天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教學論文>教學計劃>高一上數(shù)學教學計劃

高一上數(shù)學教學計劃

時間:2022-06-27 21:16:39 教學計劃 我要投稿

高一上數(shù)學教學計劃

  時間過得可真快,從來都不等人,我們的工作又邁入新的階段,一起對今后的學習做個計劃吧。計劃怎么寫才不會流于形式呢?下面是小編整理的高一上數(shù)學教學計劃,僅供參考,希望能夠幫助到大家。

高一上數(shù)學教學計劃

高一上數(shù)學教學計劃1

  進一步深化教育教學改革,樹立全新的語文教育觀,構建全新而科學的教學目標體系、數(shù)學網(wǎng)特制定高一上學期數(shù)學函數(shù)的基本性質(zhì)教學計劃模板。

  教材分析

  函數(shù)性質(zhì)是函數(shù)的固有屬性,是認識函數(shù)的重要手段,而函數(shù)性質(zhì)可以由函數(shù)圖象直觀的反應出來,因此,函數(shù)各個性質(zhì)的學習要從特殊的、已知的圖象入手,抽象出此類函數(shù)的共同特征,并用數(shù)學語言來定義敘述;诖,本節(jié)的概念課教學要注重引導,注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。

  學情分析

  學生對函數(shù)概念重新認識之后,可以結合初中學過的簡單函數(shù)的圖象對函數(shù)性質(zhì)進行抽象定義。另外,為了方便學生做題及熟悉函數(shù)性質(zhì),還需要補充一些函數(shù)圖象的'知識,例如平移、二次函數(shù)圖象、含絕對值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象?傊竟(jié)課的教學要從學生認知實際出發(fā),堅持從圖象中來到圖象中去的原則。

  教學建議

  以圖象作為切入點進行概念課教學,引導學生對概念的形成有一個清晰的認識,尤其是概念中的部分關鍵詞要做深入講解,用函數(shù)圖象指導學生做題。

 教學目標

  知識與技能

  (1)能理解函數(shù)單調(diào)性、最值、奇偶性的圖形特征

  (2)會用單調(diào)性定義證明具體函數(shù)的單調(diào)性;會求函數(shù)的最值;會用奇偶性定義判斷函數(shù)奇偶性

  (3)單調(diào)性與奇偶性的綜合題

  (4)培養(yǎng)學生觀察、歸納、推理的抽象思維能力

  過程與方法

  (1)從觀察具體函數(shù)的圖像特征入手,結合相應問題引導學生一步步轉化到用數(shù)學語言形式化的建立相關概念

  (2)滲透數(shù)形結合的數(shù)學思想進行習題課教學

  情感、態(tài)度與價值觀

  (1)使學生學會認識事物的一般規(guī)律:從特殊到一般,抽象歸納

  (2)培養(yǎng)學生嚴密的邏輯思維能力,進一步規(guī)范學生用數(shù)學語言、數(shù)學符號進行表達

  課時安排

  (1)概念課:單調(diào)性2課時,最值1課時,奇偶性1課時

  (2)習題課:5課時

高一上數(shù)學教學計劃2

  本學期擔任高一xx兩班的數(shù)學教學工作,兩班學生共有120人,初中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。

  一、指導思想:

  使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。

  1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質(zhì),了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

  3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。

  4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。

  5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。

  6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、教學目標:

  (一)情意目標

  (1)通過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。

  (2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。

  (3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識

  (4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。

  (5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的.同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。

  (6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程法。

  (二)能力要求培養(yǎng)學生記憶能力

  (1)通過定義、命題的總體結構教學,揭示其本質(zhì)特點和相互關系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

  (2)通過揭示立體集合、函數(shù)、數(shù)列有關概念、公式和圖形的對應關系,培養(yǎng)記憶能力。

  2、培養(yǎng)學生的運算能力

  (1)通過概率的訓練,培養(yǎng)學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。

  (3)通過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數(shù)形結合,另辟蹊徑,提高學生運算能力。

高一上數(shù)學教學計劃3

  本學期擔任高一X1、X2兩班的數(shù)學教學工作,兩班學生共有X人,通過一期的高中學習,學習能力更加參差不齊,但兩個班的學生整體水平較高;部分學生學習習慣不好,不能正確評價自己,這給教學工作帶來了一定的難度,特別X1班部分同學學習方法問題嚴重:只做,不歸納總結,學習效率低。學校要求高,教學任務艱巨。為把本學期教學工作做好,制定如下教學工作計劃。

  一、教學目標.

  (一)情意目標

 。1)通過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。

 。2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。(3)在探究三角函數(shù)、平面向量,體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識

 。4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。

 。5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。

  (6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程法。

 。ǘ┠芰σ

  1、培養(yǎng)學生記憶能力。

 。1)通過定義、命題的總體結構教學,揭示其本質(zhì)特點和相互關系,培養(yǎng)對數(shù)學本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

 。3)通過揭示弧度、向量有關概念、三角公式和三角函數(shù)的圖象,培養(yǎng)記憶能力。

  2、培養(yǎng)學生的運算能力。

 。1)通過三角函數(shù)求值與化簡問題的訓練,培養(yǎng)學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。

 。3)通過三角函數(shù)、平面向量的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

 。5)利用數(shù)形結合,另辟蹊徑,提高學生運算能力。

  3、培養(yǎng)學生的思維能力。

  (1)通過對簡易邏輯的教學,培養(yǎng)學生思維的周密性及思維的邏輯性。

 。2)通過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。

  (3)通過三角函數(shù)、函數(shù)有關性質(zhì)的引伸、推廣,培養(yǎng)學生的創(chuàng)造性思維。

 。4)加強知識的橫向聯(lián)系,培養(yǎng)學生的數(shù)形結合的能力。

 。5)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉化思想方法。

  (三)知識目標

  二、教學要求

 。ㄒ唬┤呛瘮(shù)

  1理解任意角的概念、弧度的意義;能正確地進行弧度與角度的換算.

  2掌握任意角的正弦、余弦、正切的定義.并會利用與單位圓有關的三角函數(shù)線表示正弦、余弦和正切;了解任意角的余切、正割、余割的定義;掌握同角三角函數(shù)的基本關系式,掌握正弦、余弦的誘導公式.

  3.掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通過公式的推導,了解它們的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力

  4能正確運用三角公式,進行簡單三角函數(shù)式的化簡、求值及恒等式證明(包括引出半角、積化和差、和差化積公式,但不要求記憶).

  5.會用與單位圓有關的'三角函數(shù)線畫正弦函數(shù)、正切函數(shù)的圖象.并在此基礎上由誘導公式畫出余弦函數(shù)的圖象;了解周期函數(shù)與最小正周期的意義;了解奇偶函數(shù)的意義;并通過它們的圖象理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的性質(zhì)以及簡化這些函數(shù)圖象的繪制過程;會用“五點法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡圖.理解A,ω、φ的物理意義.

  6.會由已知三角函數(shù)值求角.并會用符號arcsinx、arccosx、arctanx表示角。

 。ǘ┢矫嫦蛄

  1理解向量的概念,掌握向量的幾何表示,了解共線問量的概念

  2掌握向量的加法與減法

  3掌握實數(shù)與向量的積,理解兩個向量共線的充要條件

  4了解平面向量的基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算.

  5掌握平面向量的數(shù)量積及其幾何意義,了解用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件

  6掌握平面兩點間的距離公式,掌握線段的定比分點和中點坐標公式,并能熟練運用;掌握平移公式

  7掌握正弦定理、余弦定理,并能運用它們解斜三角形,能利用計算器解決解斜三角形的汁算問題通過解三角形的應用的教學,繼續(xù)提高運用所學知識解決實際問題的能力

  8通過“實習作業(yè)解三角形在測量中的應用”,提高應用數(shù)學知識解決實際問題的能力和實際操作的能力

  9通過“研究性學習課題:向量在物理中的應用”,學會提出問題,明確探究方向,體驗數(shù)學活動的過程·培養(yǎng)創(chuàng)新精神和應用能力,學會交流.

  三、教學重點

  1、掌握同角三角函數(shù)的基本關系式

  2.掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五點法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡圖。

  4.掌握向量的加法與減法,掌握平面向量的坐標運算.掌握實數(shù)與向量的積,理解兩個向量共線的充要條件。掌握正弦定理、余弦定理,并能運用它們解斜三角形

  四、教學難點

  1.函數(shù)y=Asin(ωx+φ)的簡圖

  2.會用與單位圓有關的三角函數(shù)線畫正弦函數(shù)、正切函數(shù)的圖象

  3.掌握正弦定理、余弦定理,并能運用它們解斜三角形

  五、工作措施.

  1、抓好課堂教學,提高教學效益。

  課堂教學是教學的主要環(huán)節(jié),因此,抓好課堂教學是教學之根本,是大面積提高數(shù)學成績的主途徑。

  (1)、扎實落實集體備課,通過集體討論,抓住教學內(nèi)容的實質(zhì),形成較好的教學方案,擬好典型例題、練習題、周練題、章考題。

  (2)、加大課堂教改力度,培養(yǎng)學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養(yǎng)學生自主探究的精神,通過“知識的產(chǎn)生,發(fā)展”,逐步形成知識體系;通過“知識質(zhì)疑、展活”遷移知識、應用知識,提高能力。同時要養(yǎng)成學生良好的學習習慣,不斷提高學生的數(shù)學素養(yǎng),從而提高數(shù)學素養(yǎng),并大面積提高數(shù)學成績。

  2、加強課外輔導,提高競爭能力。

  課外輔導是課堂的有力補充,是提高數(shù)學成績的有力手段。

 。1)加強數(shù)學數(shù)學競賽的指導,提高學習興趣。

 。2)加強學習方法的指導,全方面提高他們的數(shù)學能力,特別是自主能力,并通過強化訓練,不斷提高解題能力,使他們的數(shù)學成績更上一城樓。

 。2)、加強對邊緣生的輔導。邊緣生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導邊緣生,通過個別加集體的方法,并定時單獨測試,面批面改,從而使他們的數(shù)學成績有質(zhì)的飛躍。

  3、搞好單元考試、階段性考試的分析。

  學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,并指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。

  六、進度安排.

  第四章三角函數(shù)

  §4.1角的概念的推廣………………………………………………………………………………2課時

  §4.2弧度制…………………………………………………………………………………………2課時

  §4.3任意角的三角函數(shù)……………………………………………………………………………2課時

  §4.4同角三角函數(shù)的關系…………………………………………………………………………2課時

  §4.5誘導公式………………………………………………………………………………………2課時

  §4.6兩角和與差三角函數(shù)…………………………………………………………………………7課時

  §4.7二倍角公式……………………………………………………………………………………3課時

  §4.8三角函數(shù)的圖象與性質(zhì)………………………………………………………………………4課時

  §4.9函數(shù)y=sin(ωx+φ)的圖象…………………………………………………………………3課時

  §4.10正切函數(shù)的圖象與性質(zhì)………………………………………………………………………3課時

  §4.11給值求角………………………………………………………………………………………4課時

  第五章平面向量…………………

  §5.1向量……………………………………………………………………………………………1課時

  §5.2向量的加法及減法……………………………………………………………………………2課時

  §5.3實數(shù)與向量的積………………………………………………………………………………2課時

  §5.4平面向量的坐標運算…………………………………………………………………………2課時

  §5.5線段的定比分點………………………………………………………………………………2課時

  §5.6平面向量的坐標運算…………………………………………………………………………2課時

  §5.7平面向量的數(shù)量積及運算律…………………………………………………………………2課時

  §5.8平面向量數(shù)量積的坐標表示…………………………………………………………………2課時

  §5.9正弦定理、余弦定理…………………………………………………………………………2課時

  §5.10解斜三角形應用舉例…………………………………………………………………………2課時

  §5.11實習作業(yè)………………………………………………………………………………………2課時

  第六章不等式…………………

  §6.1不等式的性質(zhì)…………………………………………………………………………………3課時

  §6.2均值定理………………………………………………………………………………………2課時

  §6.3不等式的證明…………………………………………………………………………………6課時

  §6.4不等式的解法…………………………………………………………………………………3課時

  期末復習20課時

高一上數(shù)學教學計劃4

  一、教材分析(結構系統(tǒng)、單元內(nèi)容、重難點)

  必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應用;第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應用;

  必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關系;重點與難點都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當?shù)闹本方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關系;難點是直線與圓的位置關系;

  二、學生分析(雙基智能水平、學習態(tài)度、方法、紀律)

  較去年而言,今年的學生的素質(zhì)有了比較大的提高,學生的基礎知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。

  三、教學目的要求

  1.通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。

  2.通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。

  3.理解不等式(組)對于刻畫不等關系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。

  4.幾何學研究現(xiàn)實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關系,并利用數(shù)學語言表述有關平行、垂直的`性質(zhì)與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互關系,了解空間直角坐標系。體會數(shù)形結合的思想,初步形成用代數(shù)方法解決幾何問題的能力。

  四、完成教學任務和提高教學質(zhì)量的具體措施

  積極做好集體備課工作,達到內(nèi)容統(tǒng)一、進度統(tǒng)一、目標統(tǒng)一、例題統(tǒng)一、習題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學生的思想進行觀察與指導;課后進行有效的輔導;進行有效的課堂反思。

高一上數(shù)學教學計劃5

  一、制定的依據(jù)

  隨著高一新教材的全面實施,本年級數(shù)學學科的教學進入了新課程改革實際階段,

  高一數(shù)學教學計劃。

  本計劃制定的依據(jù)主要是以下三個:

  (1)二期課改的理念:一個為本、三類課程、三維目標

  (2)新數(shù)學課程標準

  (3)三本書:課本、教參、練習冊

  (4)本校教研組對本學期學科的要求

  二、基本情況分析

  高一(3)全班共52人,男生24人,x28人。上學期期末為區(qū)統(tǒng)測,平均分為54.1分,合格率為5%,優(yōu)秀率為0%,低分率為56%。高一(4)全班共53人,男生26人,x27人。上學期期末為區(qū)統(tǒng)測,平均分為50.3分,合格率為3%,優(yōu)秀率為0%,低分率為62%。

  從上學期期末統(tǒng)測來看,我班的學生在數(shù)學學習上可以說既有優(yōu)勢也有不足。優(yōu)勢是:1、有潛力;2、師生關系比較融洽,互相信任,配合默契。存在的不足是:1、聰明有余,而努力不足;2、男生聰明,上課積極,但不夠勤奮、踏實;x認真,但上課效率不高,學得不夠靈活。3、從期末統(tǒng)測來看,差生的比重大;4、個別學生懶惰成性,學習態(tài)度、學習習慣極差;5、平時學習不夠用心,自覺,專心思考、鉆研的時間太少;6、一些同學學習成績起伏大,不穩(wěn)定;7、一些好學生滿足現(xiàn)狀,驕傲自滿,思想放松,導致成績退步;8、學習興趣,動力,上進心不足。

  三、本學期力爭達到的目標

  1、完成三類課程的教學任務。基礎性課程要扎扎實實,夯實基礎;拓展性課程要適當延伸和補充,進一步提高學生的能力和水平;研究性課程要重過程,不重結果,培養(yǎng)學生自主學習,探索研究的習慣與品質(zhì)。

  2、完成新數(shù)學課程標準規(guī)定的教學目標。

  3、進一步規(guī)范學生的學習習慣(包括預習、上課、作業(yè)、復習等)。

  4、轉化學困生,提高成績。有些學生成績總是上不去,以為不是塊讀數(shù)學的料,久而久之,產(chǎn)生放棄數(shù)學,討厭數(shù)學的心理。由此,我在學習中,要多方面激發(fā)其學習興趣,耐心指導,不斷激勵。讓其感受到成功的喜悅,增強自信心,讓其喜歡數(shù)學,找到學習數(shù)學的樂趣。

  5、一手提高優(yōu)秀率,一手減少不及格人數(shù),力爭班與班之間無明顯差距。

  四、具體措施

  1、從期末統(tǒng)測來看,學困生的比重大,優(yōu)秀率沒有。為此要進行分層教學,學困生要注重基本題、常規(guī)題的.反復操練,增強他們對數(shù)學學習的信心和興趣。好學生要避免無謂失分的情況,注重數(shù)學思想、方法、能力的培養(yǎng),著眼于高三。總而言之,學困生還是繼續(xù)注重雙基的訓練,將做過,講過的題目再反復操練。另外也不能忽略了高分學生的培養(yǎng),給好學生布置一些有質(zhì)量的課外題,定期查閱,批改,答疑。這樣,通過抓兩頭,促中間,帶動整體水平的提高。

  2、提高教學質(zhì)量,要抓好課堂教學這一主陣地。根據(jù)課程標準,教參,切實落實教學目標,做到全面不遺漏,要以考綱為標準。另外,每節(jié)課要安排必要的練習時間,多安排隨堂測試是有好處的。試題講解時要突出方法,突出思考、分析過程,要暴露學生解題過程中思維、概念、計算等方面的錯誤,對學生的錯誤要有針對性的矯正,補償。不就題講題,注意適當?shù)淖兪。幫助學生掌握解題的方法,積累解題經(jīng)驗,課后要引導學生進行反思、訂正,以加深對概念的理解,方法的掌握。

  3、從期末統(tǒng)測看學生應用能力明顯不足。教師要通過平時教學培養(yǎng)學生閱讀審題、數(shù)學建模的能力。讓學生熟悉一些常見的實際問題的背景,及解決這些問題的相關數(shù)學知識。

  4、期末統(tǒng)測中選擇題普遍得分不高,應引起我們的重視,

  工作計劃

  《高一數(shù)學教學計劃》由于選擇題只有答案,所以解答選擇題的策略是:合理、迅速、檢驗,要善于轉化,避免機械套用公式、定理和“小題大做,舍近求遠,簡單問題復雜化”的不良習慣。另外,由填空題的錯誤表達和解答題的計算粗心、考慮不全面而造成的無謂失分,導致了分數(shù)上不去和好學生考不出高分。所以,為保證得到該得的分數(shù),要求必須認真審題,明確要求,弄清概念,思考全面,正確表達。

  5、注重講練結合。要多安排課堂練習,當堂檢測。當日作業(yè),周練,月考要及時安排時間進行講評。平時要注意練習的有效性(適當題量,恰當難度,精選精練),規(guī)范書寫,認真批改,及時講評,反饋矯正(建立錯題集,進行再認識)。堅決反對只練不講,只講不練。評講中要針對學生的錯因進行分析,找出存在的問題,有針對性地加以彌補缺漏,發(fā)現(xiàn)問題要跟蹤到題,跟蹤到人。本次統(tǒng)測中許多試題平時講過,練過,考過,但錯誤仍然很多,值得我們重視與反思。

  五、保障措施和可行性

  1、關愛學生,嚴格要求,用情實現(xiàn)師與生的溝通,用景實現(xiàn)教與學的融合;

  2、加強基礎知識、基本技能、基本方法的教學和基本能力的培養(yǎng),精心組織教學內(nèi)容,難度要適當,要追求最有效的訓練,要清楚哪些學生需要哪些訓練,切實注重部分學生的補差和提高,關注全體學生的學,基本教學要求要有效落實到位;

  3、注重加強知識之間的聯(lián)系和綜合,內(nèi)容和方式要更新,有層次推進,多角度理解,反思總結,重視教與學的方式多樣化;

  4、激發(fā)興趣,重視過程教學,重視錯誤分析型學習;

  5、重視開放性、研究性問題的教學,關注主觀評判性問題的學習,研究新題型,真正發(fā)展學生的數(shù)學素質(zhì),培養(yǎng)其數(shù)學能力。

  6、結合二期課改新課程標準、教參,扎實落實集體備課,通過集體討論,抓住教學內(nèi)容的實質(zhì),形成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。

  7、加大課堂教改力度,培養(yǎng)學生的自主學習能力。

  8、加強課外輔導,利用中午和晚間休息時間輔導學生答疑解惑、找學生談話等等。課外輔導是課堂的有力補充,是提高數(shù)學成績的有力手段。

  9、搞好單元考試、階段性考試的分析。學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是的練習,每次都要做好分析,并指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解,過關。

  10、學生除配套練習冊外,每人訂一本《一課一練》作為補充練習,并要求每周寫學習感悟與學習疑惑,每人準備一本錯題本收集錯題,咳嗽誑偽玖舭狀ψ齪每翁帽始。链撯N易约河谐渥愕臅r間與資料,進行習題精選與練習補充?

  六、總目標達成度與現(xiàn)階段教學目標達成度的相關分析

  本學期一定要在如何提高課堂效率上下功夫,同時抓平時的學習習慣,學習規(guī)范,作業(yè)質(zhì)量等細節(jié)問題,切實提高學習的有效性。另外,在上學期的基礎上,本學期力爭消滅不及格,并使那些因無謂失分而導致分數(shù)起伏不定的學生能穩(wěn)定下來,從而進一步提高優(yōu)秀率。

  目前,我班面臨的困難與問題還非常多,好在學生的學習勢頭保持良好。我和我們班的全體學生,將盡我們所能,力爭在本學期能有所收獲,更進一步。

  七、課堂教學改革與創(chuàng)新、信息技術的應用與整合

  1、結合二期課改,將“接受式學習”變?yōu)椤爸鲃邮綄W習”,“啟發(fā)式學習”,將“要我學”變?yōu)椤拔乙獙W”,并積極開展拓展性課程,研究性課程,培養(yǎng)學生的創(chuàng)新精神和實踐能力。

  2、加強基礎訓練,但要避免“題!睉(zhàn)術,要精講精練,舉一反三,突出方法,總結經(jīng)驗,采取變式訓練,專題訓練等多種方式。

  3、針對本學期三角公式多的特點,設計一些學生學習支持材料,如公式默寫表,公式背誦口訣,公式記憶方法,公式小卡片等。

  4、借助“TI圖形計算器”強大的圖形功能以及多媒體教學設備,制作精美課件,輔助教學,使教學內(nèi)容更加形象直觀,通俗易懂。

  5、利用“Bb”系統(tǒng)建設e課堂,建設網(wǎng)絡學習包。

  6、寫數(shù)學感悟或一周問題,與學生進行書面討論交流,答疑解惑,給予學法指導。

  7、對不同層次的學生進行分層輔導,分層補充課外練習。

  8、進行數(shù)學演講,了解數(shù)學史,寫寫數(shù)學周記等,提升學生的數(shù)學素養(yǎng)與興趣。

高一上數(shù)學教學計劃6

  一、上學期教學回顧

  高一共四個教學班,共計160余人。楊文國帶高

  一(一)班,高一(二)班;張忠杰帶高一(三)班和高一(四)班。其中各班期末八校聯(lián)考的成績分別為:50.6分,32.8分,27.2分,34.5分,總平36.9分。學期中途因張忠杰離開學校導致頻繁更換老師,

 。ㄈ┌、(四)班的成績因而受到影響。期末由王山任(三)班、(四)班的數(shù)學老師。

  上學期工作在學生學習的落實環(huán)節(jié)上做得不太扎實,這將是本學期重點改進的地方。

  二、本學期的措施及打算

  1.一周學習早知道。明確目標更能確定努力的方向。為了讓學生學習更有目的性,有效性和積極性,每周第一節(jié)課給出一周的`教學進度,學習目標和過關要求。不僅老師要做到對所教內(nèi)容清楚明了,也要讓學生對所學內(nèi)容做到每周學習目標清晰化。

  2.落實“每周測試”過關制。周測內(nèi)容與一周學習目標及一周的講授內(nèi)容緊密相連。未盡力而又沒有過關的學生將按事先說明的措施給予處罰。以便讓學生重視課堂學習,重視平時作業(yè),重視一周的學習過程。做到讓學生每周學習過程精細化。

  3.根據(jù)學生學力狀況進行分層次的培優(yōu)補差。

  三、教學進度安排

高一上數(shù)學教學計劃7

  數(shù)學是利用符號語言研究數(shù)量、結構、變化以及空間模型等概念的一門學科。數(shù)學網(wǎng)為大家推薦了高一數(shù)學教學計劃,請大家仔細閱讀,希望你喜歡。

  一.學情分析

   秋季起,湖南省高中新課程實驗工作全面啟動,我校選用的數(shù)學教材是由人民教育出版社、課程教材研究所、中學數(shù)學課程教材研究開發(fā)中心編著的A版教材。與舊教材作一比較,發(fā)現(xiàn)本套教材是在繼承我國高中數(shù)學教科書編寫優(yōu)良傳統(tǒng)和基礎上積極創(chuàng)新,充分體現(xiàn)了數(shù)學的美學價值和人文精神。我校是一所普通的高中,在重點高中和私立學校擴招的影響下,我校新生的素質(zhì)可想而知了。學生基礎差,學習興趣不大,怎樣調(diào)動學生的學習興趣是本期在教學中要解決的重要問題。

  二.教材分析

   本教材有下列幾個特點:

  1、更加注重強調(diào)數(shù)學知識的實際背景和應用,使教材具有很強的親和力,即以生動活潑的呈現(xiàn)方式,激發(fā)學生的興趣和美感,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,使學生興趣盎然地投入學習。

  2. 以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神,體現(xiàn)了問題性,本套教材的一個很大特點是每一章都可以看到觀察思考探索以及用問號性圖標呈現(xiàn)的邊空等欄目,利用這些欄目,在知識形過過程的關鍵點上,在運用數(shù)學思想方法產(chǎn)生解決問題策略的關節(jié)點上,在數(shù)學知識之間聯(lián)系的聯(lián)結點上,在數(shù)學問題變式的發(fā)散點上,在學生思維的最近發(fā)展區(qū)內(nèi),提出恰當?shù)、對學生數(shù)學思維有適度啟發(fā)的問題,以引導學生的數(shù)學探究活動,切實轉變學生的學習方式。

  3. 信息技術是一種強有力的認識工具,在教材的`編寫過程體現(xiàn)了積極探索數(shù)學課程與信息技術的整合,幫助學生利用信息技術的力量,對數(shù)學的本質(zhì)作進一步的理解。

  4.關注學生數(shù)學發(fā)展的不同需求,為不同學生提供不同的發(fā)展空間, 促進學生個性和潛能的發(fā)展提供了很好的平臺。例如教材通過設置觀察與猜想、閱讀與思考、探究與發(fā)現(xiàn)等欄目,一方面為學生提供了一些關于探究性、拓展性、思想性、時代性和應用性的選學材料,拓展學生的數(shù)學活動空間和擴大學生的數(shù)學知識面,另一方面也體現(xiàn)了數(shù)學的科學價值,反映了數(shù)學在推動其他科學和整個文化進步中的作用。

  5. 新教材注重數(shù)學史滲透,特別是注重介紹我國對數(shù)學的貢獻,充分體現(xiàn)數(shù)學的人文價值,科學價值和文化價值,激發(fā)了學生的愛國主義情感和民族自豪感。

  三. 教學任務與目的

   1.了解集合的含義與表示,理解集合間的關系和運算,感受集合語言的意義和作用。進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,會用集合與對應的語言描述函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。了解函數(shù)的構成要素,會求簡單函數(shù)定義域和值域,會根據(jù)實際情境的不同需要選擇恰當?shù)姆椒ū硎竞瘮?shù)。通過已學過的具體函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義,了解奇偶性的含義,會用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。根據(jù)某個主題,收集17世紀前后發(fā)生的一些對數(shù)學發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關資料,了解函數(shù)概念的發(fā)展歷程。

  2. 了解指數(shù)函數(shù)模型的實際背景。理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。在解決簡單實際問題的過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及對簡化運算的作用。通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點。知道指數(shù)函數(shù)y=ax 與對數(shù)函數(shù)y=loga x互為反函數(shù)(a 0, a1)。通過實例,了解冪函數(shù)的概念;結合函數(shù)y=x, y=x2, y=x3, y=1/x, y=x1/2 的圖象,了解它們的變化情況。

  3. 結合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系.根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法.利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)間的增長差異;結合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義.收集一些社會生活中普遍使用的函數(shù)模型,了解函數(shù)模型的廣泛應用。

  4. 利用實物模型、計算機軟件觀察大量空間圖形,認識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結構。能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)制作模型,會用斜二側法畫出它們的直觀圖。通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。完成實習作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎上,尺寸、線條等不作嚴格要求)。了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。

  5以長方體為載體,使學生在直觀感知的基礎上,認識空間中點、直線、平面之間的位置關系。通過對大量圖形的觀察、實驗、操作和說理,使學生進一步了解平行、垂直判定方法以及基本性質(zhì)。學會準確地使用數(shù)學語言表述幾何對象的位置關系,體驗公理化思想,培養(yǎng)邏輯思維能力,并用來解決一些簡單的推理論證及應用問題.

  6. 在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。能根據(jù)斜率判定兩條直線平行或垂直。根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關系。能用解方程組的方法求兩直線的交點坐標。探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。

  四.教學措施和活動

   1. 加強集體備課與個人學習,個人要加強自我學習和養(yǎng)成解數(shù)學題的習慣,提高個人專業(yè)素養(yǎng)和教學基本功。

  2、注重培養(yǎng)學生自主學習的能力,轉變學生學習數(shù)學的方式。學生是學習和發(fā)展的主人,教學中要體現(xiàn)學生的主體地位,增強學生的自我學習,自我教育與發(fā)展的意識和能力。改善學生的學習方式是高中數(shù)學新課程追求的基本理念。

  3、了解新課程教學基本程序,掌握新課程教學常規(guī)策略,立足于提高課堂教學效率。

  4、與學生多溝通、多交流,真正成為學生的良師益友。

  5、要深刻理解領悟新教材的立意進行教學,而不要盲目地加深難度。

  五.教學時間大致安排

   集合與函數(shù)概念 13

  基本初等函數(shù) 15

  函數(shù)的應用 8

  空間幾何體 8

  點、直線、平面的位置關系 10

  直線與方程 9

  圓與方程 9

高一上數(shù)學教學計劃8

  一、指導思想:

  使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。

  1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質(zhì),了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

  3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。

  4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。

  5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。

  6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、教材特點:

  我們所使用的教材是人教版《普通高中課程標準實驗教科書?數(shù)學(A版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現(xiàn)基礎性,時代性,典型性和可接受性等到,具有如下特點:1.“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習。

  2.“問題性”:以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。

  3.“科學性”與“思想性”:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。

  4.“時代性”與“應用性”:以具有時代性和現(xiàn)實感的素材創(chuàng)設情境,加強數(shù)學活動,發(fā)展應用意識。

  三、教法分析:

  1.選取與內(nèi)容密切相關的',典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生“看個究竟”的沖動,以達到培養(yǎng)其興趣的目的。

  2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。

  3.在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。

  四、學情分析:

  1、基本情況:兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。

  五、教學措施:

  1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

  2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。

  3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。

  4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

  5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

  6、重視數(shù)學應用意識及應用能力的培養(yǎng)。

高一上數(shù)學教學計劃9

  一、設計理念

  新課標指出:學生的數(shù)學學習活動不應只是接受、記憶、模仿、練習,教師應引導學生自主探究、合作學習、動手操作、閱讀自學,應注重提升學生的數(shù)學思維能力,注重發(fā)展學生的數(shù)學應用意識。

  二、教材分析

  本節(jié)課選自人教版《普通高中課程標準實驗教課書》必修1,第一章1.1.2集合間的基本關系。集合是數(shù)學的基本和重要語言之一,在數(shù)學以及其他的領域都有著廣泛的應用,用集合及對應的語言來描述函數(shù),是高中階段的一個難點也是重點,因此集合語言作為一種研究工具,它的學習非常重要。本節(jié)內(nèi)容主要是集合間基本關系的學習,重在讓學生類比實數(shù)間的關系,來進行探究,同時培養(yǎng)學生用數(shù)學符號語言,圖形語言進行交流的能力,讓學生在直觀的基礎上,理解抽象的概念,同時它也是后續(xù)學習集合運算的知識儲備,因此有著至關重要的作用。

  三、學情分析

  【年齡特點】:

  假設本次的授課對象是普通高中高一學生,高一的學生求知欲強,精力旺盛,思維活躍,已經(jīng)具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學活動。

  【認知優(yōu)點】

  一方面學生已經(jīng)學習了集合的概念,初步掌握了集合的三種表示法,對于本節(jié)課的學習有利一定的認知基礎。

  【學習難點】

  但是,本節(jié)課這種類比實數(shù)關系研究集合間的關系,這種類比學習對于學生來說還有一定的難度。

  四、教學目標

  ? 知識與技能:

  1. 理解子集、V圖、真子集、空集的概念。

  2. 掌握用數(shù)學符號語言以及V圖語言表示集合間的基本關系。

  3. 能夠區(qū)分集合間的包含關系與元素與集合的屬于關系。

  ? 過程與方法:

  1. 通過類比實數(shù)間的關系,研究集合間的關系,培養(yǎng)學生類比、觀察、

  分析、歸納的`能力。

  2. 培養(yǎng)學生用數(shù)學符號語言、圖形語言進行交流的能力。

  ? 情感態(tài)度與價值觀:

  1.激發(fā)學生學習的興趣,圖形、符號所帶來的魅力。

  2.感悟數(shù)學知識間的聯(lián)系,養(yǎng)成良好的思維習慣及數(shù)學品質(zhì)。

  五、教學重、難點

  重點:

  集合間基本關系。

  難點:

  類比實數(shù)間的關系研究集合間的關系。

  六、教學手段

  PPT輔助教學

  七、教法、學法

  ? 教法:

  探究式教學、講練式教學

  遵循“教師主導作用與學生主體地位相結合的”教學規(guī)律,引導學生自主探究,合作學習,在教學中引導學生類比實數(shù)間關系,來研究集合間的關系,降低了學生學習的難度,同時也激發(fā)了學生學習的興趣,充分體現(xiàn)了以學生為本的教學思想。

  ? 學法:

  自主探究、類比學習、合作交流

  教師的“教”其本質(zhì)是為了“不教”,教師除了讓學生獲得知識,提高解題能力,還應該讓學生學會學習,樂于學習,充分體現(xiàn)“以學定教”的教學理念。通過引導學生類比學習,同學間的合作交流,讓學生更好的學習集合的知識。

  八、課型、課時

  課型:新授課

  課時:一課時

  九、教學過程

  (一)教學流程圖

  (二)教學詳細過程

  1..回顧就知,引出新知

  問題一:實數(shù)間有相等、不等的關系,例如5=5,3﹤7,那么集合之間會有什么關系呢?

  2.合作交流,探究新知

  問題二:大家來仔細觀察下面幾個例子,你能發(fā)現(xiàn)集合間的關系嗎?

  (1)A={1,2,3},B={1,2,3,4,5};

  (2)設A為新華中學高一(2)班女生的全體組成集合;B為這個班學生的全體組成集合;

  (3)設C={x∣x是兩條邊相等的三角形},D={x∣x是等腰三角形}

  【師生活動】:學生觀察例子后,得出結論,在(1)中集合A中的任何一個元素都是集合B中的元素,教師總結,這時我們說集合A與集合B 有包含關系。(2)中的集合也是這種關一般地,對于兩個集合A,B,如果集合A中任意一個元素都是集合B中的元素,我們就說這兩集合有包含關系,稱集合A為集合B 的子集,記作:A?B(B?A),讀作A含于B或者B包含A.

  在數(shù)學中我們經(jīng)常用平面上封閉的曲線內(nèi)部代表集合,這樣上述集合A與集合B的包含關系,可以用下圖來表示:

  問題三:你能舉出幾個集合,并說出它們之間的包含關系嗎?

  【師生活動】:學生自己舉出些例子,并加以說明,教師對學生的回答進行補充。

  問題四:對于題目中的第3小題中的集合,你有什么發(fā)現(xiàn)嗎?

  【師生活動1】:在(3)由于兩邊相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一個元素都是集合D的元素 ,同時集合D任意一個元素都是集合C的元素,因此集合C與集合D相等,記作:C=D。

  用集合的概念對相等做進一步的描述:

  如果集合A是集合B 子集,且集合B是集合A的子集,此時集合A與集合B的元素一樣,因此集合A與集合B 相等,記作A=B。

  強調(diào):如果集合A?B,但存在元素x∈B, 且x?A,我們稱集合A是集合B的真子集,記作:A?B

  【師生活動2】:教師引導學生以(1)為例,指出A?B,但4∈B, 4?A,教師總結所以集合A是集合B的真子集。

  【師生活動】?,并規(guī)定空集是任何集合的

  4.思維拓展,討論新知

  問題六:包含關系{a}?A與屬于關系a∈A有什么區(qū)別?請大家用具體例子來說明

  【師生活動1】:學生以(1)為例{1,2}?A,2∈A,說明前者是集合之間的關系,后者是

  問題七:經(jīng)過以上集合之間關系的學習,你有什么結論?

  【師生活動】:師生討論得出結論:

  (1)任何一個集合都是它本身的子集,即A?A

  5.練習反饋,培養(yǎng)能力

  例1寫出集合{a,b}的所有子集,并指出哪些是真子集

  例2用適當?shù)姆柼羁?/p>

  (1)a_{a,b,c}

  (2){0,1}_N

  (3){2,1}_{X∣X2-3X+2=0}

  6.課堂小結,布置作業(yè)

  這節(jié)課你學到了哪些知識?

  小結 知識上:

  能力上:

  情感上:

  作業(yè):必做題:P8,3

  思考題:實數(shù)間有運算,那集合呢?

  十、板書設計

  十一、教學反思

高一上數(shù)學教學計劃10

  一.指導思想:

  (1)隨著素質(zhì)教育的深入展開,《新課程標準》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設服務,必須與生產(chǎn)勞動相結合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所需要的數(shù)學知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。

  (2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。

  (3) 根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。

  (4) 使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  (5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。

  (6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。

  二.學情分析:

  我校高一學生在數(shù)學學習上存在不少問題,這些問題主要表現(xiàn)在以下方面: 1、進一步學習條件不具備.高中數(shù)學與初中數(shù)學相比,知識的深度、

  廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

  2、被動學習.許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現(xiàn)在不定計劃,坐等上課,課前沒有預習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內(nèi)容。不知道或不明確學習數(shù)學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

  3、對自己學習數(shù)學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。

  4、不能計劃學習行動,不會安排學習生活,更不能調(diào)節(jié)控制學習行為,不能隨時監(jiān)控每一步驟,對學習結果不會正確地自我評價。

  5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學生數(shù)學學習興趣不濃厚,不具備應用數(shù)學的意識和能力,對數(shù)學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數(shù)學問題的能力,缺乏準確運用數(shù)學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴重制約著學生數(shù)學成績的提高

  三、教學目標與要求

  必修1,主要涉及兩章內(nèi)容:

  第一章:集合

  通過本章學習,使學生感受到用集合表示數(shù)學內(nèi)容時的簡潔性、準確性,幫助學生學會用集合語言表示數(shù)學對象,為以后的學習奠定基礎。

  1.了解集合的`含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;

  2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;

  3.理解補集的含義,會求在給定集合中某個集合的補集;

  4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;

  5.滲透數(shù)形結合、分類討論等數(shù)學思想方法;

  6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數(shù)學知識的過程中,培養(yǎng)學生的思維能力。

  第二章:函數(shù)的概念與基本初等函數(shù)Ⅰ

  教學本章時應立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學活動—意義建構—數(shù)學理論—數(shù)學應用—回顧反思”的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數(shù)學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學會用函數(shù)的思想、變化的觀點分析和解決問題,達到培養(yǎng)學生的創(chuàng)新思維的目的。

  1.了解函數(shù)概念產(chǎn)生的背景,學習和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;

  2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學模型;

  第三章:函數(shù)的應用

  函數(shù)的應用是學習函數(shù)的一個重要方面,學生學習函數(shù)的應用,目的就

  是利用已有的函數(shù)知識分析問題和解決問題.通過函數(shù)的應用,對完善函數(shù)思想,激發(fā)學生應用數(shù)學的意識,培養(yǎng)分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助。

  1.了解函數(shù)與方程之間的關系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;

  2.培養(yǎng)學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學建模能力以及數(shù)學交流的能力。

  必修4:主要涉及三章內(nèi)容:

  第一章:三角函數(shù)

  通過本章學習,有助于學生認識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應用,從中感受數(shù)學的價值,學會用數(shù)學的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學科學習中的問題,發(fā)展數(shù)學應用意識。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關系及誘導公式;

  3.了解三角函數(shù)的周期性;

  4.掌握三角函數(shù)的圖像與性質(zhì)。

  第二章:平面向量

  在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、減法和向量數(shù)乘的運算;

  3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;

  4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關角度和垂直的問題。

  第三章:三角恒等變換

  通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦

高一上數(shù)學教學計劃11

  一 設計思想:

  函數(shù)與方程是中學數(shù)學的重要內(nèi)容,是銜接初等數(shù)學與高等數(shù)學的紐帶,再加上函數(shù)與方程還是中學數(shù)學四大數(shù)學思想之一,是具體事例與抽象思想相結合的體現(xiàn),在教學過程中,我采用了自主探究教學法。通過教學情境的設置,讓學生由特殊到一般,有熟悉到陌生,讓學生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學生的成就感,激發(fā)學生的學習興趣和學習熱情。在現(xiàn)實生活中函數(shù)與方程都有著十分重要的應用,因此函數(shù)與方程在整個高中數(shù)學教學中占有非常重要的地位。

  二 教學內(nèi)容分析:

  本節(jié)課是《普通高中課程標準》的新增內(nèi)容之一,選自《普通高中課程標準實驗教課書數(shù)學I必修本(A版)》第94—95頁的第三章第一課時3。1。1方程的根與函數(shù)的的零點。

  本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應的函數(shù)的情形。它既揭示了初中一元二次方程與相應的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識的總結拓展。之后將函數(shù)零點與方程的根的關系在利用二分法解方程中(3。1。2)加以應用,通過建立函數(shù)模型以及模型的求解(3。2)更全面地體現(xiàn)函數(shù)與方程的關系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。

  總之,本節(jié)課滲透著重要的數(shù)學思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結合”的`思想,教好本節(jié)課可以為學好中學數(shù)學打下一個良好基礎,因此教好本節(jié)是至關重要的。

  三 教學目標分析:

  知識與技能:

  1。結合方程根的幾何意義,理解函數(shù)零點的定義;

  2。結合零點定義的探究,掌握方程的實根與其相應函數(shù)零點之間的等價關系;

  3。結合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間 的方法

  情感、態(tài)度與價值觀:

  1。讓學生體驗化歸與轉化、數(shù)形結合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;

  2。培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣;

  3。使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感

  教學重點:函數(shù)零點與方程根之間的關系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。

  教學難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。

  四 教學準備

  導學案,自主探究,合作學習,電子交互白板。

  五 教學過程設計:

  六、探索研究(可根據(jù)時間和學生對知識的接受程度適當調(diào)整)

  討論:請大家給方程的一個解的大約范圍,看誰找得范圍更。

  [師生互動]

  師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發(fā)揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發(fā)學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。

  生:分組討論,各抒己見。在探究學習中得到數(shù)學能力的提高

  第五階段設計意圖:

  一是為用二分法求方程的近似解做準備

  二是小組探究合作學習培養(yǎng)學生的創(chuàng)新能力和探究意識,本組探究題目就是為了培養(yǎng)學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。

  七、課堂小結:

  零點概念

  零點存在性的判斷

  零點存在性定理的應用注意點:零點個數(shù)判斷以及方程根所在區(qū)間

  八、鞏固練習(略)

  小編為大家提供的高一上學期數(shù)學教學計劃格式,大家仔細閱讀了嗎?最后祝同學們學習進步。

高一上數(shù)學教學計劃12

  教學目標 :

  (1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義,

  (3)掌握有關的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;

  (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

  (5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數(shù)學結合的數(shù)學思想;

  (6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力.

  教學重點:子集、補集的概念

  教學難點 :弄清元素與子集、屬于與包含之間的區(qū)別

  教學用具:幻燈機

  教學過程 設計

  (一)導入 新課

  上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識.

  【提出問題】(投影打出)

  已知 , , ,問:

  1.哪些集合表示方法是列舉法.

  2.哪些集合表示方法是描述法.

  3.將集M、集從集P用圖示法表示.

  4.分別說出各集合中的元素.

  5.將每個集合中的元素與該集合的關系用符號表示出來.將集N中元素3與集M的關系用符號表示出來.

  6.集M中元素與集N有何關系.集M中元素與集P有何關系.

  【找學生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(筆練結合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5. , , , , , , , (筆練結合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經(jīng)常出現(xiàn),本節(jié)將研究有關兩個集合間關系的問題.

  (二)新授知識

  1.子集

  (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作: 讀作:A包含于B或B包含A

  當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.

  性質(zhì):① (任何一個集合是它本身的子集)

 、 (空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

  (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例: ,可見,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B.

  【提問】

  (1) 寫出數(shù)集N,Z,Q,R的包含關系,并用文氏圖表示。

  (2) 判斷下列寫法是否正確

 、 A ② A ③ ④A A

  性質(zhì):

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

  (2)如果 , ,則 .

  例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】(1)子集與真子集符號的方向。

  (2)易混符號

 、佟 ”與“ ”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如 R,{1} {1,2,3}

  ②{0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

  如: {0}。不能寫成 ={0}, ∈{0}

  例2 見教材P8(解略)

  例3 判斷下列說法是否正確,如果不正確,請加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的.真子集;

  (6) 與 不能同時成立.

  解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確.空集是任何非空集合的真子集;

  (3)不正確. 與 表示同一集合;

  (4)不正確. 的所有子集是 ;

  (5)正確

  (6)不正確.當 時, 與 能同時成立.

  例4 用適當?shù)姆? , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)設 , , ,則A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

  【練習】教材P9

  用適當?shù)姆? , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提問:見教材P9例子

  (二) 全集與補集

  1.補集:一般地,設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即

  .

  A在S中的補集 可用右圖中陰影部分表示.

  性質(zhì): S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

  (2)若A={0},則 NA=N*;

  (3) RQ是無理數(shù)集。

  2.全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.

  注: 是對于給定的全集 而言的,當全集不同時,補集也會不同.

  例如:若 ,當 時, ;當 時,則 .

  例5 設全集 , , ,判斷 與 之間的關系.

高一上數(shù)學教學計劃13

  一、教學目標

  1.知識與技能目標

  (1). 掌握集合的兩種表示方法;能夠按照指定的方法表示一些集合.

  (2).發(fā)展學生運用數(shù)學語言的能力;培養(yǎng)學生分析、比較、歸納的邏輯思維能力.

  2.過程與方法目標

 、偻ㄟ^實例抽象概括集合的共同特征,從而引出集合的概念是本節(jié)課的重要任務之一。因此教學時不僅要關注集合的基本知識的學習,同時還要關注學生抽象概括能力的培養(yǎng)。

 、诮虒W過程中應努力創(chuàng)造培養(yǎng)學生的思維能力,提高學生理解掌握概念的能力,訓練學生分析問題和處理問題的能力

  情感態(tài)度與價值觀目標 感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣;學習從數(shù)學的角度認識世界;通過合作學習增強合作意識;培養(yǎng)數(shù)學的特有文化——簡潔精煉,體會從感性到理性的思維過程。

  2、教材分析 本節(jié)課位于我校現(xiàn)行教材≤中等職業(yè)教育國家規(guī)劃教材≥數(shù)學第一章第一節(jié)≤集合≥的第二課時,這節(jié)課主要學習集合的表示方法。

  集合語言是現(xiàn)代數(shù)學的基本語言。通過集合語言的學習,有利于學生簡明準確地表達學習的數(shù)學內(nèi)容。集合的初步知識是學生學習、掌握和使用數(shù)學語言的基礎,是中職數(shù)學學習的出發(fā)點。

  在中職數(shù)學中,這部分知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎。例如,在后續(xù)學習的集合的相關內(nèi)容和第二章≤不等式≥、

  第三章≤函數(shù)≥,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集,都離不開集合。也是研究數(shù)學問題不可缺少的工具。這一課在本章的學習有很重要的意義,也是本章后續(xù)學習和后續(xù)學習的基礎,起到承上啟下的作用。

  3、學情分析

  學生在初中階段的學習中,雖然已經(jīng)有了對集合的初步認知,由于中職學生的現(xiàn)狀,學生基礎比較弱,學習習慣比較差,根據(jù)我校的現(xiàn)行教材結合學生的實際情況,為了培養(yǎng)學

  生良好的學習習慣,打好基礎,對集合的兩種表示方法:列舉法和描述法通過講練結合、不斷地鞏固練習、提高練習來達到標準要求,鼓勵學生理解的基礎上記憶的學習方法來學習。

  二、方法與手段

  本節(jié)課采用新知識講授課的教學模式,教學策略為先熟悉再深入,采用啟發(fā)式、講練結合等教學方法,并采用多媒體教學手段輔助教學。

  3、教學重難點

  重點:列舉法、描述法。

  難點:運用集合的三種常用表示方法正確表示一些簡單的集合

  4、教學方法:實例歸納、學生的自主探究、主動參與與教師的引導相結合,充分體現(xiàn)學生在課堂中的主體作用和教師的主導作用。

  5、教學手段:多媒體輔助教學——主要是利用多媒體展示圖片來增加學生的學習興趣和對集合知識的直觀理解。

  6、教學思路:

  7、教學過程

  7.1創(chuàng)設情境,引入課題

  【活動】多媒體展示:1、草原一群大象在緩步走來。

  2、藍藍的天空中,一群鳥在飛翔

  3、一群學生在一起玩。

  引導學生舉出一些類似的例子問題

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是一群大象、一群鳥、一群學生)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

  【設計意圖】通過多媒體展示,極大地調(diào)動起了學生的積極性,吸引學生的注意力,設置輕松的學習氣氛。

  7.2步步探索,形成概念

  【活動1】觀察下列對象:

  ①1~20以內(nèi)的所有質(zhì)數(shù);

 、谖覈鴱1991—20xx年的13年內(nèi)所發(fā)射的所有人造衛(wèi)星

  ③金星汽車廠20xx年生產(chǎn)的所有汽車;

 、20xx年1月1日之前與我國建立外交關系的所有國家;

 、菟械恼叫;

 、薜街本l的距離等于定長d的所有的點;

 、叻匠蘹2+3x—2=0的所有實數(shù)根;

 、嘈氯A中學20xx年9月入學的所有的高一學生。

  師生共同概括8個例子的特征,得出結論,給出集合的含義:把研究對象統(tǒng)稱為元素,常用小寫字母啊a,b,c….表示,把一些元素組成的總體叫做集合,常用大寫字母A,B,C….來表示。

  【設計意圖】使學生自己明確集合的含義,培養(yǎng)學生的概括能力。

  【活動2】要求每個學生舉出一些集合的例子,選出具有代表性的幾個問題,比

  如:

  1)A={1,3},3、5哪個是A的元素?

  2)B={身材較高的人},能否表示成集合?

  3)C={1,1,3}表示是否準確?

  4)D={中國的直轄市},E={北京,上海,天津,重慶}是否表示同一集合?

  5)F={a,b,c}與G={c,b,a}這兩個集合是否一樣?

  【分析】1)1,3是A的元素,5不是

  2)我們不能準確的規(guī)定多少高算是身材較高,即不能確定集合的元素,

  所以B不能表示集合

  3)C中有二個1,因此表達不準確

  4)我們知道E中各元素都是屬于中國的直轄市,但中國的直轄市并不 只有這幾個,因此不相等。

  5)F和G的元素相同,只不過順序不同,但還是表示同一個集合

  通過上述分析引導學生自由討論、探究概括出集合中各種元素的特點,并讓學生再舉出一些能夠構成集合的例子以及不能構成集合的例子,要求說明理由。師生一起得出集合的特征:

  1)確定性:某一個具體對象,它或者是一個給定的集合的元素,或者不是該集合的元素,兩種情況必有一種且只有一種成立.

  2)互異性:同一集合中不應重復出現(xiàn)同一元素.

  3)無序性:集合中的元素沒有順序

  4)集合相等:構成兩個集合的元素完全一樣

  【設計意圖】引導學生自主探究得出集合的特征:確定性、互異性、無序性,集合相等,培養(yǎng)學生的抽象概括能力,同時使學生能更好的了解集合。

  7.3集合與元素的關系

  【問題】高一(4)班里所有學生組成集合A,a是高一(4)班里的同學,b是

  高一(5)班的同學,a、b與A分別有什么關系?

  引導學生閱讀教科書中的相關內(nèi)容,思考上述問題,發(fā)表學生自己的看法。 得出結論:①如果a是集合A的元素,就說a屬于集合A,記作a∈A。

  ②如果b不是集合A的元素,就說b不屬于集合A,記作b?A。

  再讓學生舉一些例子說明這種關系。

  【設計意圖】使學生發(fā)揮想象,明確元素與集合的關系。

  【活動】熟記數(shù)學中一些常用的數(shù)集及其記法

  引導學生回憶數(shù)集擴充過程,閱讀教科書第3頁表格中的內(nèi)容,認識常用數(shù)集記號。

  【設計意圖】使學生熟記常用數(shù)集的記號,以免日后做題時混淆。

  7.4集合的.表示方法

  【問題】由以上內(nèi)容我們可以知道用自然語言可以描述一個集合,那么有沒有其他方式表示集合呢?

  7.4.1集合的列舉法表示

  【活動】嘗試用列舉法第4頁例1中的集合:

  1)小于10的所有自然數(shù)組成的集合;

  2)方程x2?x的所有實數(shù)根組成的集合;

  3)由1到20以內(nèi)的所有素數(shù)組成的集合;

  并思考列舉法的特點。

  引導學生閱讀教科書,自主學習列舉法,得出答案:

  1)A={0,1,2,3,4,5,6,7,8,9}

  2)A={0,1}

  3)A={2,3,5,7,11,13,17,19}

  通過上述講解請同學說說列舉法的特點:

  1)用花括號{}把元素括起來

  2)集合的元素可以具體一一列出

  【設計意圖】使學生學習基本了解用列舉法表示集合的方法,并了解列舉法的特點。

  7.4.2集合的描述法表示

  【活動1】提出教科書中的思考題:

  1)你能用自然語言描述集合{2,4,6,8}嗎?

  2)你能用列舉法表示不等式x—7<3的解集嗎?

  學生討論,師生總結:

  1)從2開始到8的所有偶數(shù)組成的集合

  2)這個集合中的元素不能一一列出,因此不可以用列舉法表示

  引導學生思考、討論用列舉法表示相應集合的困難,激發(fā)學生學習描述法的積極性。

  引導學生閱讀教科書中描述法的相關內(nèi)容,讓學生討論交流,歸納描述法的特點。

  例如2)可以用描述法表示為:A={x?R|x<10}

  【設計意圖】使學生體會用描述法表示集合的必要性,會用描述法表示集合。

  【活動2】引導學生完成第5頁例2

  1) 方程x2?2?0的所有實數(shù)根組成的集合

  2) 由大于10小于20的所有整數(shù)組成的集合

  討論應當如何根據(jù)問題選擇適當?shù)募媳硎痉。學生回答,老師進行總結:

  1)描述法:A={ x?R|x2?2?0}

  列舉法:

  2)描述法:A={ x?Z|10

  列舉法:A={11,12,13,14,15,16,17,18,19}

  【設計意圖】使學生掌握好兩種表示法各自的特點,根據(jù)題目靈活選擇。

  7.5課堂小結,學習反思

  【問題】1)集合與元素的含義?

  2)集合的特點?

  3)集合的不同表示方法

  引導學生整理概括這一節(jié)課所學的知識

  【設計意圖】歸納整理知識,形成知識網(wǎng)絡,并培養(yǎng)學生自主對所學知識進行總結的能力。

  8、作業(yè)布置,鞏固新知

  課后作業(yè):習題1.1A組第4題

  課后思考作業(yè): ①結合實例,試比較用自然語言、列舉法和描述法表示集合時各自的特點和適用的對象。

 、谧约号e出幾個集合的例子,并分別用自然語言、列舉法和描述法表示出來。

  9、板書設計

  1.1.1集合的含義與表示

  1、元素的含義:把研究對象統(tǒng)稱為元素

  2、集合的含義:一些元素組成的總體。

  3、集合元素的三個特性:確定性,互異性,無序性,集合相等

  4、元素與集合的關系:a?A,a?A

  5、常用數(shù)集與記法

  6、列舉法

  7、描述法

  8、課堂小結

高一上數(shù)學教學計劃14

  我校選用的數(shù)學教材是由人民教育出版社、課程教材研究所、中學數(shù)學課程教材研究開發(fā)中心編著的a版教材。與舊教材作一比較,發(fā)現(xiàn)本套教材是在繼承我國高中數(shù)學教科書編寫優(yōu)良傳統(tǒng)和基礎上積極創(chuàng)新,充分體現(xiàn)了數(shù)學的美學價值和人文精神。

  一、教材分析

  本教材有下列幾個特點:

  1、更加注重強調(diào)數(shù)學知識的實際背景和應用,使教材具有很強的"親和力",即以生動活潑的呈現(xiàn)方式,激發(fā)學生的興趣和美感,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生"看個究竟"的沖動,使學生興趣盎然地投入學習。

  2.以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神,體現(xiàn)了問題性,本套教材的一個很大特點是每一章都可以看到"觀察""思考""探索"以及用"問號性"圖標呈現(xiàn)的"邊空"等欄目,利用這些欄目,在知識形過過程的"關鍵點"上,在運用數(shù)學思想方法產(chǎn)生解決問題策略的"關節(jié)點"上,在數(shù)學知識之間聯(lián)系的"聯(lián)點"上,在數(shù)學問題變式的"發(fā)散點"上,在學生思維的"最近發(fā)展區(qū)"內(nèi),提出恰當?shù)、對學生數(shù)學思維有適度啟發(fā)的問題,以引導學生的數(shù)學探究活動,切實轉變學生的學習方式。

  3.信息技術是一種強有力的認識工具,在教材的編寫過程體現(xiàn)了積極探索數(shù)學課程與信息技術的整合,幫助學生利用信息技術的力量,對數(shù)學的本質(zhì)作進一步的理解。

  4.關注學生數(shù)學發(fā)展的不同需求,為不同學生提供不同的發(fā)展空間,促進學生個性和潛能的發(fā)展提供了很好的平臺。例如教材通過設置"觀察與猜想"、"閱讀與思考"、"探究與發(fā)現(xiàn)"等欄目,一方面為學生提供了一些關于探究性、拓展性、思想性、時代性和應用性的選學材料,拓展學生的數(shù)學活動空間和擴大學生的數(shù)學知識面,另一方面也體現(xiàn)了數(shù)學的科學價值,反映了數(shù)學在推動其他科學和整個文化進步中的作用。

  5.新教材注重數(shù)學史滲透,特別是注重介紹我國對數(shù)學的貢獻,充分體現(xiàn)數(shù)學的人文價值,科學價值和文化價值,激發(fā)了學生的愛國主義情感和民族自豪感。

  二、教學任務與目的

  1.了解集合的含義與表示,理解集合間的關系和運算,感受集合語言的意義和作用。進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,會用集合與對應的語言描述函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。了解函數(shù)的構成要素,會求簡單函數(shù)定義域和值域,會根據(jù)實際情境的`不同需要選擇恰當?shù)姆椒ū硎竞瘮?shù)。通過已學過的具體函數(shù),理解函數(shù)的單調(diào)性、(小)值及其幾何意義,了解奇偶性的含義,會用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。根據(jù)某個主題,收集17世紀前后發(fā)生的一些對數(shù)學發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關資料,了解函數(shù)概念的發(fā)展歷程。

  2.了解指數(shù)函數(shù)模型的實際背景。理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。在解決簡單實際問題的過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及對簡化運算的作用。通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點。知道指數(shù)函數(shù)y=ax與對數(shù)函數(shù)y=logax互為反函數(shù)(a0,a≠1)。通過實例,了解冪函數(shù)的概念;合函數(shù)y=x,y=x2,y=x3,y=1/x,y=x1/2的圖象,了解它們的變化情況。

  3.合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系.根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法.利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)間的增長差異;合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義.收集一些社會生活中普遍使用的函數(shù)模型,了解函數(shù)模型的廣泛應用。

  4.利用實物模型、計算機軟件觀察大量空間圖形,認識柱、錐、臺、球及其簡單組合體的構特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的構。能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙紙板)制作模型,會用斜二側法畫出它們的直觀圖。通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。完成實習作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎上,尺寸、線條等不作嚴格要求)。了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。

  5.以長方體為載體,使學生在直觀感知的基礎上,認識空間中點、直線、平面之間的位置關系。通過對大量圖形的觀察、實驗、操作和說理,使學生進一步了解平行、垂直判定方法以及基本性質(zhì)。學會準確地使用數(shù)學語言表述幾何對象的位置關系,體驗公理化思想,培養(yǎng)邏輯思維能力,并用來解決一些簡單的推理論證及應用問題。

  6.在平面直角坐標系中,合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。能根據(jù)斜率判定兩條直線平行或垂直。根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關系。能用解方程組的方法求兩直線的交點坐標。探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。

  三、教學措施和活動

  1.加強集體備課與個人學習,個人要加強自我學習和養(yǎng)成解數(shù)學題的習慣,提高個人專業(yè)素養(yǎng)和教學基本功;

  2.注重培養(yǎng)學生自主學習的能力,轉變學生學習數(shù)學的方式。學生是學習和發(fā)展的主人,教學中要體現(xiàn)學生的主體地位,增強學生的自我學習,自我教育與發(fā)展的意識和能力。改善學生的學習方式是高中數(shù)學新課程追求的基本理念;

  3.了解新課程教學基本程序,掌握新課程教學常規(guī)策略,立足于提高課堂教學效率;

  4.與學生多溝通、多交流,真正成為學生的良師益友;

  5.要深刻理解領悟新教材的立意進行教學,而不要盲目地加深難度。

高一上數(shù)學教學計劃15

  (一)教學目標

  1.知識與技能

  (1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.

  (2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。

  (3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。

  2.過程與方法

  通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強學生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.

  3.情感、態(tài)度與價值觀

  通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學生運用數(shù)學知識和數(shù)學思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學的應用價值.

  (二)教學重點與難點

  重點:交集、并集運算的含義,識記與運用.

  難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系

  (三)教學方法

  在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合.

  (四)教學過程

  教學環(huán)節(jié) 教學內(nèi)容 師生互動 設計意圖

  提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理數(shù)},

  B = {x | x是無理數(shù)},

  C = {x | x是實數(shù)}.

  師:兩數(shù)存在大小關系,兩集合存在包含、相等關系;實數(shù)能進行加減運算,探究集合是否有相應運算.

  生:集合A與B的元素合并構成C.

  師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,

  導入新知

  形成

  概念

  思考:并集運算.

  集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

  定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

  師:請同學們將上述兩組實例的共同規(guī)律用數(shù)學語言表達出來.

  學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

  應用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 設集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  師:求并集時,兩集合的相同元素如何在并集中表示.

  生:遵循集合元素的互異性.

  師:涉及不等式型集合問題.

  注意利用數(shù)軸,運用數(shù)形結合思想求解.

  生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.

  固化概念

  提升能力

  探究性質(zhì) ①A∪A = A, ②A∪ = A,

 、跘∪B = B∪A,

 、 ∪B, ∪B.

  老師要求學生對性質(zhì)進行合理解釋. 培養(yǎng)學生數(shù)學思維能力.

  形成概念 自學提要:

 、儆蓛杉系乃性睾喜⒖傻脙杉系牟⒓,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?

  ②交集運算具有的運算性質(zhì)呢?

  交集的定義.

  由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的.交集;記作A∩B,讀作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn圖表示

  老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 并總結交集的性質(zhì).

  生:①A∩A = A;

 、贏∩ = ;

 、跘∩B = B∩A;

  ④A∩ ,A∩ .

  師:適當闡述上述性質(zhì).

  自學輔導,合作交流,探究交集運算. 培養(yǎng)學生的自學能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

  應用舉例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新華中學開運動會,設

  A = {x | x是新華中學高一年級參加百米賽跑的同學},

  B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.

  例2 設平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系. 學生上臺板演,老師點評、總結.

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.

  例2 解:平面內(nèi)直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.

  (1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};

  (2)直線l1,l2平行可表示為

  L1∩L2 = ;

  (3)直線l1,l2重合可表示為

  L1∩L2 = L1 = L2. 提升學生的動手實踐能力.

  歸納總結 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性質(zhì):①A∩A = A,A∪A = A,

 、贏∩ = ,A∪ = A,

 、跘∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結

  老師點評、闡述 歸納知識、構建知識網(wǎng)絡

  課后作業(yè) 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華

  備選例題

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  當a = –3時,A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范圍;

  (2)若A∪B = {x | x<1},求a的取值范圍.

  【解析】(1)如下圖所示:A = {x | –1

  ∴數(shù)軸上點x = a在x = – 1左側.

  ∴a≤–1.

  (2)如右圖所示:A = {x | –1

  ∴數(shù)軸上點x = a在x = –1和x = 1之間.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  當a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設A∩C = 相矛盾,故不適合.

  當a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.

  例4 設集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  當x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

  當x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

  當x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

  綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

【高一上數(shù)學教學計劃】相關文章:

高一上期數(shù)學教學計劃12-19

高一上數(shù)學教學計劃 15篇01-01

高一上學期數(shù)學教學計劃11-30

高一上數(shù)學教學計劃18篇03-07

精選高一上冊數(shù)學教學計劃四篇11-10

高一上冊數(shù)學教學計劃五篇10-12

高一上冊數(shù)學教學計劃合集五篇11-02

高一上學期數(shù)學教學計劃7篇11-10

高一上學期數(shù)學教學計劃3篇11-12