天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網>教學論文>數(shù)學論文>注重思想方法訓練提高學生數(shù)學素質

注重思想方法訓練提高學生數(shù)學素質

時間:2022-08-07 23:04:21 數(shù)學論文 我要投稿
  • 相關推薦

注重思想方法訓練提高學生數(shù)學素質

數(shù)學思想方法是指數(shù)學本身的論證、運算以及應用的思想、方法和手段。實踐證明,教師依據數(shù)學教材的特點和學生的認知規(guī)律,圍繞各種數(shù)學思想方法的要求,有計劃地對學生進行數(shù)學思想方法的訓練,對于提高學生的數(shù)學素質和數(shù)學課堂教學的質量非常有益。本文結合小學數(shù)學教學僅就幾種綜合性的數(shù)學思想方法作一探討。

一、聯(lián)想能力的訓練聯(lián)想
是由一種事物的觀念想到另一事物的觀念的心理過程。教育心理學認為,聯(lián)想既是一種記憶方法,也是一種思維能力。其種類包括縱、橫向的單維聯(lián)想和立體交叉式的多維聯(lián)想。多維聯(lián)想是指對眼前呈現(xiàn)的問題,從多角度進行思考以尋求問題解決的聯(lián)想方法,它又包括條件的多維聯(lián)想和解題方法的多維聯(lián)想。例如,我們由完成與未完成工程量的比是"5∶6"這一條件,可以聯(lián)想到下列可做逆推的其他條件:已完成的占總工程量的511,未完成的占總工程量的611,未完成的是已完成的115倍;已完成的是未完成的56,未完成的比己完成的多16,已完成的比未完成的少16等。此關不過,學生解分數(shù)應用題難的現(xiàn)狀就不易解決,F(xiàn)在用上述條件組編一個應用題:"一個建筑隊20天完成一件工程的511,再干幾天可以完成該工程?"我們從不同角度進行聯(lián)想,可得到以下解題方案:(1)用剩下的工作量除以每天的工作效率,列式:(1-511)÷(511÷20)或(11-5)÷(5÷20);(2)先求出完成該工程的總天數(shù)再減去已干的天數(shù),列式:20÷511-20;(3)看剩下的工作量是已完成工作量的幾倍,就有幾個20天,列式:20×〔(1-511)÷511〕;(4)看已完成的工作量是未完成的工作量的幾分之幾,由已知一個數(shù)的幾分之幾是多少,求這個數(shù)的算法可列式為:20÷〔511÷(1-511)〕。進行多維聯(lián)想的能力訓練,要圍繞一定的目的,要做到適時、適度、因人而異,要善于發(fā)現(xiàn)最佳解題思路,使其真正達到培養(yǎng)學生創(chuàng)造性思維的目的。

二、轉化能力的訓練
轉化思想是數(shù)學的基本思想之一,是一種十分重要的教與學的策略。常見的轉化思維方法有量的轉化、式的轉化、類比轉化等,考慮到數(shù)學的研究對象--數(shù)與形,在教學中有意識地對學生進行數(shù)形轉化能力的訓練就顯得尤其重要。所謂數(shù)形轉化觀是把數(shù)、形問題從一種表示形態(tài)轉化成另一種表示形態(tài)或數(shù)形相互轉化的思想和方法。從這一表述可以看出,數(shù)形轉化有數(shù)的轉化、形的轉化和數(shù)與形的相互轉化三種具體形態(tài)。數(shù)的轉化要通過恒等變形,借助數(shù)的分解、變換數(shù)的位置或對數(shù)進行重新調整組合以及利用相關關系等方式進行。如,0.25根據需要可轉化為25%,可以轉化為14,還可以轉化為1∶4。

通過數(shù)的轉化可使運算過程簡單明了,達到計算對、快、巧的要求。形的轉化要通過割、補、拼等操作技能,主要借助等積變形來實現(xiàn)轉化。既可以把整體轉化為部分,又可以把部分拼成整體。如,在推導梯形的面積計算公式時可制作轉動式幻燈片進行演示,使學生清晰地看到兩個全等的梯形拼補成平行四邊形的方法,造成一種動態(tài)的視覺形象美,使演示過程更生動、有趣,給學生留下的印象也是深刻的。又如,求圖中陰影部分的面積(單位:厘米)。此題若按常規(guī)解法,不但計算繁瑣,而且因π取近似值,存在計算誤差。若把它看成是一個以內外圓周長為上、下底,以2厘米為高的梯形,即利用"把曲線看作直線的思想",其計算量不但減少,而且提高了答題的準確率。

數(shù)與形相互轉化的著眼點在于把問題涉及的數(shù)與形結合起來綜合考察,在實際解題中,既可以把數(shù)量關系問題轉化為圖形性質問題來處理,也可以把圖形性質問題轉化為數(shù)量關系問題來研究。譬如,在應用題教學中,我們根據題意將數(shù)量關系轉化為線段圖,借助形象化的線段圖進行分析、解決問題。這樣,不僅可使抽象問題直觀化、具體化,提高解題的速度和準確度,而且也是發(fā)展學生形象思維的有效方法之一。

三、探究能力的訓練
心理學家布魯納指出,探究是數(shù)學教學的生命線。重視學生探究能力的訓練,要求我們要注重教學活動的過程教學。正如西南師大數(shù)學系楊泰良教授所言:"教學上要求揭示的數(shù)學活動過程主要是方法論意義上的和邏輯意義上的,這更符合數(shù)學知識結構和學生認識結構......數(shù)學活動過程的教學有利于啟迪和發(fā)展學生的思維,所以應是數(shù)學方法的核心。"

教學中,要有意識地創(chuàng)設探究情境,培養(yǎng)探究能力。例如,在講"分數(shù)的基本性質"時,采用實際操作的方法,讓學生按老師的要求均分課前準備好的一捆小棒(12根)。具體操作要求是:把12根小棒平均分成兩份,每份是(1)(2)是(6)根;把12根小棒平均分成四份,取兩份是(2)(4),是(6)根;把12根小棒平均分成六份,取三份是(3)(6),是(6)根。教師要求邊操作邊填空,學生通過操作(探究)發(fā)現(xiàn)不同分法的值相等,即12=24=36。這時教師可以提出一個探究性的問題:相等的幾個分數(shù)的分子、分母都發(fā)生了變化,但結果沒有變,這是為什么?分數(shù)的分子、分母是如何變化的?面對此問題學生一時不能回答,稍后會有同學回答說:"分子增加1,分母增加2。"顯然,朝增加多少的方向思考不能揭示出分數(shù)的基本性質。隨后,老師將相等的幾個分數(shù)的板書變化了一下,增加中間環(huán)節(jié)。如,12=1×()2×()=24;36=3÷()6÷()=12.經教師點撥,使學生產生了新的思維,認識到不是"增加"而是"擴大或縮斜,從而收到良好的教學效果。在此過程中,學生不是被動地接受現(xiàn)成的結論,而是自始至終參予到知識的探究之中。

教師結合教材編制一些"動腦筋"的題目,也是培養(yǎng)學生探究能力的重要手段。如,在學習了除數(shù)是一位數(shù)的除法后,教師可以給學生提供這樣一道題:把一根木棒鋸成4段,每鋸斷一次用2分鐘,全部鋸完要用多少分鐘?乍看此題,學生會不加思索地回答8分鐘;我們如果讓學生拿紙條、剪刀進行操作、探究時,學生會驚奇地發(fā)現(xiàn)自己的錯誤,并為自己親手探究出正確的答案而感到自豪。四、辯證思維能力的訓練朱智賢教授曾指出:我們多年來對兒童思維的研究,只研究形象思維和形式邏輯思維,而不研究辯證思維。辯證思維作為抽象邏輯思維發(fā)展的高級階段,在小學由于受小學生思維發(fā)展水平的局限,決定了不可能把辯證思維作為小學數(shù)學教學的基本要求,只能要求教師憑借對具體知識的分析與講解淺顯地把數(shù)學知識與現(xiàn)實事物的關系以及數(shù)學知識本身的內部矛盾予以揭示,從而滲透實踐的觀點、對立統(tǒng)一的觀點、運動變化的觀點等,以達到對學生進行辯證唯物主義啟蒙教育的目的。

小學數(shù)學中的辯證內容很豐富,既表現(xiàn)為數(shù)學概念的普遍聯(lián)系,又表現(xiàn)為數(shù)學運算的相互轉化等。例如,除盡與整除反映的是數(shù)學概念間的包含關系,揭示的是一般與特殊間的矛盾性,除盡是整除的一般化,而整除則是除盡的特殊情形。而約數(shù)和倍數(shù)則是由概念整除派生出來的一對具有相依關系的概念,彼此不能獨立存在。譬如,15能被3整除,15就叫做3的倍數(shù),3就叫做15的約數(shù),不能孤立拋開整除這一前提說15是倍數(shù),3是約數(shù)。任何事物之間或同一事物內部各要素之間都存在著矛盾,小學數(shù)學也不例外。如,一和多、加和減、乘和除、正比例和反比例、直和曲、有限與無限等。對此,我們應用發(fā)展變化的動態(tài)的觀點看待它們,而不應把這種矛盾的對立看作是僵死的、固定不變的東西。它們既對立又統(tǒng)一,并且依據一定的條件相互轉化。對于x×y=k,當x一定時,y與k成正比例;當k一定時,x與y則成反比例。我們從對四則運算間的關系的分析可更加清楚地看到這一點。減法與加法、除法與乘法是逆運算關系;乘法可看作同數(shù)連加,除法可看成同數(shù)連減。為了進一步說明減法與除法的轉化關系,不妨試舉一例說明:"學校購煤30噸,用載重5噸的卡車運輸,需要幾趟運完?"用除法算:30÷5=6;用減法算:30-5-5-5-5-5-56個5噸=0。這樣看來,四則運算中最基本的運算都統(tǒng)一到加法門下了。

王梓坤教授指出:"在學習數(shù)學過程中,掌握基本概念和定理固然重要,了解這些概念如何形成的以及獲得這些定理的思想方法,有時更為重要,因為定理是定型的、靜態(tài)的,而思想方法是發(fā)展的、動態(tài)的。思想方法不僅有趣,而且往往富有啟發(fā)性,可以引導人們去研究新問題,做出新發(fā)現(xiàn)。"

因此,為克服數(shù)學教學中的種種不良現(xiàn)象,使"吸收型教學"轉變?yōu)?quot;智力開發(fā)型教學",我們必須加強數(shù)學活動的過程和數(shù)學思想方法的教學。

【注重思想方法訓練提高學生數(shù)學素質】相關文章:

強化口才訓練提高學生素質08-17

加強說話訓練 提高學生素質05-06

注重集體素質提高 突出學生自主管理08-13

注重思維訓練,提高作文水平08-17

職高數(shù)學教學中要注重數(shù)學思想方法的培養(yǎng)08-14

立足學生發(fā)展 注重科學探究 提高科學素質08-17

注重心理調適提高學生數(shù)學解題能力08-16

強化聽說訓練,提高語文素質08-17

[作文教學論文]注重思維訓練,提高作文水平08-17

教師應注重師德修養(yǎng)及自身素質的提高08-13