七年級數學下冊教案湘教版
作為一名教學工作者,往往需要進行教案編寫工作,通過教案準備可以更好地根據具體情況對教學進程做適當的必要的調整。那么問題來了,教案應該怎么寫?以下是小編幫大家整理的七年級數學下冊教案湘教版,歡迎大家分享。
七年級數學下冊教案湘教版1
教學目標:
1.使學生結合具體情境,用平移的方法探索并發(fā)現簡單圖形覆蓋現象中的規(guī)律,能根據把圖形平移的次數推算被該圖形覆蓋的總次數,解決相應的簡單實際問題。
2.使學生主動經歷自主探索與合作交流的過程,體會有序列舉和列表思考等解決問題的策略,進一步培養(yǎng)發(fā)現和概括規(guī)律的能力。
教學重、難點:
探索簡單圖形沿一個方向進行平移后覆蓋次數的規(guī)律。能根據把圖形平移的次數推算被該圖形覆蓋的總次數,解決相應的簡單實際問題。
教學過程:
一、談話激趣
1、如果我想在第一排選座位相鄰的四人小組,可以怎樣選?有多少種選法?
學生討論后回答。
如果在第2排選呢?又可以怎樣選?有多少種選法?
2、這中間有沒有什么規(guī)律呢?這節(jié)課我們就一起來學習“找規(guī)律”。
二、、初步經歷探索規(guī)律的過程,感知規(guī)律。
談話:(出示下表)下表的紅框中兩個數的和是3。在表中移動這個紅框,可以使每次框出的兩個數的和各不相同。
1 2 3 4 5 6 7 8 9 10
提問:一共可以得到多少個不同的和?請大家拿出自己手上的數表想一想,也可以用這樣的方框試著框一框。
學生可能想到的方法有:
(1)列表排一排1+2=3,2+3=5……9+10=19 一共可以得到9個不同的和。
相機引導:這樣列表排一排,要注意什么?(有序思考,不重復、不遺漏)
(2)用方框框9次,得到9個不同的和。
引導:你能把你用方框框數的過程演示給大家看嗎?
結合學生的演示,強調:從哪里開始框起?方框依次向哪個方向平移?一共平移多少次?得到幾個不同的和?
比較兩種方法,哪種更簡便?
(第一種要算出每個具體的和,第2種方法只要考慮把長方形平移多少次就行了。) 學生在平時常常遇到類似的四人小組搭配問題,借助這一問題,初步為下面的學習作了孕伏鋪墊。
三、再次經歷探索的過程,發(fā)現規(guī)律
如果每次框出三個數,一共可以得到多少個不同的和?你能用平移的的方法找到答案嗎?拿出能框3個數的長方形框自己試一試。
學生操作后組織交流:你是怎樣框的?(強調按順序平移)一共平移了幾次?(7次)得到多少個不同的和?(8個)
提問:如果每次框出4個數、5個數呢?再試著框一框,看看分別能得到多少個不同的和?組織學生交流結果。
操作要求:剛才我們用方框在數表里每次框出了2個數、3個數、4個數和5個數。你能聯系每次平移的過程和得到的結果,把下表填寫完整嗎?
每次框幾個數 平移的次數 得到幾個不同的和
2 8 9
3
4
5
觀察表格,自己想一想,平移的次數與每次框幾個數有什么關系?得到幾個不同的和與平移的次數有什么關系?把你發(fā)現的規(guī)律在小組里交流。
學生可能得到:平移的次數與每次框出的數的個數相加正好是10;得到不同和的個數比平移的次數多1;每次框出的數越多,平移的次數與得到不同和的`個數就越少;每次框出的數的個數增加1,得到不同和的個數就減少1……
追問:利用大家發(fā)現的規(guī)律想一想,如果每次框6個數,平移的次數是幾?能得到幾個不同的和?
四、嘗試用規(guī)律解決問題,加深對規(guī)律的認識
1.完成“試一試”。
提問:(出示題目)如果把表中的數增加到15,你能用剛才發(fā)現的規(guī)律說說每次框出2個數能得到多少個不同的和嗎?每次框出3個數或4個數呢?
引導學生交流自己的想法并有條理地表達自己的想法(如果部分學生感到有困難,也可以讓他們邊操作邊思考)
2.完成“練一練”。
提問:(出示花邊)這是小紅設計的一條花邊。每次給相鄰的兩個方格蓋上紅色的透明紙,一共有多少種不同的蓋法?
先讓學生獨立完成,然后組織交流。
提問:如果給緊連的3個方格蓋上紅色的透明紙,一共有多少種不同的蓋法?每次蓋5個方格呢?鼓勵學生簡捷地推算出答案。
五、課堂小結,聯系實際應用規(guī)律
1.提問:這節(jié)課我們探索了什么規(guī)律?是用什么方法發(fā)現規(guī)律的?
2.做練習十的第1題。今天我們探索的規(guī)律在實際生活中也有一些應用。(出示練習十的第1題)你知道一共有多少種不同的拿法嗎?
提示學生將每3張連號的票畫一畫,找到答案。
3.做練習十的第2題。(出示練習十的第2題)提示:可以根據題意先畫圖,再思考。學生解答后,再組織交流思考的過程。
七年級數學下冊教案湘教版2
教學目標
1.會解由兩個一元一次不等式組成的不等式組,會用數軸確定解決。
2.讓學生進一步感受數形結合的作用,逐步熟悉和掌握這一重要思想方法。
3.培養(yǎng)勇于開拓創(chuàng)新的精神。
教學重點
解決由兩個不等式組成的.不等式組。
教學難點
學生歸納解一元一次不等式組的步驟。
教學方法
合作交流,自己探究。
教學過程
一、做一做。
1.分別解不等式x+4>3。。
2.將1中各不等式解集在同一數軸上表示出來。
3.說一說不等式組的解集是什么?
4.討論交流,怎樣解一元一次不等式組?
二、新課
1.解不等式組的概念。
2.例1:解不等式組:
教師講解,提醒學生注意防止出現符號錯誤和運算錯誤。注意“<”和“”在數軸表示時的差別。
3.例2:解不等式組:
學生解出不等式(1)、(2)。并把解集表示在同一數軸上。討論:本不等式組的解集是什么?
4.例3:解不等式組:
解出不等式(1)、(2)。并把解集表示在同一數軸上。
討論:本不等式組的解集是什么?(空集)
說明:本題可說“這個不等式組無解”或“這個不等式組的解集是空集”。簡單介紹“空集”。
5.思考:
(1)說出下列不等式組的解集:
、佗冖邰
(2)討論(1)中有什么規(guī)律?
三、練習
1.P8練習題。
2.如果a>b,說說下列不等式組的解集。
、佗冖
3.如果不等式組的解集是x>a。
那么a____3(填“>”“<”“≤”或“≥”)
四、小結。
說一說怎樣解不等式組?
五、作業(yè)。
習題1.2A組題
選作B組題。后記:
七年級數學下冊教案湘教版3
一、教學目標
1、理解一個數平方根和算術平方根的意義;
2、理解根號的意義,會用根號表示一個數的平方根和算術平方根;
3通、過本節(jié)的訓練,提高學生的邏輯思維能力;
4、通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關系,激發(fā)學生探索數學奧秘的興趣。
二、教學重點和難點
教學重點:平方根和算術平方根的概念及求法。
教學難點:平方根與算術平方根聯系與區(qū)別。
三、教學方法
講練結合。
四、教學手段
多媒體
五、教學過程
(一)提問
1、已知一正方形面積為50平方米,那么它的邊長應為多少?
2、已知一個數的平方等于1000,那么這個數是多少?
3、一只容積為0.125立方米的正方體容器,它的棱長應為多少?
這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節(jié)內容所要學習的下面作一個小練習,填空:
1、( 。2=9;
2、( 。2 =0.25;
3、( 。2=0.0081。
學生在完成此練習時,最容易出現的錯誤是丟掉負數解,在教學時應注意糾正。
由練習引出平方根的概念。
。ǘ┢椒礁拍
如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。
用數學語言表達即為:若x2=a,則x叫做a的平方根。
由練習知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我們看到3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。ā 。2=—4
學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的平方為非負數。由此我們可以得到結論,負數是沒有平方根的下面總結一下平方根的性質(可由學生總結,教師整理)。
(三)平方根性質
1、一個正數有兩個平方根,它們互為相反數。
2、0有一個平方根,它是0本身。
3、負數沒有平方根。
。ㄋ模╅_平方
求一個數a的.平方根的運算,叫做開平方的運算。
由練習我們看到3與—3的平方是9,9的平方根是3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作,其中讀作“二次根號”,讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。
練習:
1、用正確的符號表示下列各數的平方根:
、26
、247
③0.2
、3
⑤
解:①26的平方根是
、247的平方根是
③0.2的平方根是
、3的平方根是
⑤的平方根是
七年級數學下冊教案湘教版4
一、教學目標
1、知識目標:掌握數軸三要素,會畫數軸。
2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;
3、情感目標:向學生滲透數形結合的思想。
二、教學重難點
教學重點:數軸的三要素和用數軸上的點表示有理數。
教學難點:有理數與數軸上點的對應關系。
三、教法
主要采用啟發(fā)式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
。ㄒ唬﹦(chuàng)設情境激活思維
1。學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發(fā)學生自豪感。
2。聯系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1。馬路用什么幾何圖形代表?(直線)
2。文中相關地點用什么代表?(直線上的點)
3。學校大門起什么作用?(基準點、參照物)
4。你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1。0代表什么?
2。數的符號的實際意義是什么?
3!75表示什么?100表示什么?
設計意圖:繼續(xù)以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。
(二)自主學習探究新知
學生活動:帶著以下問題自學課本第8頁:
1。什么樣的直線叫數軸?它具備什么條件。
2。如何畫數軸?
3。根據上述實例的經驗,“原點”起什么作用?
4。你是怎么理解“選取適當的長度為單位長度”的?
師生活動:
學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。
設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。
至此,學生已會畫數軸,師生共同歸納總結(板書)
、贁递S的定義。
、跀递S三要素。
練習:(媒體展示)
1。判斷下列圖形是否是數軸。
2?诖穑簲递S上各點表示的數。
3。在數軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。
。ㄈ┬〗M合作交流展示
問題:觀察數軸上的點,你有什么發(fā)現?
數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和—a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養(yǎng)學生的抽象概括能力。
。ㄋ模w納總結反思提高
師生共同回顧本節(jié)課所學主要內容,回答以下問題:
1。什么是數軸?
2。數軸的“三要素”各指什么?
3。數軸的畫法。
設計意圖:梳理本節(jié)課內容,掌握本節(jié)課的核心――數軸“三要素”。
。ㄎ澹┠繕藱z測設計
1。下列命題正確的是()
A。數軸上的點都表示整數。
B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C。數軸包括原點與正方向兩個要素。
D。數軸上的點只能表示正數和零。
2。畫數軸,在數軸上標出—5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。
3。畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有_______個。4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。
五、板書
1。數軸的定義。
2。數軸的三要素(圖)。
3。數軸的畫法。
4。性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1。什么樣的直線叫數軸?
定義:規(guī)定了_________、________、_________的直線叫數軸。
數軸的三要素:_________、_________、__________。
2。畫數軸的步驟是什么?
3!霸c”起什么作用?__________
4。你是怎么理解“選取適當的長度為單位長度”的?
練習:
1。畫一條數軸
2。在你畫好的數軸上表示下列有理數:1。5,—2,—2。5,2,2。5,0,—1。5
活動三:議一議
小組討論:觀察你所畫的'數軸上的點,你有什么發(fā)現?
歸納:一般地,設a是一個正數,則數軸上表示數a在原點的____邊,與原點的距離是____個單位長度;表示數—a的點在原點的____邊,與原點的距離是____個單位長度。
練習:
1。數軸上表示—3的點在原點的_______側,距原點的距離是______;表示6的點在原點的______側,距原點的距離是______;兩點之間的距離為_______個單位長度。
2。距離原點距離為5個單位的點表示的數是________。
3。在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點B,則點B表示的數是________。
附:目標檢測
1。下列命題正確的是()
A。數軸上的點都表示整數。
B。數軸上表示4與—4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C。數軸包括原點與正方向兩個要素。
D。數軸上的點只能表示正數和零。
2。畫數軸,在數軸上標出—5和+5之間的所有整數。列舉到原點的距離小于3的所有整數。
3。畫數軸,觀察數軸,在原點左邊的點有_______個。
4。在數軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數軸上點A表示的數是________。
七年級數學下冊教案湘教版5
一、教學內容分析
1。2有理數1。2。2數軸。這一節(jié)是初中數學中非常重要的內容,從知識上講,數軸是數學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數軸是數形結合的起點,而數形結合是學生理解數學、學好數學的方法。日常生活中帶見的用溫度計度量溫度,已為學習數軸概念打下了一定的基礎。通過問題情境類比得到數軸的概念,是這節(jié)課的主要學習方法。同時,數軸又能將數的分類直觀的表現出來,是學生領悟分類思想的基礎。
二、學生學習情況分析
。1)知識掌握上,七年級的學生剛剛學習有理數中的正負數,對正負數的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統(tǒng)的去講述;
。2)學生學習本節(jié)課的知識障礙。學生對數軸概念和數軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現象,所以教學中教師應予以簡單明白、深入淺出的分析;
。3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生的主動性。
三、設計思想
從學生已有知識、經驗出發(fā)研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。
四、教學目標
。ㄒ唬┲R與技能
1、掌握數軸的三要素,能正確畫出數軸。
2、能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數。
。ǘ┻^程與方法
1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識。
2、對學生滲透數形結合的思想方法。
(三)情感、態(tài)度與價值觀
1、使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。
2、通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
五、教學重點及難點
1、重點:正確掌握數軸畫法和用數軸上的點表示有理數。
2、難點:有理數和數軸上的點的對應關系。
六、教學建議
1、重點、難點分析
本節(jié)的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小。難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的'。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。
2、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的方法,本課知識要點如下:
定義規(guī)定了原點、正方向、單位長度的直線叫數軸
三要素原點正方向單位長度
應用數形結合
七、學法引導
1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法。
2、學生學法:動手畫數軸,動腦概括數軸的三要素,動手、動腦做練習。
八、課時安排
1課時
九、教具學具準備
電腦、投影儀、三角板
十、師生互動活動設計
講授新課
。ǔ鍪就队1)
問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。
師:三個溫度計所表示的溫度是多少?
生:2℃,—5℃,0℃。
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)
師:我們能否用類似的圖形表示有理數呢?
師:這種表示數的圖形就是今天我們要學的內容—數軸(板書課題)。
師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀
數,用直線上的點表示正數、負數和零。具體方法如下
。ㄟ呎f邊畫):
1。畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2。規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3。選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為—1,—2,—3,…
師問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
讓學生觀察畫好的直線,思考以下問題:
。ǔ鍪就队2)
(1)原點表示什么數?
。2)原點右方表示什么數?原點左方表示什么數?
。3)表示+2的點在什么位置?表示—1的點在什么位置?
。4)原點向右0。5個單位長度的A點表示什么數?
原點向左1。5個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數軸的定義。
師:在此基礎上,給出數軸的定義,即規(guī)定了原點、正方向和單
位長度的直線叫做數軸。
進而提問學生:在數軸上,已知一點P表示數—5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是—5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可。
【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力。
師生同步畫數軸,學生概括數軸三要素,師出示投影,生動手動腦練習
嘗試反饋,鞏固練習
。ǔ鍪就队3)。畫出數軸并表示下列有理數:
1、1。5,—2。2,—2。5,,,0。
2。寫出數軸上點A,B,C,D,E所表示的數:
請大家回答下列問題:
。ǔ鍪就队4)
。1)有人說一條直線是一條數軸,對不對?為什么?
。2)下列所畫數軸對不對?如果不對,指出錯在哪里?
【教法說明】此組練習的目的是鞏固數軸的概念。
十一、小結
本節(jié)課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究。
十二、課后練習習題1。2第2題
十三、教學反思
1、數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3、注意從學生的知識經驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。
七年級數學下冊教案湘教版6
垂線
[教學目標]
1. 理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2. 掌握點到直線的距離的概念,并會度量點到直線的距離。
3. 掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一. 復習提問:
1、 敘述鄰補角及對頂角的定義。
2、 對頂角有怎樣的性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線AB、CD互相垂直,記作 ,垂足為O。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、 如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點A畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點B畫l的垂線,這樣的`垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1 過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點P與直線l上各點O,
A,B,C,……,其中 (我們稱PO為點P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質2 連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成: 垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,PO的長度叫做點 P到直線l的距離。
七年級數學下冊教案湘教版7
一 內容和內容解析
1.內容
二元一次方程, 二元一次方程組概念
2.內容解析
二元一次方程組是解決含有兩個提供運算未知數的問題的有力工具,也是解決后續(xù)一些數學問題的基礎。直接設兩個未知數,列方程,方程組更加直觀,本章就從這個想法出發(fā)引入新內容.
本節(jié)課一以引言中的問題開始,引導學生思考“問題中包含的等量關系”以及“設兩個未知數后如何用方程表示等量關系”.繼而深入探究二元一次方程, 二元一次方程組的解.
本節(jié)課的教學重點是:二元一次方程, 二元一次方程組的概念
二、目標和目標解析
1.教學目標
(1)會設兩個未知數后用方程表示等量關系列二元一次方程, 二元一次方程組.
(2)理解解二元一次方程, 二元一次方程組的解的概念.
2. 教學目標解析
(1)學生能掌握設兩個未知數后,分析問題中包含的等量關系”以及“用方程表示等量關系”.
(2)要讓學生經歷探究的過程.體會二元一次方程組的解, 二元一次方程組的解是實際意義.
三、教學問題診斷分斷
1.學生過去已遇到二元問題,但只設一個未知數,再表示出另一個未知數,用一元一次方程解決. 現在如何引導學生設兩個未知數。需要結合實際問題進行分析。由于方程組的兩個方程中同一個未知數表示的是同一數量,通過觀察對照,可以發(fā)現一元一次方程向二元一次方程組轉化的思路
2.結合一元一次方程的解向二元一次方程, 二元一次方程組的解轉化,學習知識的遷移.
本節(jié)教學難點:
1.把一元向二元的轉化,設兩個未知數.結合實際問題進行分析,列二元一次方程, 二元一次方程組.
2.二元一次方程組的解的意義
四、教學過程設計
1.創(chuàng)設情境,提出問題
問題1 籃球聯賽中,每場都要分出勝負,每隊勝1場得2分,負1場得1分,某隊10場比賽中得到16分,那么這個隊勝負場數分別是多少?你能用一元一次方程解決這個問題嗎?
師生活動:學生回答:能。設勝x場,負(10-x)場。根據題意,得2x+(10-x)=16
x=6,則勝6場,負4場
教師追問:你能根據兩個問題中的等量關系設兩個未知數列出二個反映題意的`方程嗎?
師生活動:學生回答:能。設勝x場,負y場。根據題意,得x+y=10 , 2x+y=16.
教師歸納:像這樣,每個方程都含有兩個未知數(x和y)并且含有未知數的項的次數都是1的方程叫做二元一次方程。
設計意圖:用引言的問題引人本節(jié)課內容,先列一元一次方程解決這個問題,轉變思路,再列二元一次方程,為后面教學做好了鋪墊.
問題2:對比兩個方程,你能發(fā)現它們之間的關系嗎?
師生活動:通過對實際問題的分析,認識方程組中的兩個x,y都是這個隊的勝,負場數,它們必須同時滿足這兩個方程,這樣,連在一起寫成就組成了一個方程組 。這個方程組中每個方程都含有兩個未知數(x和y)并且含有未知數的項的次數都是1,像這樣的方程組叫做二元一次方程組 。
設計意圖:從實際出發(fā),引入方程組的概念,切合學生的認知過程。
問題3 : 探究
滿足了方程①,且符合問題的實際意義的x,y的值有哪些?把它們填入表中
x
y
上表中哪些x,y的值還滿足方程②?
學生小組合作完成。
教師歸納:一般地,使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解.一般地,二元一次方程組兩個方程的公共解,叫做二元一次方程組的解
設計意圖:類比一元一次方程的解,學習二元一次方程的解,二元一次方程組的解 。
2. 應用新知,提升能力
例1 把一個長20m的鐵絲圍成一個長方形。如果一邊長為 xm,它的鄰邊為 ym .求
(1) x和 y滿足的關系式;
(2) 當 x=15時,y的值;.
(3) 當 y=12時,x的值
師生活動:小組討論,然后每組各派一名代表上黑板完成.
設計意圖:借助本題,充分發(fā)揮學生的合作探究精神通過比較,進一步體會二元一次方程及二元一次方程的解的意義.
3.加深認識,鞏固提高
練習: 一條船順流航行,每小時行20 km ,逆流航行,每小時行16km .求船在靜水中的速度和水的流速。
師生活動:分兩小組討論.一組用一元一次方程解決,另一組嘗試列方程組(不要求求解),為解二元一次方程組埋下伏筆。然后每組各派一名代表上黑板完成。
設計意圖:提醒并指導學生要先分析問題的兩個未知數關系,嘗試結合題意,尋找到兩個等量關系,列方程組。體會直接設兩個未知數,列方程,方程組更加直觀,
4.歸納總結
師生活動:共同回顧本節(jié)課的學習過程,并回答以下問題
1.二元一次方程, 二元一次方程組的概念
2.二元一次方程, 二元一次方程組的解的概念.
3.在探究的過程中用到了哪些思想方法?
4.你還有哪些收獲?
設計意圖:通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養(yǎng)學生自我歸納概括的能力.
七年級數學下冊教案湘教版8
教學目標:
1、知識與技能
。1)通過實例,感受引入負數的必要性和合理性,能應用正負數表示生活中具有相反意義的量。
(2)理解有理數的意義,體會有理數應用的廣泛性。
2、過程與方法
通過實例的引入,認識到負數的產生是來源于生產和生活,會用正、負數表示具有相反意義的量,能按要求對有理數進行分類。
重點、難點:
1、重點:正數、負數有意義,有理數的意義,能正確對有理數進行分類。
2、難點:對負數的理解以及正確地對有理數進行分類。
教學過程:
一、創(chuàng)設情景,導入新課
大家知道,數學與數是分不開的,現在我們一起來回憶一下,小學里已經學過哪些類型的數?
學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的
為了表示一個人、兩只手、……,我們用到整數1,2,……
為了表示“沒有人”、“沒有羊”、……,我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數、零或分數、小數表示。
二、合作交流,解讀探究
1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數,都記作5℃,就不能把它們區(qū)別清楚。它們是具有相反意義的兩個量。
現實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的!斑\進”和“運出”,其意義是相反的。
同學們能舉例子嗎?
學生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?
待學生思考后,請學生回答、評議、補充。
教師小結:同學們成了發(fā)明家。甲同學說,用不同顏色來區(qū)分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學說,在數字前面加不同符號來區(qū)分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數學家就曾經采用不同的顏色來區(qū)分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。
現在,數學中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。
讓學生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
教師講解:什么叫做正數?什么叫做負數?強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號。
2、給出新的整數、分數概念
引進負數后,數的范圍擴大了。過去我們說整數只包括自然數和零,引進負數后,我們把自然數叫做正整數,自然數前加上負號的`數叫做負整數,因而整數包括正整數(自然數)、負整數和零,同樣分數包括正分數、負分數。
3、給出有理數概念
整數和分數統(tǒng)稱為有理數。
4、有理數的分類
為了便于研究某些問題,常常需要將有理數進行分類,需要不同,分類的方法也常常不同根據有理數的定義可將有理數分成兩類:整數和分數。有理數還有沒有其他的分類方法?
待學生思考后,請學生回答、評議、補充。
教師小結:按有理數的符號分為三類:正有理數、負有理數和零。在有理數范圍內,正數和零統(tǒng)稱為非負數。向學生強調:分類可以根據不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類。
三、總結反思
引導學生回答如下問題:本節(jié)課學習了哪些基本內容?學習了什么數學思想方法?應注意什么問題?
由于實際生活中存在著許多具有相反意義的量,因此產生了正數與負數。正數是大于0的數,負數就是在正數前面加上“—”號的數,負數小于0。0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃。
四、課后作業(yè):課本P5習題1。1A第1、2、4題。
【七年級數學下冊教案】相關文章:
七年級下冊教案數學教案06-29
七年級數學下冊教案04-23
七年級數學下冊優(yōu)秀教案03-26
七年級數學下冊教案(熱)08-26
人教版七年級數學下冊教案02-21
七年級數學下冊教案優(yōu)秀07-22
七年級下冊數學教案01-24
七年級數學下冊教案【精品】11-25
七年級數學下冊教案湘教版11-04
(經典)七年級下冊數學教案11-07