天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教學(xué)論文>數(shù)學(xué)論文>求數(shù)列通項公式的解題思路

求數(shù)列通項公式的解題思路

時間:2022-08-15 13:50:52 數(shù)學(xué)論文 我要投稿
  • 相關(guān)推薦

求數(shù)列通項公式的解題思路

  求數(shù)列通項公式的解題思路
  
  廣東省高州市第二中學(xué) 梁志華
  
  數(shù)列既是高中數(shù)學(xué)的重要內(nèi)容,也是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ),因此,每年高考對本章內(nèi)容均作較全面的考查,而且經(jīng)常是以綜合題、主觀題的形式出現(xiàn),難度較大,不過一般分小題、有梯度設(shè)問,往往是第1小題就是求數(shù)列的通項公式,難度適中,一般考生可突破,爭取分?jǐn)?shù),而且是做第2小題的基礎(chǔ),因此,求數(shù)列通項公式的解題方法、技巧,每一位考生都必須熟練掌握。求數(shù)列通項公式的題型很多,不同的題型有不同的解決方法。下面結(jié)合教學(xué)實踐,談?wù)勄髷?shù)列通項公式的解題思路。
  
  一、已知數(shù)列的前幾項
  
  已知數(shù)列的前幾項,求通項公式。通過觀察找規(guī)律,分析出數(shù)列的項與項數(shù)之間的關(guān)系,從而求出通項公式。這種方法稱為觀察法,也即是歸納推理。
  
  例1、求數(shù)列的通項公式
  
 。1)0,22——1/3,32——1/4,42+1/5……
  
 。2)9,99,999,……
  
  分析:(1)0=12——1/2,每一項的分子是項數(shù)的平方減去1,分母是項數(shù)加上1,n2——1/n+1=n——1,其實,該數(shù)列各項可化簡為0,1,2,3,……,易知an=n——1。
  
 。2)各項可拆成10-1,102-1,103-1,……,an=10n——1。
  
  此題型主要通過讓學(xué)生觀察、試驗、歸納推理等活動,且在此基礎(chǔ)上進一步通過比較、分析、概括、證明去揭示事物的本質(zhì),從而培養(yǎng)學(xué)生的思維能力。
  
  二、已知數(shù)列的前n項和Sn
  
  已知數(shù)列的前n項和Sn,求通項公式an,主要通過an與Sn的關(guān)系轉(zhuǎn)化,即an -{ S1(n=1) Sn -Sn——1(n≥2)
  
  例2、已知數(shù)列{an }的前n項和Sn=2n+3,求an
  
  分析:Sn=a1+a2 +……+an——1+an
  
  Sn——1=a1+a2 +……+an——1
  
  上兩式相減得 Sn -Sn——1=an
  
  解:當(dāng)n=1時,a1=S1=5
  
  當(dāng)n≥2時,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1
  
  ∵n=1不適合上式
  
  ∴an ={5(n=1) 2n——1(n≥2)
  
  三、已知an與Sn關(guān)系
  
  已知數(shù)列的第n項an與前n項和Sn間的關(guān)系:Sn=f(an),求an。一般的思路是先將Sn與an的關(guān)系轉(zhuǎn)化為an與an——1的關(guān)系,再根據(jù)與的關(guān)系特征分為如下幾種類型。不同的類型,要用不同的方法解決。
  
  (1)an=an——1+k。數(shù)列屬等差數(shù)列,直接代公式可求通項公式。
  
  例3、已知數(shù)列{an},滿足a1=3,an=an——1+8,求an。
  
  分析:由已知條件可知數(shù)列是以3為首項,8為公差的等差數(shù)列,直接代公式可求得an=8n-5。
  
 。2)an=kan——1(k為常數(shù))。數(shù)列屬等比數(shù)列,直接代公式可求通項公式。
  
  例4、數(shù)列{an}的前n項和Sn,a1=1,an+1=2Sn+1(n∈N+)
  
  求數(shù)列{an}的通項公式。
  
  分析:根據(jù)an與Sn的關(guān)系,將an+1=2Sn+1轉(zhuǎn)化為an與an+1的關(guān)系。
  
  解:由an+1=2Sn+1
  
  得an=2Sn-1+1(n≥2)
  
  兩式相減,得an+1-an=2an
  
  ∴an+1=3an (n≥2)
  
  ∵a2=2Sn+1=3
  
  ∴a2=3a1
  
  ∴{an}是以1為首項,3為公比的等比數(shù)列
  
  ∴an=3n-1
  
 。3)an+1=an+f(n),用疊加法
  
  思路:令n=1,2,3,……,n-1
  
  得a2=a1+f(1)
  
  a3=a2+f(2)
  
  a4=a3+f(3)
  
  ……
  
  +)an=an——1+f(n-1)
  
  an=a1+f(1)+f(2)+…+f(n-1)
  
  例5、若數(shù)列{an}滿足a1=2,an+1=an+2n
  
  則{an}的通項公式=( )
  
  解:∵an+1=an+2n
  
  ∴a2 =a1+2×1
  
  a3=a2+2×2
  
  a4=a3+2×3
  
  ……
  
  +)an=an——1+2(n-1)
  
  an=a1+2(1+2+3+…+n-1)
  
  =2+2×(1+n-1)(n-1)
  
  =n2-n+2
  
 。4)an+1=f(n)an,用累積法
  
  思路:令n=1,2,3,……,n-1
  
  得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3
  
  ……
  
  ×)an=f(n-1)an-1
  
  an=a1·f(1)·f(2)·f(3)……f(n-1)
  
  例6、若數(shù)列{an}滿足a1=1,an+1=2n+an,則an=( )
  
  解:∵an+1=2nan ∴a2 =21a1
  
  a3=22a2 a4=23a3
  
  ……
  
  ×) an=2n——1·an——1
  
  an=2·22·23·……·2n-1a1=2n(n-1)/2
  
 。5)an=pan——1+q, an=pan——1+f(n)
  
  an+1=an+p·qn(pq≠0),
  
  an=p(an——1)q, an+1=ran/pan+q=(pr≠0,q≠r)
  
 。╬、q、r為常數(shù))
  
  這些類型均可用構(gòu)造法或迭代法。
  
 、賏n=pan——1+q (p、q為常數(shù))
  
  構(gòu)造法:將原數(shù)列的各項均加上一個常數(shù),構(gòu)成一個等比數(shù)列,然后,求出該等比數(shù)列的通項公式,再還原為所求數(shù)列的通項公式。
  
  將關(guān)系式兩邊都加上x
  
  得an+x=Pan——1+q+x
  
  =P(an——1 + q+x/p)
  
  令x=q+x/p,得x=q/p-1
  
  ∴an+q/p-1=P(an——1+q/p-1)
  
  ∴{an+q/p-1}是以a1+q/p-1為首項,P為公比的等比數(shù)列。
  
  ∴an+q/p-1=(a1+q/p-1)Pn-1
  
  ∴an=(a1+q/p-1)Pn-1-q/p-1
  
  迭代法:an=p(an——1+q)=p(pan-2+q)+q
  
  =p2((pan-3+q)+pq+q……
  
  例7、數(shù)列{an}的前n項和為Sn,且Sn=2an-n(n∈N+)求an
  
  解析:由Sn=2an-n 得Sn-1=2an-1-(n-1) (n≥2,n∈N+)
  
  兩式相減得an=2an-1+1
  
  兩邊加1得an+1=2(an-1+1) (n≥2,n∈N+)
  
  構(gòu)造成以2為公比的等比數(shù)列{an+1}
  
 、赼n=Pan-1+f(n)
  
  例8、數(shù)列{an}中,a1為常數(shù),且an=-2an-1+3n-1(≥2,n∈N)
  
  證明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5
  
  分析:這道題是證明題,最簡單的方法當(dāng)然是數(shù)學(xué)歸納法,現(xiàn)用構(gòu)造法和迭代法來證明。
  
  方法一:構(gòu)造公比為-2的等比數(shù)列{an+λ·3n}
  
  用比較系數(shù)法可求得λ=-1/5
  
  方法二:構(gòu)造等差型數(shù)列{an/(-2)n}。由已知兩邊同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用疊加法處理。
  
  方法三:迭代法。
  
  an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1
  
  =(-2)2an-2+(-2)·3n-2+3n-1
  
  =(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1
  
  =(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1
  
  =(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1
  
  =(-2)n-1a1+3n+(-1)n-2·3·2n-1/5
  
  ③an+1=λan+p·qn(pq≠0)
  
 。á。┊(dāng)λ=qn+1時,等式兩邊同除以,就可構(gòu)造出一個等差數(shù)列{an/qn}。
  
  例9、在數(shù)列{an}中,a1=4,an+1+2n+1,求an。
  
  分析:在an+1=2an+2n+1兩邊同除以2n+1,得an+1/2n+1=an/2n+1
  
  ∴{an/2n}是以a1/2=2為首項,1為公差的等差數(shù)列。
  
 。áⅲ┊(dāng)λ≠q時,等式兩邊同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再構(gòu)造成等比數(shù)列求bn,從而求出an。
  
  例10、已知a1=1,an=3an-1+2n-1,求an
  
  分析:從an=3an-1+2n-1兩邊都除以2n,
  
  得an/2n=3/2 an-1/2n-1+1/2
  
  令an/2n=bn
  
  則bn=3/2bn-1+1/2
  
 、躠n=p(an——1)q(p、q為常數(shù))
  
  例11、已知an=1/a an——12,首項a1,求an。
  
  方法一:將已知兩邊取對數(shù)
  
  得lgan=2lgan——1-lga
  
  令bn=lgan
  
  得bn=2bn-1-lga,再構(gòu)造成等比數(shù)列求bn,從而求出an。
  
  方法二:迭代法
  
  an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2
  
  =1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23
  
  =……=a·(a1/a)2n——1
  
 、輆n+1=ran/pan+q(p、q、r為常數(shù),pr≠0,q≠r)
  
  將等式兩邊取倒數(shù),得1/an+1=q/r·1/an+p/r,再構(gòu)造成等比數(shù)列求an。
  
  例12、在{an}中,a1=1,an+1=an/an+2,求an
  
  解:∵an+1=an/an+2
  
  ∴1/an+1=2·1/an+1
  
  兩邊加上1,得1/an+1+1=2(1/an+1)
  
  ∴{1/an+1}是以1/an+1=2為首項,2為公比的等比數(shù)列
  
  ∴ 1/an+1=2×2n-1=2n
  
  ∴an=1/2n-1
  
  以上羅列出求數(shù)列通項公式的解題思路雖然很清晰,但是一般考生對第三項中的5種類型題用構(gòu)選法和迭代法都比較困難的。遇到此情況,可轉(zhuǎn)化為第一種類型解決,即從an與Sn的關(guān)系式求出數(shù)列的前幾項,用觀察法求an。