- 相關(guān)推薦
關(guān)于小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法的思考 論文
一、小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法的必要性
所謂數(shù)學(xué)思想,是指人們對(duì)數(shù)學(xué)理論與內(nèi)容的本質(zhì)認(rèn)識(shí),它直接支配著數(shù)學(xué)的實(shí)踐活動(dòng)。所謂數(shù)學(xué)方法, 是指某一數(shù)學(xué)活動(dòng)過程的途徑、程序、手段,它具有過程性、層次性和可操作性等特點(diǎn)。數(shù)學(xué)思想是數(shù)學(xué)方法 的靈魂,數(shù)學(xué)方法是數(shù)學(xué)思想的表現(xiàn)形式和得以實(shí)現(xiàn)的手段,因此,人們把它們稱為數(shù)學(xué)思想方法。
小學(xué)數(shù)學(xué)教材是數(shù)學(xué)教學(xué)的顯性知識(shí)系統(tǒng),許多重要的法則、公式,教材中只能看到漂亮的結(jié)論,許多例 題的解法,也只能看到巧妙的處理,而看不到由特殊實(shí)例的觀察、試驗(yàn)、分析、歸納、抽象概括或探索推理的 心智活動(dòng)過程。因此,數(shù)學(xué)思想方法是數(shù)學(xué)教學(xué)的隱性知識(shí)系統(tǒng),小學(xué)數(shù)學(xué)教學(xué)應(yīng)包括顯性和隱性兩方面知識(shí) 的教學(xué)。如果教師在教學(xué)中,僅僅依照課本的安排,沿襲著從概念、公式到例題、練習(xí)這一傳統(tǒng)的教學(xué)過程, 即使教師講深講透,并要求學(xué)生記住結(jié)論,掌握解題的類型和方法,這樣培養(yǎng)出來的學(xué)生也只能是“知識(shí)型” 、“記憶型”的,將完全背離數(shù)學(xué)教育的目標(biāo)。
在認(rèn)知心理學(xué)里,思想方法屬于元認(rèn)知范疇,它對(duì)認(rèn)知活動(dòng)起著監(jiān)控、調(diào)節(jié)作用,對(duì)培養(yǎng)能力起著決定性 的作用。學(xué)習(xí)數(shù)學(xué)的目的“就意味著解題”(波利亞語),解題關(guān)鍵在于找到合適的解題思路,數(shù)學(xué)思想方法 就是幫助構(gòu)建解題思路的指導(dǎo)思想。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,提高學(xué)生的元認(rèn)知水平,是 培養(yǎng)學(xué)生分析問題和解決問題能力的重要途徑。
數(shù)學(xué)知識(shí)本身是非常重要的,但它并不是惟一的決定因素,真正對(duì)學(xué)生以后的學(xué)習(xí)、生活和工作長期起作 用,并使其終生受益的是數(shù)學(xué)思想方法。未來社會(huì)將需要大量具有較強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)素質(zhì)的人才。21世紀(jì)國 際數(shù)學(xué)教育的根本目標(biāo)就是“問題解決”。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,是未來社會(huì)的要求和 國際數(shù)學(xué)教育發(fā)展的必然結(jié)果。
小學(xué)數(shù)學(xué)教學(xué)的根本任務(wù)是全面提高學(xué)生素質(zhì),其中最重要的因素是思維素質(zhì),而數(shù)學(xué)思想方法就是增強(qiáng) 學(xué)生數(shù)學(xué)觀念,形成良好思維素質(zhì)的關(guān)鍵。如果將學(xué)生的數(shù)學(xué)素質(zhì)看作一個(gè)坐標(biāo)系,那么數(shù)學(xué)知識(shí)、技能就好 比橫軸上的因素,而數(shù)學(xué)思想方法就是縱軸的內(nèi)容。淡化或忽視數(shù)學(xué)思想方法的教學(xué),不僅不利于學(xué)生從縱橫 兩個(gè)維度上把握數(shù)學(xué)學(xué)科的基本結(jié)構(gòu),也必將影響其能力的發(fā)展和數(shù)學(xué)素質(zhì)的提高。因此,向?qū)W生滲透一些基 本的數(shù)學(xué)思想方法,是數(shù)學(xué)教學(xué)改革的新視角,是進(jìn)行數(shù)學(xué)素質(zhì)教育的突破口。
二、小學(xué)數(shù)學(xué)教學(xué)中應(yīng)滲透哪些數(shù)學(xué)思想方法
古往今來,數(shù)學(xué)思想方法不計(jì)其數(shù),每一種數(shù)學(xué)思想方法都閃爍著人類智慧的火花。一則由于小學(xué)生的年 齡特點(diǎn)決定有些數(shù)學(xué)思想方法他們不易接受,二則要想把那么多的數(shù)學(xué)思想方法滲透給小學(xué)生也是不大現(xiàn)實(shí)的 。因此,我們應(yīng)該有選擇地滲透一些數(shù)學(xué)思想方法。筆者認(rèn)為,以下幾種數(shù)學(xué)思想方法學(xué)生不但容易接受,而 且對(duì)學(xué)生數(shù)學(xué)能力的提高有很好的促進(jìn)作用。
1.化歸思想
化歸思想是把一個(gè)實(shí)際問題通過某種轉(zhuǎn)化、歸結(jié)為一個(gè)數(shù)學(xué)問題,把一個(gè)較復(fù)雜的問題轉(zhuǎn)化、歸結(jié)為一個(gè) 較簡(jiǎn)單的問題。應(yīng)當(dāng)指出,這種化歸思想不同于一般所講的“轉(zhuǎn)化”、“轉(zhuǎn)換”。它具有不可逆轉(zhuǎn)的單向性。
例1 狐貍和黃鼠狼進(jìn)行跳躍比賽,狐貍每次可向前跳4 1/2 米,黃鼠狼每次可向前跳2 3/4米。它們每 秒種都只跳一次。比賽途中,從起點(diǎn)開始,每隔12 3/8米設(shè)有一個(gè)陷阱, 當(dāng)它們之中有一個(gè)掉進(jìn)陷阱時(shí),另 一個(gè)跳了多少米?
這是一個(gè)實(shí)際問題,但通過分析知道,當(dāng)狐貍(或黃鼠狼)第一次掉進(jìn)陷阱時(shí),它所跳過的距離即是它每 次所跳距離4 1/2(或2 3/4)米的整倍數(shù),又是陷阱間隔12 3/8米的整倍數(shù),也就是4 1/2和12 3/8的“ 最小公倍數(shù)”(或2 3/4和12 3/8的“最小公倍數(shù)”)。針對(duì)兩種情況,再分別算出各跳了幾次,確定誰先掉 入陷阱,問題就基本解決了。上面的思考過程,實(shí)質(zhì)上是把一個(gè)實(shí)際問題通過分析轉(zhuǎn)化、歸結(jié)為一個(gè)求“最小 公倍數(shù)”的問題,即把一個(gè)實(shí)際問題轉(zhuǎn)化、歸結(jié)為一個(gè)數(shù)學(xué)問題,這種化歸思想正是數(shù)學(xué)能力的表現(xiàn)之一。
2.數(shù)形結(jié)合思想
數(shù)形結(jié)合思想是充分利用“形”把一定的數(shù)量關(guān)系形象地表示出來。即通過作一些如線段圖、樹形圖、長 方形面積圖或集合圖來幫助學(xué)生正確理解數(shù)量關(guān)系,使問題簡(jiǎn)明直觀。
例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲 五次一共喝了多少牛奶?
附圖{圖}
此題若把五次所喝的牛奶加起來,即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策 略。我們先畫一個(gè)正方形,并假設(shè)它的面積為單位“1”,由圖可知,1-1/32就為所求, 這里不但向?qū)W生滲 透了數(shù)形結(jié)合思想,還向?qū)W生滲透了類比的思想。
3.變換思想
變換思想是由一種形式轉(zhuǎn)變?yōu)榱硪环N形式的思想。如解方程中的同解變換,定律、公式中的命題等價(jià)變換 ,幾何形體中的等積變換,理解數(shù)學(xué)問題中的逆向變換等等。
例3 求1/2+1/6+1/12+1/20+……+1/380的和。
仔細(xì)觀察這些分母,不難發(fā)現(xiàn):2=1×2,6=2×3,12=3×4, 20=4×5……380=19×20,再用拆分的 方法,考慮和式中的一般項(xiàng)
a[,n]=1/n×(n+1)=1/n-1/n+1
于是,問題轉(zhuǎn)換為如下求和形式:
原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1 /19×20
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1 /4-1/5)+……+(1/19-1/20)
=1-1/20
=19/20
4.組合思想
組合思想是把所研究的對(duì)象進(jìn)行合理的分組,并對(duì)可能出現(xiàn)的各種情況既不重復(fù)又不遺漏地一一求解。
例4 在下面的乘法算式中,相同的漢字代表相同的數(shù)字, 不同的漢字代表不同的數(shù)字,求這個(gè)算式。
從小愛數(shù)學(xué)
× 4
──────
學(xué)數(shù)愛小從
分析:由于五位數(shù)乘以4的積還是五位數(shù), 所以被乘數(shù)的首位數(shù)字“從”只能是1或2,但如果“從”=1, “學(xué)”×4的積的個(gè)位應(yīng)是1,“學(xué)”無解。所以“從”=2。
在個(gè)位上,“學(xué)”×4的積的個(gè)位是2,“學(xué)”=3或8。但由于“學(xué)”又是積的首位數(shù)字,必須大于或等于 8,所以“學(xué)”=8。
在千位上,由于“小”×4不能再向萬位進(jìn)位,所以“小”=1 或0。若“小”=0,則十位上“數(shù)”×4+ 3(進(jìn)位)的個(gè)位是0,這不可能,所以“小”=1。
在十位上,“數(shù)”×4+3(進(jìn)位)的個(gè)位是1,推出“數(shù)”=7。
在百位上,“愛”×4+3(進(jìn)位)的個(gè)位還是“愛”,且百位必須向千位進(jìn)3,所以“愛”=9。
故欲求乘法算式為
2 1 9 7 8
× 4
──────
8 7 9 1 2
上面這種分類求解方法既不重復(fù),又不遺漏,體現(xiàn)了組合思想。
此外,還有符號(hào)思想、對(duì)應(yīng)思想、極限思想、集合思想等,在小學(xué)數(shù)學(xué)教學(xué)中都應(yīng)注意有目的、有選擇、 適時(shí)地進(jìn)行滲透。
三、小學(xué)數(shù)學(xué)教學(xué)應(yīng)如何加強(qiáng)數(shù)學(xué)思想方法的滲透
1.提高滲透的自覺性
數(shù)學(xué)概念、法則、公式、性質(zhì)等知識(shí)都明顯地寫在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué) 知識(shí)體系里,是無“形”的,并且不成體系地散見于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常 常因教學(xué)時(shí)間緊而將它作為一個(gè)“軟任務(wù)”擠掉。對(duì)于學(xué)生的要求是能領(lǐng)會(huì)多少算多少。因此,作為教師首先 要更新觀念,從思想上不斷提高對(duì)滲透數(shù)學(xué)思想方法重要性的認(rèn)識(shí),把掌握數(shù)學(xué)知識(shí)和滲透數(shù)學(xué)思想方法同時(shí) 納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù) 學(xué)思想方法滲透的各種因素,對(duì)于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪 些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個(gè)總體設(shè)計(jì),提出不同階段的具體教學(xué)要求。
2.把握滲透的可行性
數(shù)學(xué)思想方法的教學(xué)必須通過具體的教學(xué)過程加以實(shí)現(xiàn)。因此,必須把握好教學(xué)過程中進(jìn)行數(shù)學(xué)思想方法 教學(xué)的契機(jī)——概念形成的過程,結(jié)論推導(dǎo)的過程,方法思考的過程,思路探索的過程,規(guī)律揭示的過程等。 同時(shí),進(jìn)行數(shù)學(xué)思想方法的教學(xué)要注意有機(jī)結(jié)合、自然滲透,要有意識(shí)地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊(yùn)含于數(shù)學(xué) 知識(shí)之中的種種數(shù)學(xué)思想方法,切忌生搬硬套、和盤托出、脫離實(shí)際等適得其反的做法。
3.注重滲透的反復(fù)性
數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過程中逐步積累和形成的。為此,在教學(xué)中,首先要特別強(qiáng)調(diào)解決問題以 后的“反思”,因?yàn)樵谶@個(gè)過程中提煉出來的數(shù)學(xué)思想方法,對(duì)學(xué)生來說才是易于體會(huì)、易于接受的。如通過 分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對(duì)比板演,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,找到具體數(shù)量的對(duì)應(yīng)分率,從 而使學(xué)生自己體驗(yàn)到對(duì)應(yīng)思想和化歸思想。其次要注意滲透的長期性,應(yīng)該看到,對(duì)學(xué)生數(shù)學(xué)思想方法的滲透 不是一朝一夕就能見到學(xué)生數(shù)學(xué)能力提高的,而是有一個(gè)過程。數(shù)學(xué)思想方法必須經(jīng)過循序漸進(jìn)和反復(fù)訓(xùn)練, 才能使學(xué)生真正地有所領(lǐng)悟。
【小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法的思考 論文】相關(guān)文章:
關(guān)于小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法的思考08-07
淺談在小學(xué)數(shù)學(xué)教學(xué)中如何滲透數(shù)學(xué)思想方法08-20
數(shù)學(xué)教學(xué)中思想方法的滲透的路徑08-07
小學(xué)數(shù)學(xué)教學(xué)中滲透模型思想的思考08-01
淺談數(shù)學(xué)思想方法在課堂教學(xué)中的滲透08-21
在小學(xué)數(shù)學(xué)教學(xué)中對(duì)學(xué)生進(jìn)行數(shù)學(xué)基本思想方法的滲透08-07
在小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)文化論文(通用10篇)10-10