天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

高二數(shù)學(xué)教案

時(shí)間:2025-02-07 07:43:15 高二數(shù)學(xué)教案 我要投稿

高二數(shù)學(xué)教案【實(shí)用】

  作為一名為他人授業(yè)解惑的教育工作者,總不可避免地需要編寫(xiě)教案,借助教案可以有效提升自己的教學(xué)能力。教案要怎么寫(xiě)呢?下面是小編整理的高二數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。

高二數(shù)學(xué)教案【實(shí)用】

高二數(shù)學(xué)教案1

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  熟練掌握三角函數(shù)式的求值

  教學(xué)重難點(diǎn)

  熟練掌握三角函數(shù)式的求值

  教學(xué)過(guò)程

  【知識(shí)點(diǎn)精講】

  三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

  三角函數(shù)式的求值的類型一般可分為:

  (1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

  (2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

  (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

  (4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之

  三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次

  注意點(diǎn):靈活角的變形和公式的變形

  重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論

  【例題選講】

  課堂小結(jié)】

  三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

  三角函數(shù)式的求值的'類型一般可分為:

  (1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

  (2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

  (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

  (4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之

  三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次

  注意點(diǎn):靈活角的變形和公式的變形

  重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論

高二數(shù)學(xué)教案2

  教學(xué)內(nèi)容

  教科書(shū)125頁(yè),練習(xí)三十.

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1.通過(guò)整理和復(fù)習(xí),進(jìn)一步掌握方程的有關(guān)知識(shí)。

  2.通過(guò)整理和復(fù)習(xí),進(jìn)一步掌握用方程解應(yīng)用題。

  (二)能力訓(xùn)練點(diǎn)

  1.通過(guò)整理和復(fù)習(xí),加強(qiáng)知識(shí)間的聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。

  2.通過(guò)整理和復(fù)習(xí),培養(yǎng)學(xué)生計(jì)算的敏捷性和靈活性。

  (三)德育滲透點(diǎn)

  通過(guò)知識(shí)化間的聯(lián)系,使學(xué)生受到辯證唯物主義的啟蒙教育。

  (四)美育滲透點(diǎn)

  通過(guò)整理和復(fù)習(xí),使學(xué)生感受到數(shù)學(xué)知識(shí)內(nèi)在聯(lián)系的邏輯之美,從而感悟到數(shù)學(xué)知識(shí)的魅力。

  二、學(xué)法指導(dǎo)

  1.引導(dǎo)學(xué)生回憶所學(xué)過(guò)知識(shí),使知識(shí)系統(tǒng)化。

  2.指導(dǎo)學(xué)生利用已有經(jīng)驗(yàn),進(jìn)行體驗(yàn),鞏固所學(xué)知識(shí)。

  三、教學(xué)重點(diǎn)

  通過(guò)知識(shí)間的聯(lián)系,掌握方程的概念和解方程的能力。

  四、教學(xué)難點(diǎn)

  知識(shí)間的內(nèi)在聯(lián)系。

  五、教具學(xué)具準(zhǔn)備

  投影儀、投影片等。

  六、教學(xué)步驟

  (一)導(dǎo)入(略)

  (二)復(fù)習(xí)

  1.這單元學(xué)習(xí)了什么內(nèi)容

  2.回憶并概括,板書(shū)

  (1)用字母表示數(shù)

  (2)解簡(jiǎn)易方程

  (3)列方程解應(yīng)用題。

  (先啟發(fā)學(xué)生回憶學(xué)過(guò)的知識(shí),為整理和復(fù)習(xí)做準(zhǔn)備)。

  (三)整理

  1.用字母表示數(shù)

  用字母表示數(shù)每天跑步的米數(shù)用X表示。

  用字母表示數(shù)量關(guān)系一星期跑的米數(shù)7X。

  用含有字母的式子表示數(shù)量現(xiàn)在每天跑步的米數(shù)x+2凹

  (2)出示1(2),引導(dǎo)學(xué)生解答。

  (把用字母表示數(shù),按整理和復(fù)習(xí)的類型進(jìn)行梳理,形成知識(shí)結(jié)構(gòu)。)

  2.解簡(jiǎn)易方程

  (1)方程的意義,引導(dǎo)學(xué)生回憶。

  解方程的意義

  出示練習(xí)三十二1題,進(jìn)行反饋練習(xí)。

  (2)整理和復(fù)習(xí)3題

 、倏谑鼋忸}步驟

 、谑箤W(xué)生明確:根據(jù)加、減、乘、除運(yùn)算關(guān)系進(jìn)解答,這在以前解含有未知數(shù)尤的等式中已經(jīng)掌握。

  ③出示練習(xí)三十三3、4題,部分題分組進(jìn)行解答,訂正,并說(shuō)一說(shuō)是怎樣想的`

  (邊整理邊反饋練習(xí),使學(xué)生已有的經(jīng)驗(yàn)得到充分體驗(yàn)和發(fā)展,提高學(xué)生的計(jì)算能力。)

 、芤龑(dǎo)學(xué)生總結(jié),解方程應(yīng)注意的問(wèn)題。

  3.列方程解應(yīng)用題

  列方程解應(yīng)用題,用方程的方法解決實(shí)際問(wèn)題。

  (1)列方程解應(yīng)用題的特點(diǎn)是

 、儆米帜副硎疚粗獢(shù)

  ②分析題中的等量關(guān)系

 、哿谐龊形粗獢(shù)x的等式方程

 、芙獯,檢驗(yàn)與答答話。

  (2)整理和復(fù)習(xí)4題

  分組進(jìn)行交流,訂正時(shí)說(shuō)一說(shuō)是怎樣想的

  (3)練習(xí)三十三4題,用方程解,獨(dú)立計(jì)算。

  (4)整理和復(fù)習(xí)5題

 、傧确纸M用不同方法解答

 、谝龑(dǎo)學(xué)生進(jìn)行比較

  使學(xué)生明確:

  用方程解應(yīng)用題:用算術(shù)方法解應(yīng)用題

  1.未知數(shù)用字母表示,勃口列式。

  1.未知數(shù)不參加列式。

  2。根據(jù)題意找出數(shù)量間的相等

  2.根據(jù)題里已知數(shù)和未知數(shù)間關(guān)系,引出含有未知數(shù)x的關(guān)系,引出含有末知數(shù)x的等式。的關(guān)系,確定解答步驟,再列式計(jì)算。

  注意:用方程解應(yīng)用題,得數(shù)不注明單位名稱;而用算術(shù)方法解應(yīng)用題,得數(shù)要注明單位名稱。

  今后題目中除指定解題方法以外,自己選擇解題方法。

  (5)練習(xí)三十三6題

  訂正時(shí),引導(dǎo)學(xué)生分析、比較。

  七、布置作業(yè)

  練習(xí)三十三3、4題部分題,7、8題。

  八、板書(shū)設(shè)計(jì)(略)

高二數(shù)學(xué)教案3

  一、教學(xué)目的

  1、使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義。

  2、使學(xué)生會(huì)用描點(diǎn)法畫(huà)出簡(jiǎn)單函數(shù)的圖象。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):

  1、理解與認(rèn)識(shí)函數(shù)圖象的意義。

  2、培養(yǎng)學(xué)生的看圖、識(shí)圖能力。

  難點(diǎn):在畫(huà)圖的三個(gè)步驟的'列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題。

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn)

  1、函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法。)

  2、結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?

  3、說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:

  新課

  1、畫(huà)函數(shù)圖象的方法是描點(diǎn)法。其步驟:

 。1)列表。要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值。什么叫“適當(dāng)”?這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn)。比如畫(huà)函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了。

  一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái)。

 。2)描點(diǎn)。我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn)。

 。3)用光滑曲線連線。根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線。

  一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線)。

  2、講解畫(huà)函數(shù)圖象的三個(gè)步驟和例。畫(huà)出函數(shù)y=x+0。5的圖象。

  小結(jié)

  本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫(huà)函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫(huà)圖。

  練習(xí)

 、龠x用課本練習(xí)

 。ㄇ耙还(jié)已作:列表、描點(diǎn),本節(jié)要求連線)

 、谘a(bǔ)充題:畫(huà)出函數(shù)y=5x-2的圖象。

  作業(yè):選用課本習(xí)題。

  四、教學(xué)注意問(wèn)題

  1、注意滲透數(shù)形結(jié)合思想。通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí)。把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征。

  2、注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫(huà)圖的積極性。

  3、認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能。故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力。

高二數(shù)學(xué)教案4

  一、教材分析

  【教材地位及作用】

  基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。

  【教學(xué)目標(biāo)】

  依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):

  知識(shí)與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;

  過(guò)程與方法目標(biāo):通過(guò)探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過(guò)程,培養(yǎng)分析、解決問(wèn)題的能力;

  情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

  【教學(xué)重難點(diǎn)】

  重點(diǎn):理解掌握基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義。

  難點(diǎn):利用基本不等式推導(dǎo)不等式.

  關(guān)鍵是對(duì)基本不等式的理解掌握.

  二、教法分析

  本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率.

  三、學(xué)法指導(dǎo)

  新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過(guò)讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。

  四、教學(xué)過(guò)程

  教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

  具體過(guò)程安排如下:

  (一)基本不等式的教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問(wèn)題

  設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

  上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。

  [問(wèn)題1]請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)

  (二)探究問(wèn)題,抽象歸納

  基本不等式的教學(xué)設(shè)計(jì)1.探究圖形中的不等關(guān)系

  形的角度----(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積.)

  數(shù)的角度

  [問(wèn)題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?

  學(xué)生討論結(jié)果:。

  [問(wèn)題3]大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒(méi)有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)

  咱們?cè)倏匆豢磮D形的變化,(教師演示)

  (學(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。

  設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

  2.抽象歸納:

  一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

  [問(wèn)題4]你能給出它的證明嗎?

  學(xué)生在黑板上板書(shū)。

  [問(wèn)題5]特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?

  學(xué)生歸納得出。

  設(shè)計(jì)意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的`來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).

  【歸納總結(jié)】

  如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

  我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。

  3.探究基本不等式證明方法:

  [問(wèn)題6]如何證明基本不等式?

  設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。

  方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開(kāi)證明。

  方法二:分析法

  要證

  只要證2

  要證,只要證2

  要證,只要證

  顯然,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。

  4.理解升華

  1)文字語(yǔ)言敘述:

  兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

  2)符號(hào)語(yǔ)言敘述:

  若,則有,當(dāng)且僅當(dāng)a=b時(shí),。

  [問(wèn)題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))

  “當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:

  當(dāng)a=b時(shí),取等號(hào),即;

  僅當(dāng)a=b時(shí),取等號(hào),即。

  3)探究基本不等式的幾何意義:

  基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過(guò)數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。

  如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),

  CD⊥AB,AC=a,CB=b,

  [問(wèn)題8]你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?

  (教師演示,學(xué)生直觀感覺(jué))

  易證RtACDRtDCB,那么CD2=CA·CB

  即CD=.

  這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立.

  因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.

  4)聯(lián)想數(shù)列的知識(shí)理解基本不等式

  從形的角度來(lái)看,基本不等式具有特定的幾何意義;從數(shù)的角度來(lái)看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.

  [問(wèn)題9]回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過(guò)“和”與“積”的結(jié)構(gòu)?

  歸納得出:

  均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng).

  基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用

  例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)

  (2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,

  ,過(guò)作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?

  設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。

  (五)演練反饋,鞏固深化

  公式應(yīng)用之一:

  1.試判斷與與2的大小關(guān)系?

  問(wèn)題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?

  2.試判斷與7的大小關(guān)系?

  公式應(yīng)用之二:

  設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中

  (1)用一個(gè)兩臂長(zhǎng)短有差異的天平稱一樣物品,有人說(shuō)只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺(jué)得這種做法比實(shí)際重量輕了還是重了?

  (2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類產(chǎn)品進(jìn)行促銷.甲商場(chǎng)采取的促銷方式是在原價(jià)p折的基礎(chǔ)上再打q折;乙商場(chǎng)的促銷方式則是兩次都打折.對(duì)顧客而言,哪種打折方式更合算?(0≠q)

  (五)反思總結(jié),整合新知:

  通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要請(qǐng)教?

  設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點(diǎn),突破難點(diǎn)

  老師根據(jù)情況完善如下:

  知識(shí)要點(diǎn):

  (1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征

  (2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義

  思想方法技巧:

  (1)數(shù)形結(jié)合思想、“整體與局部”

  (2)歸納與類比思想

  (3)換元法、比較法、分析法

  (七)布置作業(yè),更上一層

  1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)

  2.書(shū)面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)

  3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?

  設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

  五、評(píng)價(jià)分析

  1.在建立新知的過(guò)程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來(lái)分析問(wèn)題、解決問(wèn)題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問(wèn)題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體情況,力爭(zhēng)提問(wèn)準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問(wèn)持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和掌握在不斷的思考和討論中完善和加深。

  2.本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過(guò)程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解!皵(shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會(huì)用的,只有學(xué)生通過(guò)實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問(wèn)題時(shí)去嘗試使用,只有通過(guò)不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到掌握它的目的。

高二數(shù)學(xué)教案5

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  能正確概述“二面角”、“二面角的平面角”的概念,會(huì)做二面角的平面角。

  【過(guò)程與方法】

  利用類比的方法推理二面角的有關(guān)概念,提升知識(shí)遷移的能力。

  【情感態(tài)度與價(jià)值觀】

  營(yíng)造和諧、輕松的學(xué)習(xí)氛圍,通過(guò)學(xué)生之間,師生之間的交流、合作和評(píng)價(jià)達(dá)成共識(shí)、共享、共進(jìn),實(shí)現(xiàn)教學(xué)相長(zhǎng)和共同發(fā)展。

  二、教學(xué)重、難點(diǎn)

  【重點(diǎn)】

  “二面角”和“二面角的平面角”的概念。

  【難點(diǎn)】

  “二面角的平面角”概念的形成過(guò)程。

  三、教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  請(qǐng)學(xué)生觀察生活中的一些模型,多媒體展示以下一系列動(dòng)畫(huà)如:

  1.打開(kāi)書(shū)本的過(guò)程;

  2.發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;

  3.修筑水壩時(shí),為了使水壩堅(jiān)固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌?

  引導(dǎo)學(xué)生說(shuō)出書(shū)本的兩個(gè)面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系,引出課題。

  (二)師生互動(dòng),探索新知

  學(xué)生閱讀教材,同桌互相討論,教師引導(dǎo)學(xué)生對(duì)比平面角得出二面角的概念

  平面角:平面角是從平面內(nèi)一點(diǎn)出發(fā)的兩條射線(半直線)所組成的圖形。

  二面角定義:從一條直線出發(fā)的兩個(gè)半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個(gè)半平面叫作二面角的`面。(動(dòng)畫(huà)演示)

  (2)二面角的表示

  (3)二面角的畫(huà)法

  (PPT演示)

  教師提問(wèn):一般地說(shuō),量角器只能測(cè)量“平面角”(指兩條相交直線所成的角.相應(yīng)地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導(dǎo)學(xué)生將空間角化為平面角.

  教師總結(jié):

  (1)二面角的平面角的定義

  定義:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角.

  “二面角的平面角”的定義三個(gè)主要特征:點(diǎn)在棱上、線在面內(nèi)、與棱垂直(動(dòng)畫(huà)演示)

  大。憾娼堑拇笮】梢杂盟钠矫娼堑拇笮(lái)表示。

  平面角是直角的二面角叫做直二面角。

  (2)二面角的平面角的作法

 、冱c(diǎn)P在棱上—定義法

 、邳c(diǎn)P在一個(gè)半平面上—三垂線定理法

 、埸c(diǎn)P在二面角內(nèi)—垂面法

  (三)生生互動(dòng),鞏固提高

  (四)生生互動(dòng),鞏固提高

  1.判斷下列命題的真假:

  (1)兩個(gè)相交平面組成的圖形叫做二面角。( )

  (2)角的兩邊分別在二面角的兩個(gè)面內(nèi),則這個(gè)角是二面角的平面角。( )

  (3)二面角的平面角所在平面垂直于二面角的棱。( )

  2.作出一下面PAC和面ABC的平面角。

  (五)課堂小結(jié),布置作業(yè)

  小結(jié):通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)到了什么?

  作業(yè):以正方體為模型請(qǐng)找出一個(gè)所成角度為四十五度的二面角,并證明。

高二數(shù)學(xué)教案6

  一、學(xué)習(xí)者特征分析

  本節(jié)課內(nèi)容是面向高二下學(xué)期的學(xué)生,主要是進(jìn)行思維的訓(xùn)練。學(xué)生在高一的時(shí)候已經(jīng)學(xué)過(guò)這些數(shù)學(xué)思維方法,但是對(duì)這些知識(shí)還沒(méi)有進(jìn)行概念化的歸納和專門的訓(xùn)練。學(xué)生不知道分析法和綜合法的時(shí)候還是會(huì)用一點(diǎn),以以往的經(jīng)驗(yàn),學(xué)生一旦學(xué)習(xí)概念后,反而覺(jué)得難度大,概念混淆,因此,這一教學(xué)內(nèi)容的設(shè)計(jì)是針對(duì)學(xué)生的這一情況,設(shè)計(jì)專題學(xué)習(xí)網(wǎng)站,通過(guò)學(xué)生之間經(jīng)過(guò)學(xué)習(xí),交流,課后反復(fù)思考的,進(jìn)一步深化概念的過(guò)程,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。

  二、教學(xué)目標(biāo)

  知識(shí)與技能

  1、體會(huì)數(shù)學(xué)思維中的分析法和綜合法;

  2、會(huì)用分析法和綜合法去解決問(wèn)題。

  過(guò)程與方法

  1、通過(guò)對(duì)分析法綜合法的學(xué)習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力;

  2、培養(yǎng)學(xué)生的數(shù)學(xué)閱讀和理解能力;

  3、培養(yǎng)學(xué)生的評(píng)價(jià)和反思能力。

  情感態(tài)度與價(jià)值觀

  1.交流、分享運(yùn)用數(shù)學(xué)思維解決問(wèn)題的喜悅;

  2.提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;

  3.增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心。

  三、教學(xué)內(nèi)容

  本節(jié)課是數(shù)學(xué)思維訓(xùn)練專題課,專門訓(xùn)練學(xué)生利用分析法和綜合法解題。分析法在數(shù)學(xué)中特指從結(jié)果(結(jié)論)出發(fā)追溯其產(chǎn)生原因的思維方法,即執(zhí)果索因法。綜合思維方法:綜合是以已知性質(zhì)和分析為基礎(chǔ)的,從已知出發(fā)逐步推求位未知的思考方法,即執(zhí)果導(dǎo)因法。這兩種數(shù)學(xué)思維方法是數(shù)學(xué)思維方法中最基礎(chǔ)也是最重要的方法,是學(xué)生的思維訓(xùn)練的重要內(nèi)容。

  四、教學(xué)策略的設(shè)計(jì)

  1、情境的設(shè)計(jì)

  情境描述

  情境簡(jiǎn)要描述

  呈現(xiàn)方式

  趣味問(wèn)題

  從前有個(gè)國(guó)王在處死那些犯了罪的臣子的時(shí)候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國(guó)王,國(guó)王判他死罪,他所面臨的問(wèn)題是:“這里有三個(gè)盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個(gè)盒子內(nèi),每只盒子各寫(xiě)一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個(gè)盒子里,就免你一死罪。”聰明的亞瑟經(jīng)過(guò)推理而獲知免死金牌所放的盒子,從而救了自己的命,請(qǐng)問(wèn)亞瑟是如何推理的?

  網(wǎng)頁(yè)

  2、教學(xué)資源的設(shè)計(jì)

  資源類型

  資源內(nèi)容簡(jiǎn)要描述

  資源來(lái)源

  相關(guān)故事

  通過(guò)有趣的推理故事,如“推理救命的故事”,“寶藏的`故事,用于激發(fā)學(xué)生的學(xué)習(xí)興趣。

  網(wǎng)上下載

  學(xué)習(xí)網(wǎng)站

  專題學(xué)習(xí)網(wǎng)站,嵌入了經(jīng)過(guò)修改適用于本課的論壇,在線測(cè)試等。

  自行制作

  3、教學(xué)工具:計(jì)算機(jī)

  4、教學(xué)策略:自主探究學(xué)習(xí)策略,任務(wù)驅(qū)動(dòng)策略、反思策略

  5、教學(xué)環(huán)境:網(wǎng)絡(luò)教室

  五、教學(xué)流程設(shè)計(jì)

  1、創(chuàng)設(shè)情景,吸引學(xué)生注意

  教師活動(dòng)

  學(xué)生活動(dòng)

  資源/工具

  設(shè)計(jì)思想

  提出“推理救命問(wèn)題”

  積極思考,尋找方法

  學(xué)習(xí)網(wǎng)站

  以具有趣味性的故事入手,吸引學(xué)生的注意,點(diǎn)明本節(jié)課的目的。

  2、自主探究,獲取知識(shí)

  教師活動(dòng)

  學(xué)生活動(dòng)

  資源/工具

  設(shè)計(jì)思想

  1、初試牛刀:讓學(xué)生試做思維訓(xùn)練題。

  2、挑戰(zhàn)高考題:在高考題中充分體現(xiàn)分析法,綜合法。

  3、舉一反三:讓學(xué)生學(xué)會(huì)總結(jié)

  學(xué)以致用:

  4、把本節(jié)的方法應(yīng)用到解決數(shù)學(xué)問(wèn)題中。

  積極思考,互相交流,發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。

  學(xué)習(xí)網(wǎng)站

  1、讓學(xué)生在輕松活潑的氛圍下帶著問(wèn)題,自主、積極地學(xué)習(xí),有助于培養(yǎng)學(xué)生的自我探索的能力。

  2、超級(jí)鏈接控制性好,交互性強(qiáng),可讓學(xué)生在較短的時(shí)間內(nèi)收集積累更多的信息,拓寬學(xué)生的知識(shí)面。

  3、培養(yǎng)學(xué)生收集信息、處理信息的能力。

  3、總結(jié)概念,深化概念

  教師活動(dòng)

  學(xué)生活動(dòng)

  資源/工具

  設(shè)計(jì)思想

  歸納本節(jié)的方法:分析法和綜合法。并指出:數(shù)學(xué)思維的訓(xùn)練不單只是一節(jié)簡(jiǎn)單的專題課,我們的同學(xué)在平常多留心身邊事物,多思考問(wèn)題,不斷提高數(shù)學(xué)思維能力。

  體會(huì)分析法和綜合法的概念,并在論壇上發(fā)表自己對(duì)概念的理解。

  學(xué)習(xí)網(wǎng)站論壇

  通過(guò)對(duì)具體問(wèn)題的概念化,加深對(duì)概念的理解。

  4、自主交流,知識(shí)遷移

  教師活動(dòng)

  學(xué)生活動(dòng)

  資源/工具

  設(shè)計(jì)思想

  提出寶藏問(wèn)題并指導(dǎo)學(xué)生利用BBs論壇進(jìn)行討論

  學(xué)生在論壇里充分地發(fā)表自己的看法

  學(xué)習(xí)網(wǎng)站論壇

  通過(guò)自主交流,增強(qiáng)分析問(wèn)題的能力和解決問(wèn)題的能力

  5、在線測(cè)試,評(píng)價(jià)及反饋

  教師活動(dòng)

  學(xué)生活動(dòng)

  資源/工具

  設(shè)計(jì)思想

  利用學(xué)習(xí)網(wǎng)站制作一些簡(jiǎn)單的訓(xùn)練題目

  獨(dú)立完成在線的測(cè)試

  學(xué)習(xí)網(wǎng)站

  及時(shí)反饋課堂學(xué)習(xí)效果。

  6、課后任務(wù)

  教師活動(dòng)

  學(xué)生活動(dòng)

  資源/工具

  設(shè)計(jì)思想

  布置課后任務(wù):在網(wǎng)絡(luò)上收集推理分析的相關(guān)例子,在學(xué)習(xí)網(wǎng)站的論壇上討論。

  記錄要求,并在課后完成。

  網(wǎng)絡(luò)資源和學(xué)習(xí)網(wǎng)站

  通過(guò)課后的任務(wù)訓(xùn)練,進(jìn)一步提高學(xué)生的數(shù)學(xué)思維能力,把思維訓(xùn)練延續(xù)到課堂外。

高二數(shù)學(xué)教案7

  一、教學(xué)目標(biāo)設(shè)計(jì)

  1. 了解利用科學(xué)計(jì)算免費(fèi)軟件--Scilab軟件編寫(xiě)程序來(lái)實(shí)現(xiàn)算法的基本過(guò)程.

  2. 了解并掌握Scilab中的基本語(yǔ)句,如賦值語(yǔ)句、輸入輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句;能在Scipad窗口中編輯完整的程序,并運(yùn)行程序.

  3. 通過(guò)上機(jī)操作和調(diào)試,體驗(yàn)從算法設(shè)計(jì)到實(shí)施的過(guò)程.

  二、教學(xué)重點(diǎn)及難點(diǎn)

  重點(diǎn): 體會(huì)算法的.實(shí)現(xiàn)過(guò)程,能認(rèn)識(shí)到一個(gè)算法可以用很多的語(yǔ)言來(lái)實(shí)現(xiàn),Scilab只是其中之一.

  難點(diǎn):體會(huì)編程是一個(gè)細(xì)致嚴(yán)謹(jǐn)?shù)倪^(guò)程,體會(huì)正確完成一個(gè)算法并實(shí)施所要經(jīng)歷的過(guò)程.

  三、教學(xué)流程設(shè)計(jì)

  四、教學(xué)過(guò)程設(shè)計(jì)

  (一)幾個(gè)基本語(yǔ)句和結(jié)構(gòu)

  1、賦值語(yǔ)句(=)

  2、輸入語(yǔ)句 輸入變量名=input(提示語(yǔ))

  3、輸出語(yǔ)句 print() disp()

  4、條件語(yǔ)句

  5、循環(huán)語(yǔ)句

  (二)幾個(gè)程序設(shè)計(jì)

  建議:直接在Scilab窗口下編寫(xiě)完整的程序,保存后再運(yùn)行;如果不能運(yùn)行或出現(xiàn)邏輯錯(cuò)誤

  可打開(kāi)程序后直接修改,修改后再保存運(yùn)行,反復(fù)調(diào)試,直到測(cè)試成功.

高二數(shù)學(xué)教案8

  平面向量共線的坐標(biāo)表示

  前提條件a=(x1,y1),b=(x2,y2),其中b≠0

  結(jié)論當(dāng)且僅當(dāng)x1y2-x2y1=0時(shí),向量a、b(b≠0)共線

  [點(diǎn)睛](1)平面向量共線的坐標(biāo)表示還可以寫(xiě)成x1x2=y1y2(x2≠0,y2≠0),即兩個(gè)不平行于坐標(biāo)軸的共線向量的對(duì)應(yīng)坐標(biāo)成比例;

  (2)當(dāng)a≠0,b=0時(shí),a∥b,此時(shí)x1y2-x2y1=0也成立,即對(duì)任意向量a,b都有:x1y2-x2y1=0?a∥b.

  [小試身手]

  1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的打“×”)

  (1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()

  (2)向量(2,3)與向量(-4,-6)反向.()

  答案:(1)√(2)√

  2.若向量a=(1,2),b=(2,3),則與a+b共線的`向量可以是()

  A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

  答案:C

  3.已知a=(1,2),b=(x,4),若a∥b,則x等于()

  A.-12B.12C.-2D.2

  答案:D

  4.已知向量a=(-2,3),b∥a,向量b的起點(diǎn)為A(1,2),終點(diǎn)B在x軸上,則點(diǎn)B的坐標(biāo)為_(kāi)_______.

  答案:73,0

  向量共線的判定

  [典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()

  A.12B.13C.1D.2

  (2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判斷與是否共線?如果共線,它們的方向相同還是相反?

  [解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

  法二:假設(shè)a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無(wú)解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設(shè)不成立,故應(yīng)有a,b共線,所以1λ=21,即λ=12.

  [答案]A

  (2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

  ∵(-2)×(-6)-3×4=0,∴,共線.

  又=-2,∴,方向相反.

  綜上,與共線且方向相反.

  向量共線的判定方法

  (1)利用向量共線定理,由a=λb(b≠0)推出a∥b.

  (2)利用向量共線的坐標(biāo)表達(dá)式x1y2-x2y1=0直接求解.

  [活學(xué)活用]

  已知a=(1,2),b=(-3,2),當(dāng)k為何值時(shí),ka+b與a-3b平行,平行時(shí)它們的方向相同還是相反?

  解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

  a-3b=(1,2)-3(-3,2)=(10,-4),

  若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,

  解得k=-13,此時(shí)ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向.

  ∴k=-13時(shí),ka+b與a-3b平行且方向相反.

  三點(diǎn)共線問(wèn)題

  [典例](1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點(diǎn)共線;

  (2)設(shè)向量=(k,12),=(4,5),=(10,k),當(dāng)k為何值時(shí),A,B,C三點(diǎn)

  共線?

  [解](1)證明:∵=-=(4,8),

  =-=(6,12),

  ∴=32,即與共線.

  又∵與有公共點(diǎn)A,∴A,B,C三點(diǎn)共線.

  (2)若A,B,C三點(diǎn)共線,則,共線,

  ∵=-=(4-k,-7),

  =-=(10-k,k-12),

  ∴(4-k)(k-12)+7(10-k)=0.

  解得k=-2或k=11.

  有關(guān)三點(diǎn)共線問(wèn)題的解題策略

  (1)要判斷A,B,C三點(diǎn)是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點(diǎn)共線;

  (2)使用A,B,C三點(diǎn)共線這一條件建立方程求參數(shù)時(shí),利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數(shù)的表達(dá)式.

高二數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  1.掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過(guò)程;

  2.能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握運(yùn)用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;

  3.通過(guò)對(duì)橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;

  4.通過(guò)橢圓的標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價(jià)轉(zhuǎn)化的思想方法,提高運(yùn)用坐標(biāo)法解決幾何問(wèn)題的能力;

  5.通過(guò)讓中國(guó)學(xué)習(xí)聯(lián)盟膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識(shí).

  教學(xué)建議

  教材分析

  1. 知識(shí)結(jié)構(gòu)

  2.重點(diǎn)難點(diǎn)分析

  重點(diǎn)是橢圓的定義及橢圓標(biāo)準(zhǔn)方程的兩種形式.難點(diǎn)是橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo).關(guān)鍵是掌握建立坐標(biāo)系與根式化簡(jiǎn)的方法.

  橢圓及其標(biāo)準(zhǔn)方程這一節(jié)教材整體來(lái)看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標(biāo)準(zhǔn)方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對(duì)橢圓的研究放在了重點(diǎn),在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用.先講橢圓也與第七章的圓的方程銜接自然.學(xué)好橢圓對(duì)于學(xué)生學(xué)好圓錐曲線是非常重要的.

 。1)對(duì)于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對(duì)比圓的定義來(lái)理解.

  另外要注意到定義中對(duì)“常數(shù)”的限定即常數(shù)要大于 .這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于 時(shí)軌跡是一條線段;當(dāng)常數(shù)小于 時(shí)無(wú)軌跡”.這樣有利于集中精力進(jìn)一步研究橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì).但講解橢圓的定義時(shí)注意不要忽略這兩種特殊情況,以保證對(duì)橢圓定義的準(zhǔn)確性.

 。2)根據(jù)橢圓的定義求標(biāo)準(zhǔn)方程,應(yīng)注意下面幾點(diǎn):

 、偾的方程依賴于坐標(biāo)系,建立適當(dāng)?shù)淖鴺?biāo)系,是求曲線方程首先應(yīng)該注意的地方.應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進(jìn)行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對(duì)稱軸,以這兩條對(duì)稱軸作為坐標(biāo)系的兩軸,不但可以使方程的推導(dǎo)過(guò)程變得簡(jiǎn)單,而且也可以使最終得出的方程形式整齊和簡(jiǎn)潔.

  ②設(shè)橢圓的焦距為 ,橢圓上任一點(diǎn)到兩個(gè)焦點(diǎn)的距離為 ,令 ,這些措施,都是為了簡(jiǎn)化推導(dǎo)過(guò)程和最后得到的方程形式整齊、簡(jiǎn)潔,要讓學(xué)生認(rèn)真領(lǐng)會(huì).

 、墼诜匠痰耐茖(dǎo)過(guò)程中遇到了無(wú)理方程的化簡(jiǎn),這既是我們今后在求軌跡方程時(shí)經(jīng)常遇到的問(wèn)題,又是學(xué)生的難點(diǎn).要注意說(shuō)明這類方程的化簡(jiǎn)方法:①方程中只有一個(gè)根式時(shí),需將它單獨(dú)留在方程的一側(cè),把其他項(xiàng)移至另一側(cè);②方程中有兩個(gè)根式時(shí),需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項(xiàng).

 、芙炭茣(shū)上對(duì)橢圓標(biāo)準(zhǔn)方程的推導(dǎo),實(shí)際上只給出了“橢圓上點(diǎn)的坐標(biāo)都適合方程 “而沒(méi)有證明,”方程 的解為坐標(biāo)的點(diǎn)都在橢圓上”.這實(shí)際上是方程的同解變形問(wèn)題,難度較大,對(duì)同學(xué)們不作要求.

  (3)兩種標(biāo)準(zhǔn)方程的橢圓異同點(diǎn)

  中心在原點(diǎn)、焦點(diǎn)分別在 軸上, 軸上的橢圓標(biāo)準(zhǔn)方程分別為: , .它們的相同點(diǎn)是:形狀相同、大小相同,都有 , .不同點(diǎn)是:兩種橢圓相對(duì)于坐標(biāo)系的位置不同,它們的焦點(diǎn)坐標(biāo)也不同.

  橢圓的焦點(diǎn)在 軸上 標(biāo)準(zhǔn)方程中 項(xiàng)的分母較大;

  橢圓的焦點(diǎn)在 軸上 標(biāo)準(zhǔn)方程中 項(xiàng)的分母較大.

  另外,形如 中,只要 , , 同號(hào),就是橢圓方程,它可以化為 .

 。4)教科書(shū)上通過(guò)例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個(gè)作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向?qū)W生說(shuō)明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標(biāo)準(zhǔn)方程相同,那么這個(gè)軌跡是橢圓;第三是使學(xué)生知道,一個(gè)圓按某一個(gè)方向作伸縮變換可以得到橢圓.

  教法建議

 。1)使學(xué)生了解圓錐曲線在生產(chǎn)和科學(xué)技術(shù)中的應(yīng)用,激發(fā)學(xué)生的學(xué)習(xí)興趣.

  為激發(fā)學(xué)生學(xué)習(xí)圓錐曲線的興趣,體會(huì)圓錐曲線知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中提出圓錐曲線要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還可以啟發(fā)學(xué)生尋找身邊與圓錐曲線有關(guān)的例子。

  例如,我們生活的地球每時(shí)每刻都在環(huán)繞太陽(yáng)的軌道——橢圓上運(yùn)行,太陽(yáng)系的其他行星也如此,太陽(yáng)則位于橢圓的一個(gè)焦點(diǎn)上.如果這些行星運(yùn)動(dòng)的速度增大到某種程度,它們就會(huì)沿拋物線或雙曲線運(yùn)行.人類發(fā)射人造地球衛(wèi)星或人造行星就要遵循這個(gè)原理.相對(duì)于一個(gè)物體,按萬(wàn)有引力定律受它吸引的另一個(gè)物體的運(yùn)動(dòng),不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構(gòu)成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關(guān),圓錐曲線在實(shí)際生活中的價(jià)值是很高的.

 。2)安排學(xué)生課下切割圓錐形的'事物,使學(xué)生了解圓錐曲線名稱的來(lái)歷

  為了讓學(xué)生了解圓錐曲線名稱的來(lái)歷,但為了節(jié)約課堂時(shí)間,教學(xué)時(shí)應(yīng)安排讓學(xué)生課后親自動(dòng)手切割圓錐形的蘿卜、膠泥等,以加深對(duì)圓錐曲線的認(rèn)識(shí).

 。3)對(duì)橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學(xué)生從感性認(rèn)識(shí)入手,逐步上升到理性認(rèn)識(shí),形成正確的概念。

  教師可從太陽(yáng)、地球、人造地球衛(wèi)星的運(yùn)行軌道,談到圓蘿卜的切片、陽(yáng)光下圓盤在地面上的影子等等,讓學(xué)生先對(duì)橢圓有一個(gè)直觀的了解。

  教師可事先準(zhǔn)備好一根細(xì)線及兩根釘子,在給出橢圓在數(shù)學(xué)上的嚴(yán)格定義之前,教師先在黑板上取兩個(gè)定點(diǎn)(兩定點(diǎn)之間的距離小于細(xì)線的長(zhǎng)度),再讓兩名學(xué)生按教師的要求在黑板上畫(huà)一個(gè)橢圓。畫(huà)好后,教師再在黑板上取兩個(gè)定點(diǎn)(兩定點(diǎn)之間的距離大于細(xì)線的長(zhǎng)度),然后再請(qǐng)剛才兩名學(xué)生按同樣的要求作圖。學(xué)生通過(guò)觀察兩次作圖的過(guò)程,總結(jié)出經(jīng)驗(yàn)和教訓(xùn),教師因勢(shì)利導(dǎo),讓學(xué)生自己得出橢圓的嚴(yán)格的定義。這樣,學(xué)生對(duì)這一定義就會(huì)有深刻的了解。

  (4)將提出的問(wèn)題分解為若干個(gè)子問(wèn)題,借助多媒體課件來(lái)體現(xiàn)橢圓的定義的實(shí)質(zhì)

  在教學(xué)時(shí),可以設(shè)置幾個(gè)問(wèn)題,讓學(xué)生動(dòng)手動(dòng)腦,獨(dú)立思考,自主探索,使學(xué)生根據(jù)提出的問(wèn)題,利用多媒體,通過(guò)觀察、實(shí)驗(yàn)、分析去尋找解決問(wèn)題的途徑。在橢圓的定義的教學(xué)過(guò)程()中,可以提出“到兩定點(diǎn)的距離的和為定值的點(diǎn)的軌跡一定是橢圓嗎”,讓學(xué)生通過(guò)課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內(nèi)涵,這樣就使得學(xué)生對(duì)橢圓的定義留下了深刻的印象。

 。5)注意橢圓的定義與橢圓的標(biāo)準(zhǔn)方程的聯(lián)系

  在講解橢圓的定義時(shí),就要啟發(fā)學(xué)生注意橢圓的圖形特征,一般學(xué)生比較容易發(fā)現(xiàn)橢圓的對(duì)稱性,這樣在建立坐標(biāo)系時(shí),學(xué)生就比較容易選擇適當(dāng)?shù)淖鴺?biāo)系了,即使焦點(diǎn)在坐標(biāo)軸上,對(duì)稱中心是原點(diǎn)(此時(shí)不要過(guò)多的研究幾何性質(zhì)).雖然這時(shí)學(xué)生并不一定能說(shuō)明白為什么這樣選擇坐標(biāo)系,但在有了一定感性認(rèn)識(shí)的基礎(chǔ)上再講解選擇適當(dāng)坐標(biāo)系的一般原則,學(xué)生就較為容易接受,也向?qū)W生逐步滲透了坐標(biāo)法.

 。6)推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時(shí)教師要注意化解難點(diǎn),適時(shí)地補(bǔ)充根式化簡(jiǎn)的方法.

  推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時(shí),由于列出的方程為兩個(gè)跟式的和等于一個(gè)非零常數(shù),化簡(jiǎn)時(shí)要進(jìn)行兩次平方,方程中字母超過(guò)三個(gè),且次數(shù)高、項(xiàng)數(shù)多,教學(xué)時(shí)要注意化解難點(diǎn),盡量不要把跟式化簡(jiǎn)的困難影響學(xué)生對(duì)橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程的整體認(rèn)識(shí).通過(guò)具體的例子使學(xué)生循序漸進(jìn)的解決帶跟式的方程的化簡(jiǎn),即:(1)方程中只有一個(gè)跟式時(shí),需將它單獨(dú)留在方程的一邊,把其他各項(xiàng)移至另一邊;(2)方程中有兩個(gè)跟式時(shí),需將它們放在方程的兩邊,并使其中一邊只有一項(xiàng).(為了避免二次平方運(yùn)算)

 。7)講解了焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程后,教師要啟發(fā)學(xué)生自己研究焦點(diǎn)在y軸上的標(biāo)準(zhǔn)方程,然后鼓勵(lì)學(xué)生探索橢圓的兩種標(biāo)準(zhǔn)方程的異同點(diǎn),加深對(duì)橢圓的認(rèn)識(shí).

 。8)在學(xué)習(xí)新知識(shí)的基礎(chǔ)上要鞏固舊知識(shí)

  橢圓也是一種曲線,所以第七章所講的曲線和方程的知識(shí)仍然使用,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程中要注意進(jìn)一步鞏固曲線和方程的概念.對(duì)于教材上在推出橢圓的標(biāo)準(zhǔn)方程后,并沒(méi)有證明所求得的方程確是橢圓的方程,要注意向?qū)W生說(shuō)明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡(jiǎn)過(guò)程是等價(jià)變形,而證明過(guò)程較繁,所以教材沒(méi)有要求也沒(méi)有給出證明過(guò)程,但學(xué)生要注意并不是以后都不需要證明,注意只有方程的化簡(jiǎn)是等價(jià)變形的才可以不用證明,而實(shí)際上學(xué)生在遇到一些具體的題目時(shí),還需要具體問(wèn)題具體分析.

 。9)要突出教師的主導(dǎo)作用,又要強(qiáng)調(diào)學(xué)生的主體作用,課上盡量讓全體學(xué)生參與討論,由基礎(chǔ)較差的學(xué)生提出猜想,由基礎(chǔ)較好的學(xué)生幫助證明,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的團(tuán)隊(duì)精神。

高二數(shù)學(xué)教案10

  第1課時(shí)算法的概念

  [核心必知]

  1.預(yù)習(xí)教材,問(wèn)題導(dǎo)入

  根據(jù)以下提綱,預(yù)習(xí)教材P2~P5,回答下列問(wèn)題.

  (1)對(duì)于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫(xiě)出它的求解步驟?

  提示:分五步完成:

  第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

  第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

  第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

  第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

  第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

  (2)在數(shù)學(xué)中算法通常指什么?

  提示:在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問(wèn)題的明確和有限的步驟.

  2.歸納總結(jié),核心必記

  (1)算法的概念

  12世紀(jì)

  的算法指的是用阿拉伯?dāng)?shù)字進(jìn)行算術(shù)運(yùn)算的過(guò)程

  續(xù)表

  數(shù)學(xué)中

  的算法通常是指按照一定規(guī)則解決某一類問(wèn)題的明確和有限的步驟

  現(xiàn)代算法通常可以編成計(jì)算機(jī)程序,讓計(jì)算機(jī)執(zhí)行并解決問(wèn)題

  (2)設(shè)計(jì)算法的目的

  計(jì)算機(jī)解決任何問(wèn)題都要依賴于算法.只有將解決問(wèn)題的過(guò)程分解為若干個(gè)明確的步驟,即算法,并用計(jì)算機(jī)能夠接受的“語(yǔ)言”準(zhǔn)確地描述出來(lái),計(jì)算機(jī)才能夠解決問(wèn)題.

  [問(wèn)題思考]

  (1)求解某一個(gè)問(wèn)題的算法是否是的?

  提示:不是.

  (2)任何問(wèn)題都可以設(shè)計(jì)算法解決嗎?

  提示:不一定.

  [課前反思]

  通過(guò)以上預(yù)習(xí),必須掌握的幾個(gè)知識(shí)點(diǎn):

  (1)算法的概念:;

  (2)設(shè)計(jì)算法的'目的:.

  [思考1]應(yīng)從哪些方面來(lái)理解算法的概念?

  名師指津:對(duì)算法概念的三點(diǎn)說(shuō)明:

  (1)算法是指可以用計(jì)算機(jī)來(lái)解決的某一類問(wèn)題的程序或步驟,這些程序或步驟必須是明確的和有效的,而且能夠在有限步驟之內(nèi)完成.

  (2)算法與一般意義上具體問(wèn)題的解法既有聯(lián)系,又有區(qū)別,它們之間是一般和特殊的關(guān)系,也是抽象與具體的關(guān)系.算法的獲得要借助一般意義上具體問(wèn)題的求解方法,而任何一個(gè)具體問(wèn)題都可以利用這類問(wèn)題的一般算法來(lái)解決.

  (3)算法一方面具有具體化、程序化、機(jī)械化的特點(diǎn),同時(shí)又有高度的抽象性、概括性、精確性,所以算法在解決問(wèn)題中更具有條理性、邏輯性的特點(diǎn).

  [思考2]算法有哪些特征?

  名師指津:(1)確定性:算法的每一個(gè)步驟都是確切的,能有效執(zhí)行且得到確定結(jié)果,不能模棱兩可.

  (2)有限性:算法應(yīng)由有限步組成,至少對(duì)某些輸入,算法應(yīng)在有限多步內(nèi)結(jié)束,并給出計(jì)算結(jié)果.

  (3)邏輯性:算法從初始步驟開(kāi)始,分為若干明確的步驟,每一步都只能有一個(gè)確定的繼任者,只有執(zhí)行完前一步才能進(jìn)入到后一步,并且每一步都確定無(wú)誤后,才能解決問(wèn)題.

  (4)不性:求解某一個(gè)問(wèn)題的算法不一定只有的一個(gè),可以有不同的算法.

  (5)普遍性:很多具體的問(wèn)題,都可以設(shè)計(jì)合理的算法去解決.

  V講一講

  1.以下關(guān)于算法的說(shuō)法正確的是()

  A.描述算法可以有不同的方式,可用自然語(yǔ)言也可用其他語(yǔ)言

  B.算法可以看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列只能解決當(dāng)前問(wèn)題

  C.算法過(guò)程要一步一步執(zhí)行,每一步執(zhí)行的操作必須確切,不能含混不清,而且經(jīng)過(guò)有限步或無(wú)限步后能得出結(jié)果

  D.算法要求按部就班地做,每一步可以有不同的結(jié)果

  [嘗試解答]算法可以看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或計(jì)算序列能夠解決一類問(wèn)題,故B不正確.

  算法過(guò)程要一步一步執(zhí)行,每一步執(zhí)行操作,必須確切,只能有結(jié)果,而且經(jīng)過(guò)有限步后,必須有結(jié)果輸出后終止,故C、D都不正確.

  描述算法可以有不同的語(yǔ)言形式,如自然語(yǔ)言、框圖語(yǔ)言等,故A正確.

  答案:A

  判斷算法的關(guān)注點(diǎn)

  (1)明確算法的含義及算法的特征;

  (2)判斷一個(gè)問(wèn)題是否是算法,關(guān)鍵看是否有解決一類問(wèn)題的程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步內(nèi)完成.

  V練一練

  1.(20xx?西南師大附中檢測(cè))下列描述不能看作算法的是()

  A.洗衣機(jī)的使用說(shuō)明書(shū)

  B.解方程x2+2x-1=0

  C.做米飯需要刷鍋、淘米、添水、加熱這些步驟

  D.利用公式S=πr2計(jì)算半徑為3的圓的面積,就是計(jì)算π×32

  解析:選BA、C、D都描述了解決問(wèn)題的過(guò)程,可以看作算法,而B(niǎo)只描述了一個(gè)事例,沒(méi)有說(shuō)明怎樣解決問(wèn)題,不是算法.

  假設(shè)家中生火泡茶有以下幾個(gè)步驟:

  a.生火b.將水倒入鍋中c.找茶葉d.洗茶壺、茶碗e.用開(kāi)水沖茶

  [思考1]你能設(shè)計(jì)出在家中泡茶的步驟嗎?

  名師指津:a→a→c→d→e

  [思考2]設(shè)計(jì)算法有什么要求?

  名師指津:(1)寫(xiě)出的算法必須能解決一類問(wèn)題;

  (2)要使算法盡量簡(jiǎn)單、步驟盡量少;

  (3)要保證算法步驟有效,且計(jì)算機(jī)能夠執(zhí)行.

  V講一講

  2.寫(xiě)出解方程x2-2x-3=0的一個(gè)算法.

  [嘗試解答]法一:算法如下.

  第一步,將方程左邊因式分解,得(x-3)(x+1)=0;①

  第二步,由①得x-3=0,②或x+1=0;③

  第三步,解②得x=3,解③得x=-1.

  法二:算法如下.

  第一步,移項(xiàng),得x2-2x=3;①

  第二步,①式兩邊同時(shí)加1并配方,得(x-1)2=4;②

  第三步,②式兩邊開(kāi)方,得x-1=±2;③

  第四步,解③得x=3或x=-1.

  法三:算法如下.

  第一步,計(jì)算方程的判別式并判斷其符號(hào)Δ=(-2)2+4×3=16>0;

  第二步,將a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.

  設(shè)計(jì)算法的步驟

  (1)認(rèn)真分析問(wèn)題,找出解決此題的一般數(shù)學(xué)方法;

  (2)借助有關(guān)變量或參數(shù)對(duì)算法加以表述;

  (3)將解決問(wèn)題的過(guò)程劃分為若干步驟;

  (4)用簡(jiǎn)練的語(yǔ)言將步驟表示出來(lái).V

  練一練

  2.設(shè)計(jì)一個(gè)算法,判斷7是否為質(zhì)數(shù).

  解:第一步,用2除7,得到余數(shù)1,所以2不能整除7.

  第二步,用3除7,得到余數(shù)1,所以3不能整除7.

  第三步,用4除7,得到余數(shù)3,所以4不能整除7.

  第四步,用5除7,得到余數(shù)2,所以5不能整除7.

  第五步,用6除7,得到余數(shù)1,所以6不能整除7.

  因此,7是質(zhì)數(shù).

  V講一講

  3.一次青青草原草原長(zhǎng)包包大人帶著灰太狼、懶羊羊和一捆青草過(guò)河.河邊只有一條船,由于船太小,只能裝下兩樣?xùn)|西.在無(wú)人看管的情況下,灰太狼要吃懶羊羊,懶羊羊要吃青草,請(qǐng)問(wèn)包包大人如何才能帶著他們平安過(guò)河?試設(shè)計(jì)一種算法.

  [思路點(diǎn)撥]先根據(jù)條件建立過(guò)程模型,再設(shè)計(jì)算法.

  [嘗試解答]包包大人采取的過(guò)河的算法可以是:

  第一步,包包大人帶懶羊羊過(guò)河;

  第二步,包包大人自己返回;

  第三步,包包大人帶青草過(guò)河;

  第四步,包包大人帶懶羊羊返回;

  第五步,包包大人帶灰太狼過(guò)河;

  第六步,包包大人自己返回;

  第七步,包包大人帶懶羊羊過(guò)河.

  實(shí)際問(wèn)題算法的設(shè)計(jì)技巧

  (1)弄清題目中所給要求.

  (2)建立過(guò)程模型.

  (3)根據(jù)過(guò)程模型建立算法步驟,必要時(shí)由變量進(jìn)行判斷.

  V練一練

  3.一位商人有9枚銀元,其中有1枚略輕的是假銀元,你能用天平(無(wú)砝碼)將假銀元找出來(lái)嗎?

  解:法一:算法如下.

  第一步,任取2枚銀元分別放在天平的兩邊,若天平左、右不平衡,則輕的一枚就是假銀元,若天平平衡,則進(jìn)行第二步.

  第二步,取下右邊的銀元放在一邊,然后把剩下的7枚銀元依次放在右邊進(jìn)行稱量,直到天平不平衡,偏輕的那一枚就是假銀元.

  法二:算法如下.

  第一步,把9枚銀元平均分成3組,每組3枚.

  第二步,先將其中兩組放在天平的兩邊,若天平不平衡,則假銀元就在輕的那一組;否則假銀元在未稱量的那一組.

  第三步,取出含假銀元的那一組,從中任取2枚銀元放在天平左、右兩邊稱量,若天平不平衡,則假銀元在輕的那一邊;若天平平衡,則未稱量的那一枚是假銀元.

高二數(shù)學(xué)教案11

  教學(xué)目標(biāo)

 。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程。

 。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程。

  (3)掌握直線方程各種形式之間的互化。

  (4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力。

 。5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn)。

 。6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。

  教學(xué)建議

  1、教材分析

 。1)知識(shí)結(jié)構(gòu)

  由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式。

 。2)重點(diǎn)、難點(diǎn)分析

  ①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程。

  解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線。本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用。

  直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭。學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí)。

 、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明。

  2、教法建議

 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯。教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬。

 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ)。

  直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證。教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)

 。3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解。

  (4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件。兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫(huà)直線方向的量化形式就是斜率。因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要。教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮。

  求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程。根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程。

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù))。

  (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力。

  (7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用。教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力。

 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上。

  教學(xué)設(shè)計(jì)示例

  直線方程的一般形式

  教學(xué)目標(biāo):

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。

  (2)理解直線與二元一次方程的關(guān)系及其證明

 。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn)。

  教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式。直線與二元一次方程(不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明。

  教學(xué)用具:計(jì)算機(jī)

  教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

  教學(xué)過(guò)程:

  下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

  教學(xué)設(shè)計(jì)思路:

 。ㄒ唬┮氲脑O(shè)計(jì)

  前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:

  問(wèn):說(shuō)出過(guò)點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次。

  肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述。再看一個(gè)問(wèn)題:

  問(wèn):求出過(guò)點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次。

  肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次”。

  啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論。

  學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

  【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”

  (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

  這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路。

  學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo)。

  經(jīng)過(guò)一定時(shí)間的.研究,教師組織開(kāi)展集體討論。首先讓學(xué)生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評(píng)價(jià),確定方案(其它待課下研究)如下:

  按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。

  當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。

  當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?

  學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

  平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

  綜合兩種情況,我們得出如下結(jié)論:

  在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于直線的二元一次方程。

  至此,我們的問(wèn)題1就解決了。簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程。而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如這樣,要么形如這樣的方程”。

  同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

  學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。

  這樣上邊的結(jié)論可以表述如下:

  在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。

  啟發(fā):任何一條直線都有這種形式的方程。你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?

  【問(wèn)題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面。這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論。那么如何研究呢?

  師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

  回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時(shí)為0)系數(shù)是否為0恰好對(duì)應(yīng)斜率是否存在,即

 。1)當(dāng)時(shí),方程可化為

  這是表示斜率為、在軸上的截距為的直線。

 。2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為

  這表示一條與軸垂直的直線。

  因此,得到結(jié)論:

  在平面直角坐標(biāo)系中,任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線。

  為方便,我們把(其中、不同時(shí)為0)稱作直線方程的一般式是合理的。

  【動(dòng)畫(huà)演示】

  演示“直線各參數(shù)。gsp”文件,體會(huì)任何二元一次方程都表示一條直線。

  至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系。

  (三)練習(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略

高二數(shù)學(xué)教案12

  教學(xué)內(nèi)容

  教材第2頁(yè)的例2,第3頁(yè)的小數(shù)乘法法則和“做一做”,練習(xí)一的第5?9題。

  素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生理解一個(gè)數(shù)乘以小數(shù)的意義。

  2.掌握小數(shù)乘法的計(jì)算法則。

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.能說(shuō)出小數(shù)乘法算式所表示的意義。

  2.能比較正確地計(jì)算小數(shù)乘法,提高計(jì)算能力。

  3.培養(yǎng)學(xué)生的遷移類推能力和概括能力以及運(yùn)用所學(xué)知識(shí)解決新問(wèn)題的能力。

  (三)德育滲透點(diǎn)

  繼續(xù)滲透轉(zhuǎn)化思想。

  教學(xué)重點(diǎn):

  理解一個(gè)數(shù)乘以小數(shù)的意義,會(huì)應(yīng)用小數(shù)乘法的計(jì)算法則正確地進(jìn)行計(jì)算。

  教學(xué)難點(diǎn):

  理解一個(gè)數(shù)乘以小數(shù)的意義和小數(shù)乘法中積的小數(shù)點(diǎn)的定位。

  教具學(xué)具準(zhǔn)備:

  口算卡片、投影片。

  教學(xué)步驟

  一、鋪墊孕伏

  1.口算:

  0.3×6 0.8×4 7.2×0 4.2×8

  0.25×4 3.6×3 4.3×5 0.6×9

  2.說(shuō)出下列小數(shù)表示的意義:

  0.2 0.5 0.45 0.824

  使學(xué)生明確一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……

  3.復(fù)習(xí)例1,花布每米6.5元,買5米要用多少元?

 。1)指名列式計(jì)算,然后說(shuō)一說(shuō)小數(shù)乘以整數(shù)的意義和小數(shù)乘以整數(shù)的計(jì)算方法。

 。2)引導(dǎo)學(xué)生知道:每米6.5元是單價(jià),5米是數(shù)量,求的是總價(jià)。根據(jù)單價(jià)×數(shù)量=總價(jià)也可以列出乘法算式。

  二、探究新知

  1.理解一個(gè)數(shù)乘以小數(shù)的意義。

 。1)教學(xué)例2

 、俪鍪纠2花布每米6.5元,買0.5米用多少元?

  ②讀題,理解題意,從題中你知道了什么?

  引導(dǎo)學(xué)生知道:每米6.5元是單價(jià),0.5米是買的數(shù)量,求的是總價(jià)。根據(jù)單價(jià)×數(shù)量=總價(jià)可以列式為6.5×0.5。

  教師板書(shū):

  6.5×0.5

  ③用線段圖表示題中的數(shù)量關(guān)系:

 、軉l(fā)學(xué)生理解:0.5米是1米的十分之五,6.5×0.5就是求6.5的十分之五是多少。

  教師板書(shū):

  求6.5的十分之五

  引導(dǎo)學(xué)生類推:

  6.5×0.4就是求6.5的十分之四是多少,

  6.5×0.7就是求6.5的十分之七是多少,

  ……

  一個(gè)數(shù)乘以零點(diǎn)幾就是求這個(gè)數(shù)的十分之幾是多少。

  互相討論得出結(jié)論:一個(gè)數(shù)乘以一位小數(shù)的意義是求這個(gè)數(shù)的十分之幾。

 。2)補(bǔ)充例2,買0.82米用多少元?

  ①引導(dǎo)學(xué)生用線段圖表示:

 、趩l(fā)學(xué)生理解:每米6.5元是布的單價(jià),0.82米是買布的數(shù)量,求的是總價(jià),列式為6.5×0.82。

  教師板書(shū):

  6.5×0.82

  0.82米是1米的百分之八十二,6.5×0.82就是求6.5的'百分之八十二。

  教師板書(shū):

  求6.5的百分之八十二

  仿照6.5×0.5的教學(xué)方法,引導(dǎo)學(xué)生類推得出:

  一個(gè)數(shù)乘以兩位小數(shù)的意義就是求這個(gè)數(shù)的百分之幾。

 、蹘熒餐〗Y(jié):一個(gè)數(shù)乘以一位小數(shù)的意義是求這個(gè)數(shù)的十分之幾,乘以兩位小數(shù)的意義是求這個(gè)數(shù)的百分之幾。

  ④引導(dǎo)學(xué)生類推:一個(gè)數(shù)乘以三位小數(shù)就是求這個(gè)數(shù)的千分之幾,一個(gè)數(shù)乘以四位小數(shù)就是求這個(gè)數(shù)的萬(wàn)分之幾,……

  最后概括板書(shū):一個(gè)數(shù)乘以小數(shù)的意義是求這個(gè)數(shù)的十分之幾,百分之幾,千分之幾……

  2.探究一個(gè)數(shù)乘以小數(shù)的計(jì)算方法。

 。1)提出問(wèn)題,學(xué)生討論:

  計(jì)算小數(shù)乘以整數(shù),是把小數(shù)轉(zhuǎn)化成整數(shù)計(jì)算的,6.5×0.5和6.5×0.82這兩個(gè)算式中,被乘數(shù)和乘數(shù)都含有小數(shù)位,應(yīng)該怎樣計(jì)算?

 。2)通過(guò)討論匯報(bào),使學(xué)生明白:把6.5×0.5變成整數(shù)乘法,6.5變成65擴(kuò)大了10倍,0.5變成5也擴(kuò)大了10倍,這樣乘出來(lái)的積就擴(kuò)大了10×10=100倍,要求原來(lái)的積,應(yīng)把乘出來(lái)的積再縮小100倍。同時(shí)教師板書(shū):

  把6.5×0.82變成整數(shù)乘法,6.5變成65擴(kuò)大10倍,0.82變成82擴(kuò)大100倍,這樣乘出來(lái)的積就擴(kuò)大了10×100=1000倍。要求原來(lái)的積,應(yīng)把乘出來(lái)的積再縮小1000倍。教師板書(shū):

  說(shuō)明書(shū)寫(xiě)的格式,并提示學(xué)生:要先點(diǎn)小數(shù)點(diǎn),再把小數(shù)末尾的“0”劃掉。

  3.總結(jié)小數(shù)乘法的計(jì)算法則。

  (1)引導(dǎo)學(xué)生觀察算式得出:兩個(gè)因數(shù)中一共有兩位小數(shù),積中就有兩位小數(shù);兩個(gè)因數(shù)中一共有三位小數(shù),積中就有三位小數(shù)。

 。2)想一想:6.05×0.82的積中有幾位小數(shù)?6.052×0.82的積中有幾位小數(shù)?

  (3)引導(dǎo)學(xué)生概括:兩個(gè)因數(shù)中一共有幾位小數(shù),積中就幾位小數(shù)。

 。4)在小數(shù)乘以整數(shù)的計(jì)算方法的基礎(chǔ)上,師生共同歸納總結(jié)出小數(shù)乘法的計(jì)算法則。

 。5)完成法則下面的“做一做”。

  出示 67×0.3 2.14×6.2 0.375×12.4 2.16×3.52先判斷積里應(yīng)該有幾位小數(shù),再讓學(xué)生獨(dú)立計(jì)算,然后集體訂正。訂正時(shí)學(xué)生說(shuō)一說(shuō)是怎樣計(jì)算的。

  三、鞏固發(fā)展

  1.練習(xí)一5題

  (1)題,先引導(dǎo)學(xué)生理解“十分之三”和“一半”分別用什么數(shù)表示,然后學(xué)生獨(dú)立列式。

 。2)題,學(xué)生獨(dú)立列式,訂正時(shí),說(shuō)一說(shuō)根據(jù)什么列式的。

  2.說(shuō)出下列算式表示的意義:

  2.54×0.8 13×0.36 16.2×15 24×0.035

  3.練習(xí)一6題

  4.在下面各式的積中點(diǎn)上小數(shù)點(diǎn)。

  5.練習(xí)一8題。學(xué)生獨(dú)立填書(shū),訂正時(shí)指名說(shuō)一說(shuō)是怎樣想的。

  四、全課小結(jié):引導(dǎo)學(xué)生回憶這節(jié)課學(xué)習(xí)了什么知識(shí)?

  五、布置作業(yè):練習(xí)一7題、9題。

高二數(shù)學(xué)教案13

  教學(xué)目的:

  1、掌握掌握平面與平面間距離的概念,并能求出它們的距離

  2、弄清平行平面之間的距離的定義;

  教學(xué)重點(diǎn):平行平面的距離的求法教學(xué)難點(diǎn):平行平面的距離的求法

  教學(xué)過(guò)程:

  一、復(fù)習(xí)引入:

  1、點(diǎn)到平面的距離:已知點(diǎn)是平面外的任意一點(diǎn),過(guò)點(diǎn)作,垂足為,則唯一,則是點(diǎn)到平面的距離即:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做這一點(diǎn)到這個(gè)平面的距離(轉(zhuǎn)化為點(diǎn)到點(diǎn)的'距離)結(jié)論:連結(jié)平面外一點(diǎn)與內(nèi)一點(diǎn)所得的線段中,垂線段最短

  2、直線到與它平行平面的距離:一條直線上的任一點(diǎn)到與它平行的平面的距離,叫做這條直線到平面的距離(轉(zhuǎn)化為點(diǎn)面距離)

  二、講解新課:

  1、兩個(gè)平行平面的公垂線、公垂線段:

 。1)兩個(gè)平面的公垂線:和兩個(gè)平行平面同時(shí)垂直的直線,叫做兩個(gè)平面的公垂線

 。2)兩個(gè)平面的公垂線段:公垂線夾在平行平面間的部分,叫做兩個(gè)平面的公垂線段

 。3)兩個(gè)平行平面的公垂線段都相等

 。4)公垂線段小于或等于任一條夾在這兩個(gè)平行平面間的線段長(zhǎng)2、兩個(gè)平行平面的距離:兩個(gè)平行平面的公垂線段的長(zhǎng)度叫做兩個(gè)平行平面的距離

  三、講解范例:

  例1如圖,已知正三角形的邊形為,點(diǎn)D到各頂點(diǎn)的距離都是,求點(diǎn)D到這個(gè)三角形所在平面的距離解:設(shè)為點(diǎn)D在平面內(nèi)的射影,延長(zhǎng),交于,∴,∴即是的中心,是邊上的垂直平分線,在中,即點(diǎn)D到這個(gè)三角形所在平面的距離是。

  四、課堂練習(xí):

  五、課后作業(yè):

高二數(shù)學(xué)教案14

  簡(jiǎn)單的邏輯聯(lián)結(jié)詞

  (一)教學(xué)目標(biāo)

  1.知識(shí)與技能目標(biāo):

  (1) 掌握邏輯聯(lián)結(jié)詞且的含義

  (2) 正確應(yīng)用邏輯聯(lián)結(jié)詞且解決問(wèn)題

  (3) 掌握真值表并會(huì)應(yīng)用真值表解決問(wèn)題

  2.過(guò)程與方法目標(biāo):

  在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng).

  3.情感態(tài)度價(jià)值觀目標(biāo):

  激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神.

  (二)教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):通過(guò)數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞且的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。

  難點(diǎn):

  1、正確理解命題Pq真假的規(guī)定和判定.

  2、簡(jiǎn)潔、準(zhǔn)確地表述命題Pq.

  教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。

  教學(xué)設(shè)想:在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng).

  (三)教學(xué)過(guò)程

  學(xué)生探究過(guò)程:

  1、引入

  在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的數(shù)學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

  在數(shù)學(xué)中,有時(shí)會(huì)使用一些聯(lián)結(jié)詞,如且或非。在生活用語(yǔ)中,我們也使用這些聯(lián)結(jié)詞,但表達(dá)的含義和用法與數(shù)學(xué)中的含義和用法不盡相同。下面介紹數(shù)學(xué)中使用聯(lián)結(jié)詞且或非聯(lián)結(jié)命題時(shí)的含義和用法。

  為敘述簡(jiǎn)便,今后常用小寫(xiě)字母p,q,r,s,表示命題。(注意與上節(jié)學(xué)習(xí)命題的條件p與結(jié)論q的區(qū)別)

  2、思考、分析

  問(wèn)題1:下列各組命題中,三個(gè)命題間有什么關(guān)系?

 、12能被3整除;

 、12能被4整除;

 、12能被3整除且能被4整除。

  學(xué)生很容易看到,在第(1)組命題中,命題③是由命題①②使用聯(lián)結(jié)詞且聯(lián)結(jié)得到的新命題。

  問(wèn)題2:以前我們有沒(méi)有學(xué)習(xí)過(guò)象這樣用聯(lián)結(jié)詞且聯(lián)結(jié)的命題呢?你能否舉一些例子?

  例如:命題p:菱形的對(duì)角線相等且菱形的對(duì)角線互相平分。

  3、歸納定義

  一般地,用聯(lián)結(jié)詞且把命題p和命題q聯(lián)結(jié)起來(lái),就得到一個(gè)新命題,記作pq,讀作p且q。

  命題pq即命題p且q中的且字與下面命題中的且 字的含義相同嗎?

  若 xA且xB,則xB。

  定義中的且字與命題中的且 字的含義是類似。但這里的邏輯聯(lián)結(jié)詞且與日常語(yǔ)言中的和,并且,以及,既又等相當(dāng),表明前后兩者同時(shí)兼有,同時(shí)滿足。說(shuō)明:符號(hào)與開(kāi)口都是向下。

  注意:p且q命題中的.p、q是兩個(gè)命題,而原命題,逆命題,否命題,逆否命題中的p,q是一個(gè)命題的條件和結(jié)論兩個(gè)部分.

  4、命題pq的真假的規(guī)定

  你能確定命題pq的真假嗎?命題pq和命題p,q的真假之間有什么聯(lián)系?

  引導(dǎo)學(xué)生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個(gè)命題的真假之間的關(guān)系的一般規(guī)律。

  例如:在上面的例子中,第(1)組命題中,①②都是真命題,所以命題③是真命題。

  一般地,我們規(guī)定:

  當(dāng)p,q都是真命題時(shí),pq是真命題;當(dāng)p,q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題。

  5、例題

  例1:將下列命題用且聯(lián)結(jié)成新命題pq的形式,并判斷它們的真假。

  (1)p:平行四邊形的對(duì)角線互相平分,q:平行四邊形的對(duì)角線相等。

  (2)p:菱形的對(duì)角線互相垂直,q:菱形的對(duì)角線互相平分;

  (3)p:35是15的倍數(shù),q:35是7的倍數(shù).

  解:(1)pq:平行四邊形的對(duì)角線互相平分且平行四邊形的對(duì)角線相等.也可簡(jiǎn)寫(xiě)成平行四邊形的對(duì)角線互相平分且相等.

  由于p是真命題,且q也是真命題,所以pq是真命題。

  (2)pq:菱形的對(duì)角線互相垂直且菱形的對(duì)角線互相平分. 也可簡(jiǎn)寫(xiě)成菱形的對(duì)角線互相垂直且平分.

  由于p是真命題,且q也是真命題,所以pq是真命題。

  (3)pq:35是15的倍數(shù)且35是7的倍數(shù). 也可簡(jiǎn)寫(xiě)成35是15的倍數(shù)且是7的倍數(shù).

  由于p是假命題, q是真命題,所以pq是假命題。

  說(shuō)明,在用且聯(lián)結(jié)新命題時(shí),如果簡(jiǎn)寫(xiě),應(yīng)注意保持命題的意思不變.

  例2:用邏輯聯(lián)結(jié)詞且改寫(xiě)下列命題,并判斷它們的真假。

  (1)1既是奇數(shù),又是素?cái)?shù);

  (2)2是素?cái)?shù)且3是素?cái)?shù);

  6.鞏固練習(xí) :P20 練習(xí)第1 , 2題

  7.教學(xué)反思:

  (1)掌握邏輯聯(lián)結(jié)詞且的含義

  (2)正確應(yīng)用邏輯聯(lián)結(jié)詞且解決問(wèn)題

高二數(shù)學(xué)教案15

  教學(xué)目標(biāo):

  1.了解復(fù)數(shù)的幾何意義,會(huì)用復(fù)平面內(nèi)的點(diǎn)和向量來(lái)表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

  2.通過(guò)建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對(duì)應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

  教學(xué)重點(diǎn):

  復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

  教學(xué)難點(diǎn):

  復(fù)數(shù)加減法的幾何意義.

  教學(xué)過(guò)程:

  一 、問(wèn)題情境

  我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來(lái)表示.那么,復(fù)數(shù)是否也能用點(diǎn)來(lái)表示呢?

  二、學(xué)生活動(dòng)

  問(wèn)題1 任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(duì)(a,b)惟一確定,而有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對(duì)應(yīng)的,那么我們?cè)鯓佑闷矫嫔系狞c(diǎn)來(lái)表示復(fù)數(shù)呢?

  問(wèn)題2 平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對(duì)應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

  問(wèn)題3 任何一個(gè)實(shí)數(shù)都有絕對(duì)值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長(zhǎng)度,那么相應(yīng)的`,我們可以給出復(fù)數(shù)的模(絕對(duì)值)的概念嗎?它又有什么幾何意義呢?

  問(wèn)題4 復(fù)數(shù)可以用復(fù)平面的向量來(lái)表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎??jī)蓚(gè)復(fù)數(shù)差的模有什么幾何意義?

  三、建構(gòu)數(shù)學(xué)

  1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來(lái)表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

  2.復(fù)平面:建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).

  3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對(duì)應(yīng),所以我們也可以用向量來(lái)表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

  6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對(duì)應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.

  四、數(shù)學(xué)應(yīng)用

  例1 在復(fù)平面內(nèi),分別用點(diǎn)和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

  練習(xí) 課本P123練習(xí)第3,4題(口答).

  思考

  1.復(fù)平面內(nèi),表示一對(duì)共軛虛數(shù)的兩個(gè)點(diǎn)具有怎樣的位置關(guān)系?

  2.如果復(fù)平面內(nèi)表示兩個(gè)虛數(shù)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,那么它們的實(shí)部和虛部分別滿足什么關(guān)系?

  3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

  4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對(duì)應(yīng)的點(diǎn)在虛軸上”的_____條件.

  例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m允許的取值范圍.

  例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大。

  思考 任意兩個(gè)復(fù)數(shù)都可以比較大小嗎?

  例4 設(shè)z∈C,滿足下列條件的點(diǎn)Z的集合是什么圖形?

 。1)│z│=2;(2)2<│z│<3.

  變式:課本P124習(xí)題3.3第6題.

  五、要點(diǎn)歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.復(fù)數(shù)的幾何意義.

  2.復(fù)數(shù)加減法的幾何意義.

  3.?dāng)?shù)形結(jié)合的思想方法.

【高二數(shù)學(xué)教案】相關(guān)文章:

高二數(shù)學(xué)教案01-26

高二數(shù)學(xué)教案【精選】10-18

高二數(shù)學(xué)教案02-06

高二數(shù)學(xué)教案(推薦)12-16

高二數(shù)學(xué)教案模板12-16

關(guān)于高二數(shù)學(xué)教案12-16

高二數(shù)學(xué)教案優(yōu)秀10-12

高二數(shù)學(xué)教案范文01-06

高二數(shù)學(xué)教案精品01-24

高二數(shù)學(xué)教案(合集)03-26