- 相關(guān)推薦
淺談轉(zhuǎn)化思想在學(xué)習(xí)新知識中的應(yīng)用
在數(shù)學(xué)教學(xué)中,怎樣寓知識、技能、方法、思想于一個(gè)統(tǒng)一教學(xué)過程中,是數(shù)學(xué)教學(xué)的重要課題。由于數(shù)學(xué)的高度抽象性、嚴(yán)謹(jǐn)?shù)倪壿嬓、結(jié)論的確定性以及應(yīng)用的廣泛性這些特征,決定了數(shù)學(xué)教學(xué)的難度。如果教師只是注重單純地傳授知識,而不注重學(xué)習(xí)方法的指導(dǎo)和能力的培養(yǎng),學(xué)生就會跟在老師的后面跑,整天忙忙碌碌,全是死記硬背。聽老師講時(shí)還會,自己做時(shí)就錯(cuò),臨到考時(shí)就蒙,這樣下去是越來越糊涂。所以,要使學(xué)生變書本知識為自己知識,就必須學(xué)會學(xué)習(xí)知識的方法。下面就其怎樣使學(xué)生在原有知識基礎(chǔ)上學(xué)習(xí)新知識的方法談些教學(xué)體會。新知識的獲得,離不開原有認(rèn)知基矗很多新知識都是學(xué)生在已有知識基礎(chǔ)上發(fā)展起來的。因此,對于學(xué)生來講,學(xué)會怎樣在已有知識的基礎(chǔ)上掌握新知識的方法是非常必要的。這就需要教師在教學(xué)中精心設(shè)計(jì)、抓住知識的生長點(diǎn)、促進(jìn)正遷移的實(shí)現(xiàn)。
例如,在研究多邊形內(nèi)角和定理時(shí),可向?qū)W生提出:我們已經(jīng)知道三角形的內(nèi)角和等于180°,那么,你能根據(jù)三角形的內(nèi)角和求出四邊形的內(nèi)角和嗎?這樣簡單、明了的一句話就勾通了新舊知識間的內(nèi)在聯(lián)系。問題的提出,激發(fā)了學(xué)生學(xué)習(xí)的興趣,促使了學(xué)生思維的展開,提供了回答問題的機(jī)會,創(chuàng)造了活躍的教學(xué)氣氛,學(xué)生會準(zhǔn)確地回答出四邊形的內(nèi)角和等于360°。又問:你是根據(jù)什么說四邊形的內(nèi)角和等于360°呢?是猜想的?還是推理得到的?學(xué)生的回答是作四邊形的對角線,將四邊形分為兩個(gè)三角形,而每個(gè)三角形的內(nèi)角和等于180°,兩個(gè)三角形的內(nèi)角和等于360°。教師馬上對學(xué)生的回答給以肯定和鼓勵,再問:五邊形、六邊形的內(nèi)角和等于多少度?學(xué)生很快就會回答出五邊形的內(nèi)角和等于540°,六邊形的內(nèi)角和等于720°。接著又問:你知道十邊形、一百邊形、一千邊形的內(nèi)角和是多少度嗎?這是老師故意設(shè)置“知識障礙”,激發(fā)學(xué)生的求知欲望。及時(shí)引導(dǎo)、啟發(fā)、遷移、總結(jié)規(guī)律。讓學(xué)生觀察、發(fā)現(xiàn)求四邊形、五邊形、六邊形的內(nèi)角和,都是從它們的一個(gè)頂點(diǎn)作對角線將它們轉(zhuǎn)化為三角形來求得的,并且內(nèi)角和是由從它們的一個(gè)頂點(diǎn)作對角線所分得三角形的個(gè)數(shù)確定的,而三角形的個(gè)數(shù)又是由這個(gè)多邊形的邊數(shù)確定的。從而可知從n邊形的一個(gè)頂點(diǎn)作對角線可將n邊形分成(n-2)個(gè)三角形,所以n邊形的內(nèi)角的和等于(n-2)·180°,即得多邊形的內(nèi)角和定理。這個(gè)定理的出現(xiàn),是教者通過設(shè)疑、引導(dǎo)、啟發(fā)學(xué)生思維,尋求解題方法,由個(gè)性問題追朔到共性問題,總結(jié)出了一般規(guī)律。這樣做,不但使學(xué)生學(xué)會了在原有知識基礎(chǔ)上學(xué)習(xí)新知識的方法,又培養(yǎng)了學(xué)生分析問題和解決問題的能力,還滲透了把多邊形轉(zhuǎn)化為三角形來研究的數(shù)學(xué)轉(zhuǎn)化思想。
當(dāng)學(xué)生在原有知識的基礎(chǔ)上掌握了學(xué)習(xí)新知識的方法和數(shù)學(xué)的轉(zhuǎn)化思想,對于諸如此類的問題就迎刃而解了。如,研究梯形中位線定理,學(xué)生很自然就會將它轉(zhuǎn)化為三角形中位線來解決。對于平行四邊形、梯形的問題學(xué)生也很容易就想到轉(zhuǎn)化為已有知識來研究。又如,對于解二元二次方程組,學(xué)生根據(jù)已學(xué)過的解一元二次方程等知識,自然就會想到通過消元將原方程組轉(zhuǎn)為一元二次方程來解之,或?qū)⒍畏匠探M通過降次轉(zhuǎn)化為一次方程或有一個(gè)一次方程和一個(gè)二次方程組來解決。對于分式方程要通過去分母或換元轉(zhuǎn)化為整式方程來解。對于無理方程需把方程兩邊乘方或換元化為有理方程來解。
在數(shù)學(xué)教學(xué)中,教師只要做到精心設(shè)計(jì)教學(xué)環(huán)節(jié),科學(xué)的提出問題,采取得體的教學(xué)方法、適時(shí)疏導(dǎo),幫助學(xué)生學(xué)會用自己的語言對所學(xué)知識進(jìn)行概括和總結(jié),以知識講方法,以方法取知識,就能夠調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,達(dá)到開發(fā)學(xué)生智力、提高學(xué)生能力的目的。
【淺談轉(zhuǎn)化思想在學(xué)習(xí)新知識中的應(yīng)用】相關(guān)文章:
淺談初中數(shù)學(xué)中數(shù)形思想轉(zhuǎn)化08-09
淺談微信公眾平臺在學(xué)校管理中的應(yīng)用08-21
淺談信息技術(shù)在學(xué)校檔案管理中的應(yīng)用08-24
淺談數(shù)學(xué)教學(xué)中差生的轉(zhuǎn)化問題08-17
淺談在思想品德教學(xué)中08-17
淺談初中數(shù)學(xué)教學(xué)中差生轉(zhuǎn)化問題08-17
淺談差生轉(zhuǎn)化08-17