué)生進(jìn)行探索和交流,倡導(dǎo)解決問(wèn)題策略的多樣化!额l率與概率》的重點(diǎn)是通過(guò)實(shí)驗(yàn)活動(dòng),理解事件發(fā)生的頻率與概率之間的關(guān)系,體會(huì)概率是描述隨機(jī)現(xiàn)象的的數(shù)學(xué)模型,體會(huì)頻率的穩(wěn)定性。難點(diǎn)是注重素材的真實(shí)性、科學(xué)性、以及來(lái)源渠道的多樣性,理解試驗(yàn)頻率穩(wěn)定于理論概率,必須借助于大量重復(fù)試驗(yàn),從而提示概率與統(tǒng)計(jì)之間的內(nèi)存聯(lián)系。
六、教學(xué)措施:
針對(duì)上述情況,我計(jì)劃在即將開(kāi)始的學(xué)年教學(xué)工作中采取以下幾點(diǎn)措施:
1、新課開(kāi)始前,用一個(gè)周左右的時(shí)間簡(jiǎn)要復(fù)習(xí)上學(xué)期的所有內(nèi)容,特別是幾何部分。
2、教學(xué)過(guò)程中盡量采取多鼓勵(lì)、多引導(dǎo)、少批評(píng)的教育方法。
3、教學(xué)速度以適應(yīng)大多數(shù)學(xué)生為主,盡量兼顧后進(jìn)生,注重整體推進(jìn)。
4、新課教學(xué)中涉及到舊知識(shí)時(shí),對(duì)其作相應(yīng)的復(fù)習(xí)回顧。
5、復(fù)習(xí)階段多讓學(xué)生動(dòng)腦、動(dòng)手,通過(guò)各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識(shí)點(diǎn),并能熟練運(yùn)用。
七、教學(xué)進(jìn)度:
除了以上計(jì)劃外,我還將預(yù)計(jì)開(kāi)展轉(zhuǎn)化個(gè)別后進(jìn)生工作,教學(xué)中注重?cái)?shù)學(xué)理論與社會(huì)實(shí)踐的聯(lián)系,鼓勵(lì)學(xué)生多觀察、多思考實(shí)際生活中蘊(yùn)藏的數(shù)學(xué)問(wèn)題,逐步培養(yǎng)學(xué)生運(yùn)用書(shū)本知識(shí)解決實(shí)際問(wèn)題的能力,重視實(shí)習(xí)作業(yè)。
三上數(shù)學(xué)教學(xué)計(jì)劃6
一、總的情況
高三256、272兩個(gè)理科班,總?cè)藬?shù)124人。大部分學(xué)生學(xué)習(xí)習(xí)慣不好,邊緣生特別多;優(yōu)等生少且普遍基礎(chǔ)不好,學(xué)習(xí)主動(dòng)性不強(qiáng)。
二、指導(dǎo)思想
研究新教材,了解新的信息,更新觀念,倡導(dǎo)理性思維,重視多元聯(lián)系,探求新的教學(xué)模式,加強(qiáng)教改力度,注重團(tuán)結(jié)協(xié)作,全面貫徹黨的教育方針,面向全體學(xué)生,因材施教,激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì),全力促進(jìn)教學(xué)效果的提高。
三、教學(xué)設(shè)想
㈠總的原則
1、認(rèn)真研讀20xx年數(shù)學(xué)考試大綱及湖南省考試說(shuō)明的說(shuō)明,做到宏觀把握,微觀掌握,注意高考熱點(diǎn),特別注意長(zhǎng)沙的信息。根據(jù)樣卷把握第二、三輪復(fù)習(xí)的整體難度。
2、不孤立記憶和認(rèn)識(shí)各個(gè)知識(shí)點(diǎn),而要將其放到相應(yīng)的體系結(jié)構(gòu)中,在比較、辨析的過(guò)程中尋求其內(nèi)在聯(lián)系,達(dá)到理解層次,注意知識(shí)塊的復(fù)習(xí),構(gòu)建知識(shí)網(wǎng)路。
3、立足基礎(chǔ),不做數(shù)學(xué)考試大綱以外的東西。精心選做基礎(chǔ)訓(xùn)練題目,做到不偏、不漏、不怪,即不偏離教材內(nèi)容和考試大綱的范圍和要求。不選做那些有孤僻怪誕特點(diǎn)、內(nèi)容和思路的題目。利用歷年的高考數(shù)學(xué)試題作為復(fù)習(xí)資源,要按照新教材以及考試大綱的要求,進(jìn)行有針對(duì)性的訓(xùn)練。嚴(yán)格控制選題和做題難度,做到不憑個(gè)人喜好選題,不脫離學(xué)生學(xué)習(xí)狀況選題,不超越教學(xué)基本內(nèi)容選題,不大量選做難度較大的題目。
㈡.體現(xiàn)數(shù)學(xué)學(xué)科特點(diǎn),注重知識(shí)能力的提高,提升綜合解題能力
1、加強(qiáng)解題教學(xué),使學(xué)生在解題探究中提高能力。
2、注重聯(lián)系實(shí)際,要從解決數(shù)學(xué)實(shí)際問(wèn)題的角度提升學(xué)生的綜合能力。
、绾侠戆才艔(fù)習(xí)中講、練、評(píng)、輔的時(shí)間
1、精心設(shè)計(jì)教學(xué),做到精講精練,不加重學(xué)生的負(fù)擔(dān),避免“題海戰(zhàn)”
2、協(xié)調(diào)好講、練、評(píng)、輔之間的關(guān)系,追求數(shù)學(xué)復(fù)習(xí)的最佳效果
3、注重實(shí)效,努力提高復(fù)習(xí)教學(xué)的效率和效益
㈣改變傳統(tǒng)復(fù)習(xí)模式,體現(xiàn)小組交流合作
1、淡化各自為戰(zhàn),加強(qiáng)備課小組交流合作,資源共享。
2、堅(jiān)持學(xué)生主題,教師主導(dǎo)。
3、更新教學(xué)手段,提高復(fù)習(xí)效率
。1)用電腦多媒體技術(shù)輔助數(shù)學(xué)復(fù)習(xí)教學(xué),提高課堂教學(xué)效率。
(2)利用電腦課件和積件,突破教學(xué)難點(diǎn)。
4.注重學(xué)法指導(dǎo)及心理輔導(dǎo)
。1)及時(shí)向?qū)W生介紹學(xué)習(xí)方法和學(xué)習(xí)策略,及時(shí)收集教學(xué)過(guò)程中反饋信息并彌補(bǔ)學(xué)生的不足。
(2)針對(duì)不同學(xué)生的實(shí)際水平,合理安排教學(xué)難度,有利于學(xué)生成功情感體驗(yàn),促進(jìn)其提高。
。3)加強(qiáng)邊緣生的個(gè)別輔導(dǎo)。A類邊緣生采用各個(gè)擊破,B類邊緣生抓基礎(chǔ),促能力,A類邊緣生注意備課組集體研究,個(gè)別指導(dǎo);B類邊緣生手把手的教,主要課堂重點(diǎn)關(guān)注,課后重點(diǎn)輔導(dǎo)。
、榈诙、三輪復(fù)習(xí)穿插進(jìn)行
四、教學(xué)措施
1、以能力為中心,以基礎(chǔ)為依托,調(diào)整學(xué)生的學(xué)習(xí)習(xí)慣,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,讓學(xué)生多動(dòng)手、多動(dòng)腦,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力、運(yùn)用數(shù)學(xué)思想方法分析問(wèn)題解決問(wèn)題的能力。精講多練,一般地,每一節(jié)課讓學(xué)生練習(xí)20分鐘左右,充分發(fā)揮學(xué)生的主體作用。
2、堅(jiān)持集體備課,加強(qiáng)學(xué)習(xí),多聽(tīng)課,探索第二輪復(fù)習(xí)的教學(xué)模式。
3、腳踏實(shí)地抓落實(shí)
。1)當(dāng)日內(nèi)容,當(dāng)日消化,加強(qiáng)每天必要的練習(xí)檢查督促。
(2)堅(jiān)持每周一次小題訓(xùn)練,每周一次綜合訓(xùn)練。
。3)周練與綜合訓(xùn)練,切實(shí)把握試題的選取,切實(shí)把握高考的脈搏,注重基礎(chǔ)知識(shí)的考查,注重能力的考查,注意思維的層次性(即解法的多樣性),適時(shí)推出一些新題,加強(qiáng)應(yīng)用題考察的力度。每一次考試試題堅(jiān)持集體研究,努力提高考試的效率。
①注意研究高考考試說(shuō)明,及20xx年高考試題,特別是湖南省的高考試題。我們要想盡一切辦法,搞到長(zhǎng)沙市的考試試題,特別是平時(shí)的練習(xí)題,進(jìn)行研究。
、谠诰C合練習(xí)中,不縮小考試難度,既注意重點(diǎn)知識(shí)的考查,注重對(duì)數(shù)學(xué)思想和方法的考查。
、墼诰C合練習(xí)中注意實(shí)踐能力的考查,要求學(xué)生能綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想和方法解決問(wèn)題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中的數(shù)學(xué)問(wèn)題;能閱讀、理解對(duì)問(wèn)題進(jìn)行陳述的材料;能夠?qū)λ峁┑男畔①Y料進(jìn)行歸納、整理和分類,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,建立數(shù)學(xué)模型;應(yīng)用相關(guān)的數(shù)學(xué)方法解決問(wèn)題并加以驗(yàn)證,并能用數(shù)學(xué)語(yǔ)言正確地表述、說(shuō)明.
④在綜合練習(xí)中注意創(chuàng)新意識(shí)的考查:要求學(xué)生能對(duì)新穎的信息、情境和設(shè)問(wèn),選擇有效的方法和手段收集信息,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)、思想和方法,進(jìn)行獨(dú)立的思考、探索和研究,提出解決問(wèn)題的思路,創(chuàng)造性地解決問(wèn)題.
⑤在綜合練習(xí)中注意個(gè)性品質(zhì)要求的考查:要求學(xué)生能具有一定的數(shù)學(xué)視野,認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值,崇尚數(shù)學(xué)的理性精神,形成審慎思維的.習(xí)慣,體會(huì)數(shù)學(xué)的美學(xué)意義.要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時(shí)間,以實(shí)事求是的科學(xué)態(tài)度解答試題,樹(shù)立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.
4、加強(qiáng)備課組的協(xié)作,發(fā)揮集體智慧
各備課組成員要心往一處想,勁往一處使,針對(duì)復(fù)習(xí)中存在的突出問(wèn)題,加強(qiáng)集體備課,共同研究尋找對(duì)策,加強(qiáng)互相交流,互相學(xué)習(xí),精選好每一次周練,精心篩選各類高考信息,加強(qiáng)研究討論,加強(qiáng)合作,發(fā)揮每一位老師的特長(zhǎng)。
5、加強(qiáng)應(yīng)試心理的指導(dǎo)
為學(xué)生減壓,開(kāi)啟他們心靈之窗,使他們保持最佳狀態(tài)。
6、高考數(shù)學(xué)試卷上的題與我們平日練習(xí)的題目不一樣,怎么辦?復(fù)習(xí)時(shí)應(yīng)注意什么?
(1)力求作到“三個(gè)避免”
避免需要死記硬背的內(nèi)容;避免呆板的試題;避免繁瑣的計(jì)算.
。2)“用學(xué)過(guò)的知識(shí)解決沒(méi)有見(jiàn)過(guò)的問(wèn)題”.利用已有的知識(shí)內(nèi)容、思想方法和基本能力,自己去研究試題所提供的新素材,分析試題所創(chuàng)設(shè)的新情況,找出已知和未知間的聯(lián)系,重新組織若干已有的規(guī)則,形成新的高級(jí)規(guī)則,嘗試解決試題所確立的新問(wèn)題.
7、對(duì)重點(diǎn)知識(shí)與重點(diǎn)方法要真正理解,并且理解準(zhǔn)、透.如概念復(fù)習(xí)要作到:靈活用好概念的內(nèi)涵和外延,分清容易混淆的概念間的細(xì)微差別,提防誤用或錯(cuò)用;全面準(zhǔn)確把握好所用概念的前提條件;熟練掌握表示有關(guān)概念的字符、記號(hào).
第三輪復(fù)習(xí),大約一個(gè)月的時(shí)間,也稱為“策略篇”。老師主要講述“選擇題的解發(fā)、填空題的解法、應(yīng)用題的解法、探究性命題的解法、綜合題的解法、創(chuàng)新性題的解法”,教給同學(xué)們一些解題的特殊方法,特殊技巧,以提高同學(xué)們的解題速度和應(yīng)對(duì)策略為目的。同學(xué)們應(yīng)做到:
、俳忸}時(shí),會(huì)從多種方法中選擇最省時(shí)、最省事的方法,力求多方位,多角度的思考問(wèn)題,逐漸適應(yīng)高考對(duì)“減縮思維”的要求。
②注意自己的解題速度,審題要慢,思維要全,下筆要準(zhǔn),答題要快。
③養(yǎng)成在解題過(guò)程中分析命題者的意圖的習(xí)慣,思考命題者是怎樣將考查的知識(shí)點(diǎn)有機(jī)的結(jié)合起來(lái)的,有那些思想方法被復(fù)合在其中,對(duì)命題者想要考我什么,我應(yīng)該會(huì)什么,做到心知肚明。
最后,就是沖刺階段,也稱為“備考篇”。將復(fù)習(xí)的主動(dòng)權(quán)交給學(xué)生。以前,學(xué)習(xí)的重點(diǎn)、難點(diǎn)、方法、思路都是以老師的意志為主線,但是,這階段要求學(xué)生直接、主動(dòng)的研讀《考試說(shuō)明》,研究近年來(lái)的高考試題,掌握高考信息、命題動(dòng)向,并要求學(xué)生做到:
、贆z索自己的知識(shí)系統(tǒng),緊抓薄弱點(diǎn),并針對(duì)性地做專門(mén)的訓(xùn)練和突擊措施(可請(qǐng)老師專門(mén)為你拎一拎);鎖定重中之重,掌握最重要的知識(shí)到爐火純青的地步。
、谧ニ季S易錯(cuò)點(diǎn),注重典型題型。
③瀏覽自己以前做過(guò)的習(xí)題、試卷,回憶自己學(xué)習(xí)相關(guān)知識(shí)的歷程,做好“再”糾錯(cuò)工作。
、懿┯[群書(shū),博聞強(qiáng)記,使自己見(jiàn)多識(shí)廣,注意那些背景新、方法新,知識(shí)具有代表性的問(wèn)題。
⑤不做難題、偏題、怪題,保持情緒穩(wěn)定,充滿信心,準(zhǔn)備應(yīng)考
五、時(shí)間及內(nèi)容安排
1、導(dǎo)數(shù)(4課時(shí))2、立體幾何(16課時(shí))(3月18日)3、函數(shù)、方程、不等式;(3月19日)
。1)函數(shù)的性質(zhì)(2課時(shí))
(2)二次函數(shù)(2課時(shí))
。3)函數(shù)的綜合運(yùn)用(2課時(shí))
4、數(shù)列;(2課時(shí))5、不等式(2課時(shí))
6、三角函數(shù)(2課時(shí))7、向量及應(yīng)用;(2課時(shí))
8、解析幾何
(1)軌跡問(wèn)題;(2課時(shí))
(2)總和問(wèn)題(2課時(shí))
9、立體幾何
(1)平行與垂直;(2課時(shí))
(2)空間角與距離(2課時(shí))
10、概率與統(tǒng)計(jì)(2課時(shí))
11、導(dǎo)數(shù)(2課時(shí))
12、選擇題的解法(1課時(shí))
13、填空題的解法(1課時(shí))
14、綜合測(cè)試(做信息題,每周一套,12課時(shí))
15、周練(做小題,每月三套)
16、模擬練習(xí)四套(5月10日開(kāi)始至5月28日中的連堂客)
17、查漏補(bǔ)缺(5月10日開(kāi)始至5月28日,非連堂課)
18、考前信息練習(xí)
19、回歸課本
三上數(shù)學(xué)教學(xué)計(jì)劃7
一、基本情況:
本學(xué)期我擔(dān)任九年級(jí)159班的數(shù)學(xué)教學(xué)工作。共有學(xué)生48人,我深感教育教學(xué)的壓力很大,在本學(xué)期的數(shù)學(xué)教學(xué)中務(wù)必精耕細(xì)作。使用的教材是新課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材《湘教版數(shù)學(xué)九年級(jí)上冊(cè)》,如何用新理念使用好新課程標(biāo)準(zhǔn)教材?如何在教學(xué)中貫徹新課標(biāo)精神?這要求在教學(xué)過(guò)程中具有創(chuàng)新意識(shí)、每一個(gè)教學(xué)環(huán)節(jié)都必須巧做安排。為此,特制定本計(jì)劃。
二、指導(dǎo)思想:
以黨和國(guó)家的教育教學(xué)方針為指導(dǎo),按照九年義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)來(lái)實(shí)施,其目的是教書(shū)育人,使每個(gè)學(xué)生都能夠在數(shù)學(xué)學(xué)習(xí)過(guò)程中獲得最適合自己的發(fā)展。通過(guò)初三數(shù)學(xué)的教學(xué),提供參加生產(chǎn)實(shí)踐和進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識(shí)與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力、思維能力和空間想象能力,能夠運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識(shí)、良好個(gè)性品質(zhì)以及初步的唯物主義觀。
三、教學(xué)內(nèi)容:
本學(xué)期所教初三數(shù)學(xué)包括第一章一元二次方程,第二章命題定理與證明,第三章 解直角三角形,第四章 相似形,第五章概率的計(jì)算。
四、教學(xué)目的:
教育學(xué)生掌握基礎(chǔ)知識(shí)與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡(jiǎn)單實(shí)際問(wèn)題的能力,使學(xué)生逐步學(xué)會(huì)正確、合理地進(jìn)行運(yùn)算, 逐步學(xué)會(huì)觀察分析、綜合、抽象、概括。會(huì)用歸納演繹、類比進(jìn)行簡(jiǎn)單的推理。使學(xué)生懂得數(shù)學(xué)來(lái)源與實(shí)踐又反過(guò)來(lái)作用于實(shí)踐。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué) 生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。
知識(shí)技能目標(biāo):掌握一元二次方程的有關(guān)概念;會(huì)解一元二次方程;能建立一元二次方程的模型解決實(shí)際問(wèn)題;理解命題、定理、證明等概念;能正確寫(xiě)出證明;掌握銳角三角函數(shù)的性質(zhì);理解直角三角形的性質(zhì);能運(yùn)用三角函數(shù)及勾股定理解直角三角形;掌握相似三角形的概念、性質(zhì)及判定方法; 掌握概率的計(jì)算方法;理解概率在生活中的應(yīng)用。
過(guò)程方法目標(biāo):培養(yǎng)學(xué)生的觀察、探究、推理、歸納的能力,發(fā)展學(xué)生合情推理能力、邏輯推理能力和推理認(rèn)證表達(dá)能力,提高知識(shí)綜合應(yīng)用能力。
態(tài)度情感目標(biāo):進(jìn)一步感受數(shù)學(xué)與日常生活密不可分的聯(lián)系,同時(shí)對(duì)學(xué)生進(jìn)行辯證唯物主義世界觀教育。
通過(guò)講授證明的有關(guān)知識(shí),使學(xué)生經(jīng)歷探索、猜測(cè)、證明的過(guò)程,進(jìn)一步發(fā)展學(xué)生的推理論證能力,并能運(yùn)用這些知識(shí)進(jìn)行論證、計(jì)算、和簡(jiǎn)單的作圖。進(jìn)
一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關(guān)的性質(zhì)定理及判定定理,并能夠證明其他相關(guān)的結(jié)論。在解直角三角形和相似圖形這兩章時(shí),通過(guò)具體活動(dòng),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步增強(qiáng)學(xué)生的動(dòng)手能力發(fā)展學(xué)生的空間思維。在教學(xué)概率的計(jì)算時(shí)讓學(xué)生進(jìn)一步體會(huì)概率是描述隨機(jī)現(xiàn)象的數(shù)學(xué)模型。
在教學(xué)一元二次方程這一章時(shí),讓學(xué)生了解一元二次方程的各種解法,并能運(yùn)用一元二次方程和函數(shù)解決一些數(shù)學(xué)問(wèn)題逐步提高觀察和歸納分析能力,體驗(yàn)數(shù)學(xué)結(jié)合的數(shù)學(xué)方法。同時(shí)學(xué)會(huì)對(duì)知識(shí)的歸納、整理、和運(yùn)用。從而培養(yǎng)學(xué)生的思維能力和應(yīng)變能力。
五、教學(xué)重點(diǎn)、難點(diǎn)
《一元二次方程》的重點(diǎn)是1、掌握一元二次方程的多種解法;2、列一元二次方程解應(yīng)用題。難占是1、會(huì)運(yùn)用方程和函數(shù)建立數(shù)學(xué)模型,鼓勵(lì)學(xué)生進(jìn)行探索和交流,倡導(dǎo)解決問(wèn)題策略的多樣化!睹}定理與證明》的重點(diǎn)是1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會(huì)推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點(diǎn)是1、引導(dǎo)學(xué)生探索、猜測(cè)、證明,體會(huì)證明的必要性;
2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想。《解直角三角形》的重點(diǎn)是通過(guò)學(xué)習(xí)和實(shí)踐活動(dòng)探索銳角三角函數(shù),在直角三角形中根據(jù)已知的邊與角求出未知的邊與角。難點(diǎn)是運(yùn)用直角三角形的有關(guān)知識(shí)解決實(shí)際問(wèn)題。《相似圖形》的重點(diǎn)是相似三角形的'性質(zhì)與判定。難點(diǎn)是綜合運(yùn)用三角形、四邊形等知識(shí)進(jìn)行推理論證,正確寫(xiě)出證明!陡怕实挠(jì)算》的重點(diǎn)是通過(guò)實(shí)驗(yàn)活動(dòng),理解事件發(fā)生的頻率與概率之間的關(guān)系,體會(huì)概率是描述隨機(jī)現(xiàn)象的的數(shù)學(xué)模型,體會(huì)頻率的穩(wěn)定性,掌握概率的計(jì)算方法。難點(diǎn)是注重素材的真實(shí)性、科學(xué)性、以及來(lái)源渠道的多樣性,理解試驗(yàn)頻率穩(wěn)定于理論概率,必須借助于大量重復(fù)試驗(yàn),從而提示概率與統(tǒng)計(jì)之間的內(nèi)存聯(lián)系。
六、教學(xué)措施:
1、認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn)及教材適度安排教學(xué)內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),認(rèn)真制作測(cè)試試卷。
2、激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。
3、引導(dǎo)學(xué)生積極參與知識(shí)的構(gòu)建,營(yíng)造自主、探究、合作、交流、分享發(fā)現(xiàn)快樂(lè)的課堂。
4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過(guò)現(xiàn)象看本質(zhì)的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的狀態(tài)。
5、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說(shuō):教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績(jī),發(fā)展學(xué)生的非智力因素,彌補(bǔ)智力上的不足。
6、教學(xué)中注重?cái)?shù)學(xué)理論與社會(huì)實(shí)踐的聯(lián)系,鼓勵(lì)學(xué)生多觀察、多思考實(shí)際生活中蘊(yùn)藏的數(shù)學(xué)問(wèn)題,逐步培養(yǎng)學(xué)生運(yùn)用書(shū)本知識(shí)解決實(shí)際問(wèn)題的能力,重視實(shí)習(xí)作業(yè)。指導(dǎo)成立課外興趣小組,開(kāi)展豐富多彩的課外活動(dòng),帶動(dòng)班級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué),同時(shí)發(fā)展這一部分學(xué)生的特長(zhǎng)。
7、開(kāi)展分層教學(xué),布置作業(yè)設(shè)置a、b、c三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問(wèn)照顧好各個(gè)層次的學(xué)生,使他們都得到發(fā)展。
8、把輔優(yōu)補(bǔ)潛工作落到實(shí)處,進(jìn)行個(gè)別輔導(dǎo)。
三上數(shù)學(xué)教學(xué)計(jì)劃8
一、本課教學(xué)內(nèi)容的本質(zhì)、地位、作用分析
本課是人教版《數(shù)學(xué)》九年級(jí)(上)第24章:圓周角(第1課時(shí)),是在圓的基本概念和性質(zhì)以及圓心角概念和性質(zhì)的基礎(chǔ)上對(duì)圓周角的性質(zhì)的探索,圓周角的性質(zhì)在圓的有關(guān)證明、作圖、計(jì)算中有著廣泛的應(yīng)用,在對(duì)圓與其他平面圖形的研究中起著橋梁和紐帶的作用。
二、教學(xué)目標(biāo)分析
根據(jù)九年級(jí)學(xué)生有較強(qiáng)的自我發(fā)展的.意識(shí),較感興趣于有“挑戰(zhàn)性”的任務(wù)等心理特點(diǎn)及新課程標(biāo)準(zhǔn)的學(xué)段目標(biāo)要求,結(jié)合學(xué)生的實(shí)際情況制訂以下三個(gè)方面的教學(xué)目標(biāo):
1、知識(shí)與技能:使學(xué)生掌握?qǐng)A周角的概念、圓周角定理及其推論,能準(zhǔn)確運(yùn)用圓周角定理進(jìn)行簡(jiǎn)單的證明和運(yùn)用,有機(jī)滲透"由特殊到一般"的思想、"分類"的思想、"化歸"的思想。
2、過(guò)程與方法:引導(dǎo)學(xué)生能主動(dòng)地通過(guò):觀察、實(shí)驗(yàn)、猜想、再實(shí)驗(yàn)、證明圓周角定理,培養(yǎng)學(xué)生的合情推理能力、實(shí)踐能力與創(chuàng)新精神,提高其數(shù)學(xué)素養(yǎng)。
3、情感、態(tài)度與價(jià)值觀:創(chuàng)設(shè)生活情景激發(fā)學(xué)生對(duì)數(shù)學(xué)的"好奇心、求知欲";營(yíng)造"民主、和諧"的課堂氛圍,讓學(xué)生在愉快的學(xué)習(xí)中不斷獲得成功的體驗(yàn)。培養(yǎng)學(xué)生以嚴(yán)謹(jǐn)求實(shí)的態(tài)度思考數(shù)學(xué)。
三、教學(xué)問(wèn)題診斷
學(xué)生學(xué)習(xí)新知識(shí)過(guò)程中可能存在的困難及應(yīng)對(duì)預(yù)案:
學(xué)習(xí)困難之一: 圓周角定義與辨析。圓周角的兩個(gè)特征,特別是圓周角的兩邊要和圓相交,是學(xué)生容易忽視的地方。
應(yīng)對(duì)預(yù)案:采用對(duì)比教學(xué),對(duì)比圓心角的定義,知識(shí)遷移得到圓周角的定義,但應(yīng)強(qiáng)調(diào)圓周角的兩邊要和圓相交。接下來(lái)通過(guò)一組概念辨析練習(xí)題,學(xué)生能準(zhǔn)確、深入理解圓周角的概念,明確定義中的兩個(gè)條件缺一不可。
學(xué)習(xí)困難之二:圓周角定理的證明。
圓周角定理的證明中,難點(diǎn)有三處:
、賵A心與圓周角具有三種不同的位置關(guān)系:圓心在圓周角的一邊上;圓心在圓周角的內(nèi)部;圓心在圓周角的外部;
、谕∷鶎(duì)的圓周角與圓心角的數(shù)量關(guān)系的結(jié)論;
、蹐A周角定理中三種情形的證明。
教學(xué)應(yīng)對(duì)預(yù)案:
難點(diǎn)①的分散:在學(xué)生明確圓周角的概念后,讓學(xué)生在事先所發(fā)學(xué)案中動(dòng)手畫(huà)圓周角,一方面讓學(xué)生深入了解圓周角,另一方面讓學(xué)生在動(dòng)手操作中體會(huì)圓心與圓周角具有三種不同的位置關(guān)系,為后面證明中的分類討論作好鋪墊。
難點(diǎn)②的分散:學(xué)生合作交流,通過(guò)測(cè)量事先所發(fā)學(xué)案中同弧所對(duì)的圓周角與圓心角的度數(shù),探究并猜想它們之間的數(shù)量關(guān)系,然后教師再利用電腦測(cè)量來(lái)驗(yàn)證,讓學(xué)生進(jìn)一步明確它們之間的關(guān)系,從而得到命題:同弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
三上數(shù)學(xué)教學(xué)計(jì)劃9
一、學(xué)生基本情況分析:
本學(xué)期是初中學(xué)習(xí)的關(guān)鍵時(shí)期,我擔(dān)任九年級(jí)(3、5)兩個(gè)班的數(shù)學(xué)教學(xué)工作,上學(xué)年學(xué)生期末考試的成績(jī)平均分為606分,總體來(lái)看,成績(jī)只能算一般。在學(xué)生所學(xué)知識(shí)的掌握程度上,整個(gè)年級(jí)已經(jīng)開(kāi)始出現(xiàn)兩極分化了,對(duì)優(yōu)生來(lái)說(shuō),能夠透徹理解知識(shí),知識(shí)間的內(nèi)在聯(lián)系也較為清楚,對(duì)后進(jìn)生來(lái)說(shuō),簡(jiǎn)單的基礎(chǔ)知識(shí)還不能有效的掌握,成績(jī)較差,學(xué)生仍然缺少大量的推理題訓(xùn)練,推理的思考方法與寫(xiě)法上均存在著一定的困難,對(duì)幾何有畏難情緒,相關(guān)知識(shí)學(xué)得不很透徹。在學(xué)習(xí)能力上,學(xué)生課外主動(dòng)獲取知識(shí)的能力較差,為減輕學(xué)生的經(jīng)濟(jì)負(fù)擔(dān)與課業(yè)負(fù)擔(dān),不提倡學(xué)生買(mǎi)教輔參考書(shū),學(xué)生自主拓展知識(shí)面,向深處學(xué)習(xí)知識(shí)的能力沒(méi)有得到培養(yǎng)。在以后的教學(xué)中,對(duì)有條件的'孩子應(yīng)鼓勵(lì)他們買(mǎi)課外參考書(shū),不一定是教輔參考書(shū),有趣的課外數(shù)學(xué)讀物更好,培養(yǎng)學(xué)生課外主動(dòng)獲取知識(shí)的能力。學(xué)生的邏輯推理、邏輯思維能力,計(jì)算能力需要得到加強(qiáng),以提升學(xué)生的整體成績(jī),應(yīng)在合適的時(shí)候補(bǔ)充課外知識(shí),拓展學(xué)生的知識(shí)面,提升學(xué)生素質(zhì);在學(xué)習(xí)態(tài)度上,絕大部分學(xué)生上課能全神貫注,積極的投入到學(xué)習(xí)中去,少數(shù)幾個(gè)學(xué)生對(duì)數(shù)學(xué)處于一種放棄的心態(tài),課堂作業(yè),大部分學(xué)生能認(rèn)真完成,少數(shù)學(xué)生需要教師督促,這一少數(shù)學(xué)生也成為老師的重點(diǎn)牽掛對(duì)象,課堂家庭作業(yè),學(xué)生完成的質(zhì)量要打折扣;學(xué)生的學(xué)習(xí)習(xí)慣養(yǎng)成還不理想,預(yù)習(xí)的習(xí)慣,進(jìn)行總結(jié)的習(xí)慣,自習(xí)課專心致至學(xué)習(xí)的習(xí)慣,主動(dòng)糾正(考試、作業(yè)后)錯(cuò)誤的習(xí)慣,比較多的學(xué)生不具有,需要教師的督促才能做,陶行知說(shuō):教育就是培養(yǎng)習(xí)慣,這是本期教學(xué)中重點(diǎn)予以關(guān)注的。
二、教學(xué)思想:
教育學(xué)生掌握基礎(chǔ)知識(shí)與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡(jiǎn)單實(shí)際問(wèn)題的能力,使學(xué)生逐步學(xué)會(huì)正確、合理地進(jìn)行運(yùn)算,逐步學(xué)會(huì)觀察分析、綜合、抽象、概括。會(huì)用歸納演繹、類比進(jìn)行簡(jiǎn)單的推理。使學(xué)生懂得數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。
三、本學(xué)期的教學(xué)內(nèi)容共三章:
第23章 二次函數(shù)與反比例函數(shù)
第24章 相似形
第25章 解直角三角形
四、在教學(xué)過(guò)程中抓住以下幾個(gè)環(huán)節(jié):
1.認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過(guò)程,重視每一章節(jié)內(nèi)容與前后知識(shí)的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動(dòng)的細(xì)節(jié)。
2.抓住課堂45分鐘。 嚴(yán)格按照教學(xué)計(jì)劃,備課統(tǒng)一進(jìn)度,統(tǒng)一練習(xí),進(jìn)行教學(xué),精心設(shè)計(jì)每一節(jié)課的每一個(gè)環(huán)節(jié),爭(zhēng)取每節(jié)課達(dá)到教學(xué)目標(biāo),突出重點(diǎn),分散難點(diǎn),增大課堂容量組織學(xué)生人人參與課堂活動(dòng),使每個(gè)學(xué)生積極主動(dòng)參與課堂活動(dòng),使每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,及時(shí)反饋信息提高課堂效益。
3.課后反饋。精選適當(dāng)?shù)木毩?xí)題、測(cè)試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問(wèn)題及時(shí)給學(xué)生面對(duì)面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。
五、不斷鉆研業(yè)務(wù),提高業(yè)務(wù)能力及水平:
積極參加業(yè)務(wù)學(xué)習(xí),看書(shū)、看報(bào),參加學(xué)校組織的培訓(xùn),使之更好的為基礎(chǔ)教育的改革努力,掌握新的技能、技巧,不斷努力,取長(zhǎng)補(bǔ)短,揚(yáng)長(zhǎng)避短,努力使教學(xué)更務(wù)實(shí),方法更靈活,手段更先進(jìn)。
六、提高質(zhì)量的措施:
1.認(rèn)真學(xué)習(xí)鉆研新課標(biāo),掌握教材。
2.認(rèn)真?zhèn)湔n,爭(zhēng)取充分掌握學(xué)生動(dòng)態(tài)。
3.認(rèn)真上好每一堂課。
4.落實(shí)每一堂課后輔助,查漏補(bǔ)缺。
5.積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。
6.經(jīng)常聽(tīng)取學(xué)生良好的合理化建議。
7.以“兩頭”帶“中間”戰(zhàn)略思想不變。
8.深化兩極生的訓(xùn)導(dǎo)。
七、教學(xué)進(jìn)度安排:
三上數(shù)學(xué)教學(xué)計(jì)劃10
學(xué)習(xí)目標(biāo)
1、進(jìn)一步認(rèn)識(shí)建立方程模型的作用,提高數(shù)學(xué)的應(yīng)用意識(shí)
2、在用方程解決實(shí)際問(wèn)題的過(guò)程中,提高抽象、概括、分析問(wèn)題的能力
學(xué)習(xí)重、難點(diǎn)
重點(diǎn):用一元二次方程解決實(shí)際問(wèn)題
難點(diǎn):正確尋找等量關(guān)系
學(xué)習(xí)過(guò)程:
一、情境創(chuàng)設(shè)
一根長(zhǎng)22cm的鐵絲。
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32 cm2的矩形?并說(shuō)明理由。
二、探索活動(dòng)
分析情境問(wèn)題可知:如果設(shè)這根鐵絲圍成的`矩形的長(zhǎng)是xcm,那么矩形的寬是
____________。根據(jù)相等關(guān)系:矩形的長(zhǎng)×矩形的寬=矩形的面積,可以列出方程求解。
思考:這根鐵絲圍成的矩形中,面積最大是多少?
三、例題教學(xué)
例 1 如圖,在矩形ABCD中,AB=6,BC=12,點(diǎn)P從
點(diǎn)A沿AB向點(diǎn)B 以1/s的速度移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B沿邊BC
向點(diǎn)C以2/s的速度移動(dòng),問(wèn)幾秒后△PBQ的面積等于82?
分析:題中含有等量關(guān)系:S△PBQ =82,只要用點(diǎn)P運(yùn)動(dòng)的時(shí)間
來(lái)表示三角形各邊的長(zhǎng)并代入等量關(guān)系式即可得到相應(yīng)的方程。
例 2 如圖,在矩形ABCD中,AB=6cm,
BC=3cm。點(diǎn)P沿邊AB從點(diǎn)A開(kāi)始向點(diǎn)B以2cm/s
的速度移動(dòng),點(diǎn)Q沿邊DA從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/s
的速度移動(dòng)。如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤3)那么,當(dāng)t為何值時(shí),△QAP的面積等于2cm2?
四、課堂練習(xí)
1、P98 練習(xí)
2、思維拓展:
如圖,有100m長(zhǎng)的籬笆材料,要圍成一矩形倉(cāng)庫(kù),
要求面積不小于600m2,在場(chǎng)地的北面有一堵50m的舊墻,
有人用這個(gè)籬笆圍成一個(gè)長(zhǎng)40m,寬10m的倉(cāng)庫(kù),但面積
只有40×10m2,不合要求,問(wèn)應(yīng)如何設(shè)計(jì)矩形的長(zhǎng)與寬才能符合要求呢?
五、課堂小結(jié)
如何正確尋找實(shí)際問(wèn)題中的等量關(guān)系?
六、作業(yè)
后進(jìn)生:P98 練習(xí) P99 習(xí)題4.3 6 優(yōu)生:P99 習(xí)題4.3 6、7、8
三上數(shù)學(xué)教學(xué)計(jì)劃11
一、學(xué)生知識(shí)狀況分析
學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過(guò)開(kāi)平方,知道一個(gè)正數(shù)有兩個(gè)平方根,會(huì)利用開(kāi)方求一個(gè)正數(shù)的兩個(gè)平方根,并且也學(xué)習(xí)了完全平方公式。在本章前面幾節(jié)課中,又學(xué)習(xí)了一元二次方程的概念,并經(jīng)歷了用估算法求一元二次方程的根的過(guò)程,初步理解了一元二次方程解的意義;
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)經(jīng)歷了用計(jì)算器估算一元二次方程解的過(guò)程,解決了一些簡(jiǎn)單的現(xiàn)實(shí)問(wèn)題,感受到解一元二次方程的必要性和作用,基于學(xué)生的學(xué)習(xí)心理規(guī)律,在學(xué)習(xí)了估算法求解一元二次方程的基礎(chǔ)上,學(xué)生自然會(huì)產(chǎn)生用簡(jiǎn)單方法求其解的欲望;同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過(guò)程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力。
二、教學(xué)任務(wù)分析
教科書(shū)基于學(xué)生用估算的方法求解一元二次方程的基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):用配方法解二次項(xiàng)系數(shù)為1且一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程。但這僅僅是這堂課具體的教學(xué)目標(biāo),或者說(shuō)是一個(gè)近期目標(biāo)。而數(shù)學(xué)教學(xué)的遠(yuǎn)期目標(biāo),應(yīng)該與具體的課堂教學(xué)任務(wù)產(chǎn)生實(shí)質(zhì)性聯(lián)系。本課《配方法》內(nèi)容從屬于“方程與不等式”這一數(shù)學(xué)學(xué)習(xí)領(lǐng)域,因而務(wù)必服務(wù)于方程教學(xué)的遠(yuǎn)期目標(biāo):“讓學(xué)生經(jīng)歷由具體問(wèn)題抽象出方程的過(guò)程,體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,并在解一元二次方程的過(guò)程中體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想”,同時(shí)也應(yīng)力圖在學(xué)習(xí)中逐步達(dá)成學(xué)生的有關(guān)情感態(tài)度目標(biāo)。為此,本節(jié)課的教學(xué)目標(biāo)是:
1、會(huì)用開(kāi)方法解形如(x?m)2?n(n?0)的方程,理解配方法,會(huì)用配方法解二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程;
2、經(jīng)歷列方程解決實(shí)際問(wèn)題的過(guò)程,體會(huì)一元二次方程是刻畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力;
3、體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想方法;
4、能根據(jù)具體問(wèn)題中的實(shí)際意義檢驗(yàn)結(jié)果的合理性。
三、教學(xué)過(guò)程分析
本節(jié)課設(shè)計(jì)了五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)回顧;第二環(huán)節(jié):情境引入;第三環(huán)節(jié):講授新課;第四環(huán)節(jié):練習(xí)提高;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):復(fù)習(xí)回顧
活動(dòng)內(nèi)容:1、如果一個(gè)數(shù)的平方等于4,則這個(gè)數(shù)是 ,若一個(gè)數(shù)的平方等于7,則這個(gè)數(shù)是 。一個(gè)正數(shù)有幾個(gè)平方根,它們具有怎樣的關(guān)系?
2、用字母表示完全平方公式。
3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設(shè)法求出其精確解嗎?
活動(dòng)目的:以問(wèn)題串的形式引導(dǎo)學(xué)生逐步深入地思考,通過(guò)前兩個(gè)問(wèn)題,引導(dǎo)學(xué)生復(fù)習(xí)開(kāi)平方和完全平方公式,通過(guò)后一個(gè)問(wèn)題的回答讓學(xué)生進(jìn)一步體會(huì)用估計(jì)法解一元二次方程較麻煩,激發(fā)學(xué)生的求知欲,為學(xué)生后面配方法的學(xué)習(xí)作好鋪墊。
實(shí)際效果:第1和第2問(wèn)選兩三個(gè)學(xué)生口答,由于問(wèn)題較簡(jiǎn)單,學(xué)生很快回答出來(lái)。第3問(wèn)由學(xué)生獨(dú)立練習(xí),通過(guò)練習(xí),學(xué)生既復(fù)習(xí)了估算法,同時(shí)又進(jìn)一步體會(huì)到了估算法較麻煩,達(dá)到了激發(fā)學(xué)生探索新解法的目的。
第二環(huán)節(jié):情境引入
活動(dòng)內(nèi)容:(1)工人師傅想在一塊足夠大的長(zhǎng)方形鐵皮上裁出一個(gè)面積為100CM2正方形,請(qǐng)你幫他想一想,這個(gè)正方形的邊長(zhǎng)應(yīng)為 ;若它的面積為75CM2,則其邊長(zhǎng)應(yīng)為 。(選1個(gè)同學(xué)口答)
(2)如果一個(gè)正方形的邊長(zhǎng)增加3cm后,它的面積變?yōu)?4cm2,則原來(lái)的正方形的邊長(zhǎng)為 。若變化后的面積為48cm2呢?(小組合作交流)
(3)你會(huì)解下列一元二次方程嗎?(獨(dú)立練習(xí))
x2?5; (x?2)2?5; x2?12x?36?0。
(4)上節(jié)課,我們研究梯子底端滑動(dòng)的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個(gè)方程的解題過(guò)程,求出x的精確解嗎?你認(rèn)為用這種方法解這個(gè)方程的困難在哪里?(合作交流)
活動(dòng)目的:利用實(shí)際問(wèn)題,讓學(xué)生初步體會(huì)開(kāi)方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂(lè)于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識(shí)。
實(shí)際效果:在復(fù)習(xí)了開(kāi)方的基礎(chǔ)上,學(xué)生很快口答出了第1問(wèn),為解決第二問(wèn)做好了準(zhǔn)備。第2問(wèn)讓學(xué)生合作解決,學(xué)生在交流如何求原來(lái)正方形的邊長(zhǎng)時(shí),產(chǎn)生了不同的方法,有的學(xué)生直接開(kāi)方先求出了新正方形的邊,再減增加的邊長(zhǎng),求出原來(lái)的正方形的邊長(zhǎng);有的同學(xué)用了方程,設(shè)原正方形的邊長(zhǎng)為xcm,根據(jù)題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開(kāi)方,根據(jù)實(shí)際情況求出了原來(lái)正方形的邊長(zhǎng),這樣,再一次經(jīng)歷了用一元二次方程解決實(shí)際問(wèn)題的過(guò)程,并初步了解了開(kāi)方法在一元二次方程中的簡(jiǎn)單應(yīng)用。在第2問(wèn)的基礎(chǔ)上,學(xué)生很快解決了第3問(wèn)。但學(xué)生在解決第4問(wèn)時(shí)遇到了困難,他們發(fā)現(xiàn)等號(hào)的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同學(xué)認(rèn)為這個(gè)方程不能用開(kāi)方法解,那么如何解決這樣的方程問(wèn)題呢?這就是我們本節(jié)課要來(lái)研究的問(wèn)題(自然引出課題),為后面探索配方法埋好了伏筆。
第三環(huán)節(jié):講授新課
活動(dòng)內(nèi)容1:做一做:(填空配成完全平方式,體會(huì)如何配方)
填上適當(dāng)?shù)臄?shù),使下列等式成立。(選4個(gè)學(xué)生口答)
x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2
x2?8x?____?(x?___)2 x2?4x?____?(x?___)2
問(wèn)題:上面等式的左邊常數(shù)項(xiàng)和一次項(xiàng)系數(shù)有什么關(guān)系?對(duì)于形如x2?ax的式子如何配成完全平方式?(小組合作交流)
活動(dòng)目的:配方法的關(guān)鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過(guò)幾個(gè)填空題,使學(xué)生能夠用語(yǔ)言敘述并充分理解左邊填的是“一次項(xiàng)系數(shù)一半的平方”,右邊填的是“一次項(xiàng)系數(shù)的一半”,進(jìn)一步復(fù)習(xí)鞏固完全平方式中常數(shù)項(xiàng)與一次項(xiàng)系數(shù)的關(guān)系,為后面學(xué)習(xí)掌握配方法解一元二次方程做好充分的準(zhǔn)備。
實(shí)際效果:由于在復(fù)習(xí)回顧時(shí)已經(jīng)復(fù)習(xí)過(guò)完全平方式,所以大部分學(xué)生很快解決四個(gè)小填空題。通過(guò)小組的合作交流,學(xué)生發(fā)現(xiàn)要把形如x2?ax的式子a如何配成完全平方式,只要加上一次項(xiàng)系數(shù)一半的平方即加上()2即可。而2
且講解中小組之間互相補(bǔ)充、互相競(jìng)爭(zhēng),氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實(shí)上,通過(guò)對(duì)配方的感知的過(guò)程,學(xué)生都能用自己的語(yǔ)言歸納總結(jié)出配成完全平方式的方法,這就為下一環(huán)節(jié)“用配方法解一元二次方程”打好基礎(chǔ)。由此也反映出學(xué)生善于觀察分析的良好品質(zhì),而這種品質(zhì)是在學(xué)生自覺(jué)行為中得到培養(yǎng)的`,體現(xiàn)了學(xué)生良好的情感、態(tài)度、價(jià)值觀。 活動(dòng)內(nèi)容2:解決例題
(1)解方程:x2+8x-9=0.(師生共同解決)
解:可以把常數(shù)項(xiàng)移到方程的右邊,得
x2+8x=9
兩邊都加上(一次項(xiàng)系數(shù)8的一半的平方),得
x2+8x+42=9+42.
(x+4)2=25
開(kāi)平方,得 x+4=±5,
即 x+4=5,或x+4=-5.
所以 x1=1, x2=-9.
(2)解決梯子底部滑動(dòng)問(wèn)題:x2?12x?15?0(仿照例1,學(xué)生獨(dú)立解決) 解:移項(xiàng)得 x2+12x=15,
兩邊同時(shí)加上62得,x2+12x+62=15+36,即(x+6)2=51
兩邊開(kāi)平方,得x+6=±51 所以:x1??6,x2??51?6,但因?yàn)閤表示梯子底部滑動(dòng)的距離所以x2??51?6 不合題意舍去。 答:梯子底部滑動(dòng)了(51?6)米。
活動(dòng)內(nèi)容3:及時(shí)小結(jié)、整理思路
用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)
活動(dòng)目的:通過(guò)對(duì)例1和例2的講解,規(guī)范配方法解一元二次方程的過(guò)程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(x?m)2?n(n?0)形式,同時(shí)通過(guò)例2提醒學(xué)生注意:有的方程雖然有兩個(gè)不同的解,但在處理實(shí)際問(wèn)題時(shí)要根據(jù)實(shí)際意義檢驗(yàn)結(jié)果的合理性,對(duì)結(jié)果進(jìn)行取舍。由于此問(wèn)題在情境引入時(shí)出現(xiàn)過(guò),因此也達(dá)到前后呼應(yīng)的目的。最后由問(wèn)題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。
實(shí)際效果:學(xué)生經(jīng)過(guò)前一環(huán)節(jié)對(duì)配方法的特點(diǎn)有了初步的認(rèn)識(shí),通過(guò)兩個(gè)例題的處理,進(jìn)一步完善對(duì)配方法基本思路的把握,是對(duì)配方法的學(xué)習(xí)由探求邁向?qū)嶋H應(yīng)用的第一步。最后利用兩個(gè)問(wèn)題,通過(guò)小組的合作交流得出配方法的基本思路和解決問(wèn)題的關(guān)鍵,結(jié)論的得出來(lái)源于學(xué)生在實(shí)例分析中的親身感受,體現(xiàn)學(xué)生學(xué)習(xí)的主動(dòng)性。
活動(dòng)內(nèi)容4、應(yīng)用提高
例3:如圖,在一塊長(zhǎng)和寬分別是16米和12米的長(zhǎng)方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來(lái)長(zhǎng)方形面積的一半,試求水渠的寬度。(先獨(dú)立思考,再小組合作交流)
活動(dòng)目的:在前兩個(gè)例題的基礎(chǔ)上,通過(guò)例3進(jìn)一步提高學(xué)生分析問(wèn)題解決問(wèn)題的能力,幫助學(xué)生熟練掌握配方法在實(shí)際問(wèn)題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。實(shí)際效果:大部分學(xué)生通過(guò)獨(dú)立思考,結(jié)合圖形很快列出了方程,在交流過(guò)程中小組成員之間產(chǎn)生了分歧,有的同學(xué)認(rèn)為,如果設(shè)水渠的寬為x米,則1?12?16;有的同學(xué)認(rèn)為如果設(shè)水渠的寬為x21米,則方程應(yīng)該是16?12?12x?16x?x2??12?16,并且給出了合理的解2方程應(yīng)該是(16?x)(12?x)?
釋;有的同學(xué)則認(rèn)為,如果剩余的耕地面積等于原來(lái)的一半則意味著水渠的面積也等于原來(lái)長(zhǎng)方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對(duì)這些問(wèn)題,組織學(xué)生解他們2所列出的幾個(gè)方程,然后再讓小組成員合作交流討論,通過(guò)討論,學(xué)生發(fā)現(xiàn)這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構(gòu)成了一個(gè)較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問(wèn)題時(shí)最簡(jiǎn)單。這樣通過(guò)學(xué)生之間的爭(zhēng)論、辯論提高了課堂效率,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,達(dá)到了資源共享。
第四環(huán)節(jié):練習(xí)與提高
活動(dòng)內(nèi)容:解下列方程
(1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9
活動(dòng)目的:對(duì)本節(jié)知識(shí)進(jìn)行鞏固練習(xí)。
實(shí)際效果:此處留給學(xué)生充分的時(shí)間與空間進(jìn)行獨(dú)立練習(xí),通過(guò)練習(xí),學(xué)生基本都能用配方法解解二次項(xiàng)系數(shù)為1、一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程,取得了較好的教學(xué)效果,加深了學(xué)生對(duì)“用配方法解簡(jiǎn)單一元二次方程”的理解。
第五環(huán)節(jié):課堂小結(jié)
活動(dòng)內(nèi)容:師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時(shí)應(yīng)注意的問(wèn)題。
活動(dòng)目的:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵(lì))。
實(shí)際效果:學(xué)生暢所欲言談自己的切身感受與實(shí)際收獲,掌握了配方法的基本思路和過(guò)程。
第六環(huán)節(jié):布置作業(yè)
課本50頁(yè)習(xí)題2.3 1題、2題
四、教學(xué)反思
1、 創(chuàng)造性地使用教材
教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實(shí)際情況進(jìn)行適當(dāng)調(diào)整。學(xué)生在初一、初二已經(jīng)學(xué)過(guò)完全平方公式和如何對(duì)一個(gè)正數(shù)進(jìn)行開(kāi)方運(yùn)算,而且普遍掌握較好,所以本節(jié)課從這兩個(gè)方面入手,利用幾個(gè)簡(jiǎn)單的實(shí)際問(wèn)題逐步引入配方法。教學(xué)中將難點(diǎn)放在探索如何配方上,重點(diǎn)放在配方法的應(yīng)用上。本節(jié)課老師安排了三個(gè)例題,通過(guò)前兩個(gè)例題規(guī)范用配方法解一元二次方程的過(guò)程,幫助學(xué)生充分掌握用配方法解一元二次方程的技巧,同時(shí)本節(jié)課創(chuàng)造性地使用教材,把配方法(3)中的一個(gè)是設(shè)計(jì)方案問(wèn)題改編成一個(gè)實(shí)際應(yīng)用問(wèn)題,讓學(xué)生體會(huì)到了方程在實(shí)際問(wèn)題中的應(yīng)用,感受到了數(shù)學(xué)的實(shí)際價(jià)值。培養(yǎng)了學(xué)生分析問(wèn)題,解決問(wèn)題的能力。
2、 相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)
課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過(guò)運(yùn)用各種啟發(fā)、激勵(lì)的語(yǔ)言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動(dòng)的求知態(tài)度。本節(jié)課多次組織學(xué)生合作交流,通過(guò)小組合作,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過(guò)程中教師發(fā)現(xiàn)了學(xué)生在分析問(wèn)題和解決問(wèn)題時(shí)出現(xiàn)的獨(dú)到見(jiàn)解,以及思維的誤區(qū),這樣使得老師可以更好地指導(dǎo)今后的教學(xué)。
3、注意改進(jìn)的方面
在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問(wèn)。教師應(yīng)對(duì)小組討論給予適當(dāng)?shù)闹笇?dǎo),包括知識(shí)的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意的問(wèn)題及對(duì)困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實(shí)效性。
三上數(shù)學(xué)教學(xué)計(jì)劃12
一、教學(xué)目標(biāo):
1、知識(shí)與技能
(1)正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的結(jié)構(gòu);
(2)會(huì)寫(xiě)一些簡(jiǎn)單的程序;
(3)掌握賦值語(yǔ)句中的“=”的作用.
2、過(guò)程與方法
(1)讓學(xué)生充分地感知、體驗(yàn)應(yīng)用計(jì)算機(jī)解決數(shù)學(xué)問(wèn)題的方法;并能初步操作、模仿;
(2)通過(guò)對(duì)現(xiàn)實(shí)生活情境的探究,嘗試設(shè)計(jì)出解決問(wèn)題的程序,理解邏輯推理的數(shù)學(xué)方法.
3、情感與價(jià)值觀
通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),使我們認(rèn)識(shí)到計(jì)算機(jī)與人們生活密切相關(guān),增強(qiáng)計(jì)算機(jī)應(yīng)用意識(shí),提高學(xué)生學(xué)習(xí)新知識(shí)的興趣.
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的作用.
難點(diǎn):準(zhǔn)確寫(xiě)出輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句.
三、教學(xué)過(guò)程:
(一)復(fù)習(xí)提問(wèn)、導(dǎo)入課題
1.算法的的基本邏輯結(jié)構(gòu)有哪幾種?
2.設(shè)計(jì)一個(gè)算法的程序框圖的基本思路如何?
第一步,用自然語(yǔ)言表述算法步驟.
第二步,確定每個(gè)算法步驟所包含的邏輯結(jié)構(gòu),并用相應(yīng)的程序框圖表示.
第三步,將所有步驟的程序框圖用流程線連接起來(lái),并加上兩個(gè)終端框.
計(jì)算機(jī)完成任何一項(xiàng)任務(wù)都需要算法.但是,用自然語(yǔ)言或程序框圖表示的算法,計(jì)算機(jī)是無(wú)法“理解”的.因此還需要將算法用計(jì)算機(jī)能夠理解的`程序設(shè)計(jì)語(yǔ)言(programming- language)來(lái)表示計(jì)算機(jī)程序.
程序設(shè)計(jì)語(yǔ)言有很多種.為了實(shí)現(xiàn)算法的三種基本邏輯結(jié)構(gòu),各種程序設(shè)計(jì)語(yǔ)言中都包含下列基本的算法語(yǔ)句,并且形式類似.
輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句
(板書(shū)課題)
(二)師生互動(dòng)、新課講解
我們知道,順序結(jié)構(gòu)是任何一個(gè)算法都離不開(kāi)的基本結(jié)構(gòu).輸入、輸出語(yǔ)句和賦值語(yǔ)句基本上對(duì)應(yīng)于算法中的順序結(jié)構(gòu).(如右圖)計(jì)算機(jī)從上而下按照語(yǔ)句排列的順序執(zhí)行這些語(yǔ)句
步驟n+1
步驟n
輸入語(yǔ)句和輸出語(yǔ)句
輸入語(yǔ)句和輸出語(yǔ)句分別用來(lái)實(shí)現(xiàn)算法的輸入信息,輸出結(jié)果的功能.
輸入語(yǔ)句、輸出語(yǔ)句分別與程序框圖中的輸入、輸出框?qū)?yīng).
在每個(gè)程序框圖中,輸入框與輸出框是兩個(gè)必要的程序框,我們用什么圖形表示這個(gè)程序框?其功能作用如何?
表示一個(gè)算法輸入和輸出的信息.
例1(課本P21例1):已知函數(shù) ,求自變量x對(duì)應(yīng)的函數(shù)值的算法步驟如何設(shè)計(jì)?
算法:
第一步,輸入一個(gè)自變量x的值.
第二步,計(jì)算
第三步,輸出y.
程序框圖: 程序:
INPUT “x=”;x
y=x^3+3*x^2-24*x+30
PRINT “y=”;y
END
開(kāi)始
輸入x
結(jié)束
輸出y
y=x3+3x2-24x+30
這個(gè)程序由4個(gè)語(yǔ)句行組成,計(jì)算機(jī)按語(yǔ)句行排列的順序依次執(zhí)行程序中的語(yǔ)句,最后一行的END語(yǔ)句表示程序到此結(jié)束.
①在該程序中第1行中的INPUT語(yǔ)句就是輸入語(yǔ)句.這個(gè)語(yǔ)句的一般格式是:
INPUT “提示內(nèi)容”;變量
其中,“提示內(nèi)容”一般是提示用戶輸入什么樣的信息,它可以用字母、符號(hào)、文字等來(lái)表述. 變量是指程序在運(yùn)行時(shí)其值是可以變化的量,一般用字母表示. INPUT語(yǔ)句不但可以給單個(gè)變量賦值,還可以給多個(gè)變量賦值,若輸入多個(gè)變量,變量與變量之間用逗號(hào)隔開(kāi). 提示內(nèi)容加引號(hào),提示內(nèi)容與變量之間用分號(hào)隔開(kāi).
其格式為:
INPUT “提示內(nèi)容1,提示內(nèi)容2,提示內(nèi)容3,…”;變量1,變量2,變量3,…
練習(xí):嘗試把輸入框轉(zhuǎn)化為輸入語(yǔ)句
輸入a,b,c
解:INPUT “a,b,c=”;a,b,c
、谠谠摮绦蛑校3行中的PRINT語(yǔ)句是輸出語(yǔ)句。它的一般格式是:
PRINT “提示內(nèi)容”;表達(dá)式
三上數(shù)學(xué)教學(xué)計(jì)劃13
教學(xué)目標(biāo):
1.知識(shí)與技能:
(1)能證明等腰梯形的性質(zhì)和判定定理
(2)會(huì)利用這些定理計(jì)算和證明一些數(shù)學(xué)問(wèn)題
2.過(guò)程與方法:
通過(guò)證明等腰梯形的性質(zhì)和判定定理,體會(huì)數(shù)學(xué)中轉(zhuǎn)化思想方法的應(yīng)用。
3.情感態(tài)度與價(jià)值觀:
通過(guò)定理的證明,體會(huì)證明方法的多樣化,從而提高學(xué)生解決幾何問(wèn)題的能力。
重點(diǎn)、難點(diǎn):
重點(diǎn):等腰梯形的性質(zhì)和判定
難點(diǎn):如何應(yīng)用等腰梯形的性質(zhì)和判定解決具體問(wèn)題。
教學(xué)過(guò)程
(一)知識(shí)梳理:
知識(shí)點(diǎn)1:等腰梯形的性質(zhì)1
(1)文字語(yǔ)言:等腰梯形同一底上的兩底角相等。
(2)數(shù)學(xué)語(yǔ)言:
在梯形ABCD中
∵AD∥BC,AB=CD
∴∠B=∠C
∠A=∠D(等腰梯形同一底上的兩個(gè)底角相等)
(3)本定理的作用:在梯形中常用的添加輔助線——平移腰,可以把梯形化歸為一個(gè)平行四邊形和一個(gè)等腰三角形;從而利用平行四邊形及等腰三角形的有關(guān)性質(zhì)解決有關(guān)問(wèn)題。
知識(shí)點(diǎn)2:等腰梯形的性質(zhì)2
(1)文字語(yǔ)言:等腰梯形的兩條對(duì)角線相等
(2)數(shù)學(xué)語(yǔ)言:
在梯形ABCD中
∵AD∥BC,AB=DC
∴AC=BD(等腰梯形對(duì)角線相等)
(3)本定理的.作用:利用等腰梯形的性質(zhì)證明線段相等,以及平移其中一條對(duì)角線化梯形為一個(gè)平行四邊形和一個(gè)等腰三角形從而解決有關(guān)線段的相等和垂直。
知識(shí)點(diǎn)3:等腰梯形的判定
(1)文字語(yǔ)言:在同一底上的兩個(gè)角相等的梯形是等腰梯形。
(2)數(shù)學(xué)語(yǔ)言:在梯形ABCD中∵∠B=∠C
∴梯形ABCD是等腰梯形(同底上的兩個(gè)角相等的梯形是等腰梯形)
(3)本定理的作用:在梯形中常用添加輔助線——補(bǔ)全三角形把原來(lái)的梯形化為兩個(gè)三角形
(4)說(shuō)明:
、倥卸ㄒ粋(gè)梯形是等腰梯形通常有兩種方法:定義法和定理法。
、谂卸ㄒ粋(gè)梯形是等腰梯形一般步驟:先判定四邊形是梯形,然后再判定“兩腰相等”或“同一底上的兩個(gè)角相等”來(lái)判定它是等腰梯形。
【典型例題】
例1. 我們?cè)谘芯康妊菪螘r(shí),常常通過(guò)作輔助線將等腰梯形轉(zhuǎn)化為三角形,然后用三角形的知識(shí)來(lái)解決等腰梯形的問(wèn)題。
(1)在下面4個(gè)等腰梯形中,分別作出常用的4種輔助線(作圖工具不限)
(2)在(1)的條件下,若AC⊥BD,DE⊥BC于點(diǎn)E,試確定線段DE與AD,BC之間的數(shù)量關(guān)系。并證明你的結(jié)論。
解:(1)略。
(2)DE=(AD+BC)
過(guò)D作DF∥AC交BC延長(zhǎng)線于點(diǎn)F
∵AD∥BC,∴四邊形ACFD是平行四邊形
∴AD=CF, AC=DF
∵AC=BD
∴BD=DF
又∵AC⊥BD,∴BD⊥DF即△BDF為等腰直角三角形
∵DE⊥BF,則DE=BF,
∴DE=(BC+CF)=(BC+AD)
例2. 如圖,鐵路路基橫斷面為等腰梯形ABCD,已知路基AB長(zhǎng)6m, 斜坡BC與下底CD的夾角為60°,路基高AE為,求下底CD的寬。
解:過(guò)點(diǎn)B作BF⊥CD于F
∵四邊形ABCD是等腰梯形
∴BC=AD
∵BF=AE,BF⊥CD,AE⊥CD
∵Rt△BCF≌Rt△ADE
在Rt△BCF中,∠C=60°
∴∠CBF=30°
∴CF=BC即BC=2CF
∴BC2=CF2+BF2
即∴CF=2
∵AB∥CD,BF⊥CD,AE⊥CD
∴四邊形ABFE是矩形
∴EF=AB=6m
∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)
例3. 已知如圖,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延長(zhǎng)線相交于G,CE⊥AG于E,CF⊥AB于F
(1)請(qǐng)寫(xiě)出圖中4組相等的線段。(已知的相等線段除外)
(2)選擇(1)中你所寫(xiě)的一組相等線段,說(shuō)說(shuō)它們相等的理由。
解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG
(2)證明AG=BG,因?yàn)樵谔菪蜛BCD中,
AB∥DC,AD=BC,所以梯形ABCD為等腰梯形
∴∠GAB=∠GBA
∴AG=BG
課堂小結(jié):
本節(jié)課的學(xué)習(xí)要注意轉(zhuǎn)化的思想方法,有關(guān)等腰梯形的問(wèn)題往往通過(guò)作輔助線將其轉(zhuǎn)化為更特殊的四邊形和三角形,常見(jiàn)辦法是平移腰,延長(zhǎng)腰,作高分割,平移對(duì)角線等方法。
三上數(shù)學(xué)教學(xué)計(jì)劃14
一、教學(xué)目標(biāo):
1、知識(shí)與技能
⑴ 理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊(yùn)含的數(shù)學(xué)原理,并能根據(jù)這些原理進(jìn)行算法分析;
、 基本能根據(jù)算法語(yǔ)句與程序框圖的知識(shí)設(shè)計(jì)完整的程序框圖并寫(xiě)出算法程序.
2、過(guò)程與方法
在輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的學(xué)習(xí)過(guò)程中對(duì)比我們常見(jiàn)的約分求公因式的方法,比較它們?cè)谒惴ㄉ系膮^(qū)別,并從程序的學(xué)習(xí)中體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn),領(lǐng)會(huì)數(shù)學(xué)算法與計(jì)算機(jī)處理的結(jié)合方式,初步掌握把數(shù)學(xué)算法轉(zhuǎn)化成計(jì)算機(jī)語(yǔ)言的一般步驟.
3、情感與價(jià)值觀
、 通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的.算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn).
、 在學(xué)習(xí)古代數(shù)學(xué)家解決數(shù)學(xué)問(wèn)題的方法的過(guò)程中培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力,在利用算法解決數(shù)學(xué)問(wèn)題的過(guò)程中培養(yǎng)理性的精神和動(dòng)手實(shí)踐的能力.
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的方法.
難點(diǎn):把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語(yǔ)言.
三、教學(xué)過(guò)程:
(一)創(chuàng)設(shè)情景、導(dǎo)入課題
1.研究一個(gè)實(shí)際問(wèn)題的算法,主要從哪幾方面展開(kāi)?
算法步驟、程序框圖和編寫(xiě)程序三方面展開(kāi).
2.在程序框圖中算法的基本邏輯結(jié)構(gòu)有哪幾種?
順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
3.在程序設(shè)計(jì)中基本的算法語(yǔ)句有哪幾種?
輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句
4.思考1:18與30的最大公約數(shù)是多少?你是怎樣得到的?
5. 思考2:對(duì)于8251與6105這兩個(gè)數(shù),它們的最大公約數(shù)是多少?你是怎樣得到的?
由于它們公有的質(zhì)因數(shù)較大,利用上述方法求最大公約數(shù)就比較困難.有沒(méi)有其它的方法可以較簡(jiǎn)單的找出它們的最大公約數(shù)呢?
(板書(shū)課題)
(二)師生互動(dòng)、探究新知
1. 輾轉(zhuǎn)相除法
思考3:注意到8251=6105×1+2146,那么8251與6105這兩個(gè)數(shù)的公約數(shù)和6105與2146的公約數(shù)有什么關(guān)系?
我們發(fā)現(xiàn)6105=2146×2+1813,同理,6105與2146的公約數(shù)和2146與1813的公約數(shù)相等.
思考4:重復(fù)上述操作,你能得到8251與6105這兩個(gè)數(shù)的最大公約數(shù)嗎?
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法,也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的.
利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
第一步:用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商 和一個(gè)余數(shù) ;
第二步:若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個(gè)商 和一個(gè)余數(shù) ;
第三步:若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) 除以余數(shù) 得到一個(gè)商 和一個(gè)余數(shù) ;
……
依次計(jì)算直至 =0,此時(shí)所得到的 即為所求的最大公約數(shù).
思考5:你能把輾轉(zhuǎn)相除法編成一個(gè)計(jì)算機(jī)程序嗎?
第一步,給定兩個(gè)正整數(shù)m,n(m>n).
第二步,計(jì)算m除以n所得的余數(shù)r.
第三步,m=n,n=r.
第四步,若r=0,則m,n的最大公約數(shù)等于m;否則,返回第二步.
INPUT m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL r=0
PRINT m
END
三上數(shù)學(xué)教學(xué)計(jì)劃15
一、內(nèi)容及其解析
1.內(nèi)容: 正弦定理
2.解析: 《正弦定理》是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)必修5中第一章《解三角形》的學(xué)習(xí)內(nèi)容,比較系統(tǒng)地研究了解三角形這個(gè)課題!墩叶ɡ怼肪o跟必修4(包括三角函數(shù)與平面向量)之后,可以啟發(fā)學(xué)生聯(lián)想所學(xué)知識(shí),運(yùn)用平面向量的數(shù)量積連同三角形、三角函數(shù)的其他知識(shí)作為工具,推導(dǎo)出正弦定理。正弦定理是求解任意三角形的基礎(chǔ),又是學(xué)生了解向量的工具性和知識(shí)間的相互聯(lián)系的的開(kāi)端,對(duì)進(jìn)一步學(xué)習(xí)任意三角形的求解、體會(huì)事物是相互聯(lián)系的辨證思想均起著舉足輕重的作用。通過(guò)本節(jié)課學(xué)習(xí),培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識(shí)和自主、合作、探究能力。
二、目標(biāo)及其解析
目標(biāo):(1)正弦定理的發(fā)現(xiàn);
(2)證明正弦定理的幾何法和向量法;
(3)正弦定理的簡(jiǎn)單應(yīng)用。 解析:先通過(guò)直角三角形找出三邊與三角的關(guān)系,再依次對(duì)銳角三角形與鈍角三角形進(jìn)行探討,歸納總結(jié)出正弦定理,并能進(jìn)行簡(jiǎn)單的應(yīng)用。
三、教學(xué)問(wèn)題診斷分析
正弦定理是三角形邊角關(guān)系中最常見(jiàn)、最重要的兩個(gè)定理之一,它準(zhǔn)確反映了三角形中各邊與它所對(duì)角的正弦的關(guān)系,對(duì)于它的形式、內(nèi)容、證明方法和應(yīng)用必須引起足夠的重視。正弦定理要求學(xué)生綜合運(yùn)用正弦定理和內(nèi)角和定理等眾多基礎(chǔ)知識(shí)解決幾何問(wèn)題和實(shí)際應(yīng)用問(wèn)題,這些知識(shí)的掌握,有助于培養(yǎng)分析問(wèn)題和解決問(wèn)題能力,所以一向?yàn)閿?shù)學(xué)教育所重視。
四、教學(xué)支持條件分析
學(xué)生在初中已學(xué)過(guò)有關(guān)直角三角形的一些知識(shí)和有關(guān)任意三角形的一些知識(shí), 學(xué)生在高中已學(xué)過(guò)必修4(包括三角函數(shù)與平面向量),學(xué)生已具備初步的數(shù)學(xué)建模能力,會(huì)從簡(jiǎn)單的實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型完成教學(xué)目標(biāo),是切實(shí)可行的。
五、教學(xué)過(guò)程
(一)教學(xué)基本流程
(一)創(chuàng)設(shè)情境,引出課題
、僭赗t△ABC中,各邊、角之間存在何種數(shù)量關(guān)系? 學(xué)生容易想到三角函數(shù)式子:(可能還有余弦、正
a切的式子) bc sinC?1sinA?sinB?c b c
、谶@三個(gè)式子中都含有哪個(gè)邊長(zhǎng)? c學(xué)生馬上看到,是c邊,因?yàn)?sinC?1?B C a c③那么通過(guò)這三個(gè)式子,邊長(zhǎng)c有幾種表示方法?
abcsinAsinBsinC
、艿玫降倪@個(gè)等式,說(shuō)明了在Rt△中,各邊、角之間存在什么關(guān)系?
(各邊和它所對(duì)角的正弦的比相等)
⑥此關(guān)系式能不能推廣到任意三角形?
設(shè)計(jì)意圖: 以舊引新, 打破學(xué)生原有認(rèn)知結(jié)構(gòu)的平衡狀態(tài), 刺激學(xué)生認(rèn)知結(jié)構(gòu)根據(jù)問(wèn)題情境進(jìn)行自我組織, 促進(jìn)認(rèn)知發(fā)展. 從直角三角形邊角關(guān)系切入, 符合從特殊到一般的思維過(guò)程.
(二)探究正弦定理 abc?
?猜想:在任意的'△ABC中, 各邊和它所對(duì)角的正弦的比相等, 即: sinAsinBsinC
設(shè)計(jì)意圖:鼓勵(lì)學(xué)生模擬數(shù)學(xué)家的思維方式和思維過(guò)程, 大膽拓廣, 主動(dòng)投入數(shù)學(xué)發(fā)現(xiàn)過(guò)程,發(fā)展創(chuàng)造性思維能力.
三角形分為銳角三角形、直角三角形和鈍角三角形,對(duì)于直角三角形,我們前面已經(jīng)推導(dǎo)出這個(gè)關(guān)系式是成立的,那么我們現(xiàn)在是否需要分情況來(lái)證明此關(guān)系式?
設(shè)計(jì)意圖:及時(shí)總結(jié),使方向更明確,并培養(yǎng)學(xué)生的分類意識(shí)
、倌敲茨芊癜唁J角三角形轉(zhuǎn)化為直角三角形來(lái)求證? ——可以構(gòu)造直角三角形
②如何構(gòu)造直角三角形?
——作高線(例如:作CD⊥AB,則出現(xiàn)兩個(gè)直角三角形) ab?③將欲證的連等式分成兩個(gè)等式證明,若先證明, sinAsinB那么如何將A、B、a、b聯(lián)系起來(lái)?
——在兩個(gè)直角三角形Rt△BCD與Rt△ACD中,CD是公共邊:
在Rt△BCD中,CD= a sin B , 在Rt△ACD中,CD= bsinA
ab ??asinB?bsinA? sinAsinBbcsinB ? sinC?
——作高線AE⊥BC,同理可證.
設(shè)計(jì)意圖:把不熟悉的問(wèn)題轉(zhuǎn)化為熟悉的問(wèn)題, 引導(dǎo)啟發(fā)學(xué)生利用已有的知識(shí)解決新的問(wèn)題.
(四)目標(biāo)檢測(cè)
小編為大家提供的高三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃大家仔細(xì)閱讀了嗎?最后祝同學(xué)們學(xué)習(xí)進(jìn)步。
【三上數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:
初三上冊(cè)數(shù)學(xué)教學(xué)計(jì)劃06-28
初三上冊(cè)數(shù)學(xué)教學(xué)計(jì)劃7篇08-05
高三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃06-27
初三上冊(cè)數(shù)學(xué)教學(xué)計(jì)劃六篇10-02
精選初三上冊(cè)數(shù)學(xué)教學(xué)計(jì)劃三篇10-16
初三上冊(cè)數(shù)學(xué)教學(xué)計(jì)劃13篇02-28
初三上冊(cè)數(shù)學(xué)教學(xué)計(jì)劃集錦5篇10-09