天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

高一數(shù)學(xué)教案

時(shí)間:2024-12-27 07:27:41 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)教案[優(yōu)秀4篇]

  作為一名辛苦耕耘的教育工作者,通常需要用到教案來輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編為大家整理的高一數(shù)學(xué)教案,希望能夠幫助到大家。

高一數(shù)學(xué)教案[優(yōu)秀4篇]

高一數(shù)學(xué)教案1

  集合的表示方法

  一、教學(xué)目標(biāo):

  1、集合的兩種表示方法(列舉法和特征性質(zhì)描述法)。

  2、能選擇適當(dāng)?shù)姆椒ㄕ_的表示一個(gè)集合。

  重點(diǎn):集合的表示方法。

  難點(diǎn):集合的特征性質(zhì)的概念,以及運(yùn)用特征性質(zhì)描述法表示集合。

  二、復(fù)習(xí)回顧:

  1、集合中元素的特性:______________________________________.

  2、常見的數(shù)集的簡寫符號:自然數(shù)集 整數(shù)集 正整數(shù)集

  有理數(shù)集 實(shí)數(shù)集

  三、知識預(yù)習(xí):

  1. ___________________________________________________________________________ ____________________________________________________________________叫做列舉法;

  2. _______________________ ____________________________________________________叫做集合A的一個(gè)特征性質(zhì)。 ___________________________________________________________________________________

  叫做特征性質(zhì)描述法,簡稱描述法。

  說明:概念的理解和注意問題

  1. 用列舉法表示集合時(shí)應(yīng)注意以下5點(diǎn):

  (1) 元素間用分隔號,

  (2) 元素不重復(fù);

  (3) 不考慮元素順序;

  (4) 對于含有較多元素的集合,如果構(gòu)成該集合的元素有明顯規(guī)律,可用列舉法,但必須把元素間的'規(guī)律顯示清楚后方能用省略號。

  (5) 無限集有時(shí)也可用列舉法表示。

  2. 用特征性質(zhì)描述法表示集合時(shí)應(yīng)注意以下6點(diǎn);

  (1) 寫清楚該集合中元素的代號(字母或用字母表達(dá)的元素符號);

  (2) 說明該集合中元素的性質(zhì);

  (3) 不能出現(xiàn)未被說明的字母;

  (4) 多層描述時(shí),應(yīng)當(dāng)準(zhǔn)確使用且和或

  (5) 所有描述的內(nèi)容都要寫在集合符號內(nèi);

  (6) 用于描述的語句力求簡明,準(zhǔn)確。

  四、典例分析

  題型一 用列舉法表示下列集合

  例1 用列舉法表示下列集合

  (1)A={x N|0

  變式訓(xùn)練:○1課本7頁練習(xí)A第1題。 ○2課本9頁習(xí)題A第3題。

  題型二 用描述法表示集合

  例2 用描述法表示下列集合

 。1){-1,1} (2)大于3的全體偶數(shù)構(gòu)成的集合 (3)在平面 內(nèi),線段AB的垂直平分線

  變式訓(xùn)練:課本8頁練習(xí)A第2題、練習(xí)B第2題、9頁習(xí)題A第4題。

  題型三 集合表示方法的靈活運(yùn)用

  例3 分別判斷下列各組集合是否為同一個(gè)集合:

  (1)A={x|x+32} B={y|y+32}

  (2) A={(1,2)} B={1,2}

  (3) M={(x,y)|y= +1} N={y| y= +1}

  變式訓(xùn)練:1、集合A={x|y= ,x Z,y Z},則集合A的元素個(gè)數(shù)為( )

  A 4 B 5 C 10 D 12

  2、課本8頁練習(xí)B第1題、習(xí)題A第1題

  例4 已知集合A={x|k -8x+16=0}只有一個(gè)元素,試求實(shí)數(shù)k的值,并用列舉法表示集合A.

  作業(yè):課本第9頁A組第2題、B組第1、2題。

  限時(shí)訓(xùn)練

  1. 選擇

 。1)集合 的另一種表示法是( B )

  A. B. C. D.

  (2) 由大于-3小于11的偶數(shù)所組成的集合是( D )

  A. B.

  C. D.

  (3) 方程組 的解集是( D )

  A. (5, 4) B. C. (-5, 4) D. (5,-4)

 。4)集合M= (x,y)| xy0, x , y 是( D )

  A. 第一象限內(nèi)的點(diǎn)集 B. 第三象限內(nèi)的點(diǎn)集

  C. 第四象限內(nèi)的點(diǎn)集 D. 第二、四象限內(nèi)的點(diǎn)集

 。5)設(shè)a, b , 集合 1,a+b, a = 0, , b , 則b-a等于( C )

  A. 1 B. -1 C. 2 D. -2

  2. 填空

 。1)已知集合A= 2, 4, x2-x , 若6 ,則x=___-2或3______.

 。2)由平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合為__ __.

 。3)下面幾種表示法:○1 ;○2 ; ○3 ;

  ○4(-1,2);○5 ;○6 . 能正確表示方程組

  的解集的是__○2__○5_______.

  (4) 用列舉法表示下列集合:

  A= =___{0,1,2}________________________;

  B= =___{-2,-1,0,1,2}________________________;

  C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.

  (5) 已知A= , B= , 則集合B=__{0,1,2}________.

  3. 已知集合A= , 且-3 ,求實(shí)數(shù)a. (a= )

  4. 已知集合A= .

  (1) 若A中只有一個(gè)元素,求a的值;(a=0或a=1)

 。2)若A中至少有一個(gè)元素,求a的取值范圍;(a1)

 。3)若A中至多有一個(gè)元素,求a的取值范圍。(a=0或a1)

高一數(shù)學(xué)教案2

  教學(xué)目的:

 。1)理解兩個(gè)集合的并集與交集的的含義,會求兩個(gè)簡單集合的并集與交集;

 。2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會求給定子集的補(bǔ)集;

 。3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會直觀圖示對理解抽象概念的作用。

  教學(xué)重點(diǎn):

  集合的交集與并集、補(bǔ)集的概念;

  教學(xué)難點(diǎn):

  集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;

  知識點(diǎn)

  1、并集

  一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)

  記作:A∪B讀作:“A并B”

  即:A∪B={x|x∈A,或x∈B}

  Venn圖表示:

  第4 / 7頁

  A與B的`所有元素來表示。 A與B的交集。

  2、交集

  一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。

  記作:A∩B讀作:“A交B”

  即:A∩B={x|∈A,且x∈B}

  交集的Venn圖表示

  說明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。

  拓展:求下列各圖中集合A與B的并集與交集

  A

  說明:當(dāng)兩個(gè)集合沒有公共元素時(shí),兩個(gè)集合的交集是空集,不能說兩個(gè)集合沒有交集

  3、補(bǔ)集

  全集:一般地,如果一個(gè)集合含有我們所研究問題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。

  補(bǔ)集:對于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補(bǔ)集(complementary set),簡稱為集合A的補(bǔ)集,

  記作:CUA

  即:CUA={x|x∈U且x∈A}

  第5 / 7頁

  補(bǔ)集的Venn圖表示

  說明:補(bǔ)集的概念必須要有全集的限制

  4、求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分

  交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。

  5、集合基本運(yùn)算的一些結(jié)論:

  A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

  A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

  (CUA)∪A=U,(CUA)∩A=?

  若A∩B=A,則A?B,反之也成立

  若A∪B=B,則A?B,反之也成立

  若x∈(A∩B),則x∈A且x∈B

  若x∈(A∪B),則x∈A,或x∈B

  ¤例題精講:

  例1設(shè)集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在數(shù)軸上表示出集合A、B。

  例2設(shè)A?{x?Z||x|?6},B?1,2,3?,C?3,4,5,6?,求:

  (1)A?(B?C);(2)A?A(B?C)。

  例3已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求實(shí)數(shù)m的取值范圍。

  XX且x?N}例4已知全集U?{x|x?10,A?{2,4,5,8},B?{1,3,5,8},求

  CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關(guān)系。

高一數(shù)學(xué)教案3

  教學(xué)目的:

  (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

 。2)使學(xué)生初步了解“屬于”關(guān)系的意義

  (3)使學(xué)生初步了解有限集、無限集、空集的意義

  教學(xué)重點(diǎn):

  集合的基本概念及表示方法

  教學(xué)難點(diǎn):

  運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示

  一些簡單的集合

  授課類型:

  新授課

  課時(shí)安排:

  1課時(shí)

  教具:

  多媒體、實(shí)物投影儀

  內(nèi)容分析:

  1、集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運(yùn)用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

  把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

  這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念

  集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對概念有一個(gè)初步認(rèn)識教科書給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集”這句話,只是對集合概念的描述性說明

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1、簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2、教材中的章頭引言;

  3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

  4、“物以類聚”,“人以群分”;

  5、教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問題如下:

  (1)有那些概念?是如何定義的?

  (2)有那些符號?是如何表示的?

 。3)集合中元素的特性是什么?

 。ㄒ唬┘系挠嘘P(guān)概念:

  由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個(gè)集合,或者說,某些指定的`對象集在一起就成為一個(gè)集合,也簡稱集。集合中的每個(gè)對象叫做這個(gè)集合的元素。

  定義:一般地,某些指定的對象集在一起就成為一個(gè)集合。

  1、集合的概念

 。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡稱集)

  (2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素

  2、常用數(shù)集及記法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,

 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作Nx或N+

 。3)整數(shù)集:全體整數(shù)的集合記作Z,

 。4)有理數(shù)集:全體有理數(shù)的集合記作Q,

 。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R

  注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

  (2)非負(fù)整數(shù)集內(nèi)排除0的集記作Nx或N+Q、Z、R等其它

  數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0

  的集,表示成Zx

  3、元素對于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒有重復(fù)

 。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_口方向,不能把a(bǔ)∈A顛倒過來寫

  三、練習(xí)題:

  1、教材P5練習(xí)1、2

  2、下列各組對象能確定一個(gè)集合嗎?

 。1)所有很大的實(shí)數(shù)(不確定)

  (2)好心的人(不確定)

  (3)1,2,2,3,4,5.(有重復(fù))

  3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是_-2,0,2__

  4、由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)

  (A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

  5、設(shè)集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數(shù),求證:

  (1)當(dāng)x∈N時(shí),x∈G;

 。2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

  證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

  則x=x+0x=a+b∈G,即x∈G

  證明(2):∵x∈G,y∈G,

  ∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

  ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

  ∵a∈Z,b∈Z,c∈Z,d∈Z

  ∴(a+c)∈Z,(b+d)∈Z

  ∴x+y=(a+c)+(b+d)∈G,

  又∵=

  且不一定都是整數(shù),

  ∴=不一定屬于集合G

  四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無序性

  3、常用數(shù)集的定義及記法

  五、課后作業(yè):

  六、板書設(shè)計(jì)(略)

  高中數(shù)學(xué)考試的技巧

  一、整體把握、抓大放小

  拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對于能夠很快做出來的題目,一定要拿到應(yīng)得的分?jǐn)?shù)。

  二、確定每部分的答題時(shí)間

  1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒有做出來的題目。對于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。

  2、考試時(shí)花了過多的時(shí)間才做出來的題目。對于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來。

  三、碰到難題時(shí)

  1、你可以先用“直覺”最快的找到解題思路;

  2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;

  3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點(diǎn)和解題技巧。

  4、對于花了一定時(shí)間仍然不能做出來的題目,要勇于放棄。

  四、卷面整潔、字跡清楚、注意小節(jié)

  做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。

  高中數(shù)學(xué)有效的學(xué)習(xí)方法

  一、課后及時(shí)回憶

  如果等到把課堂內(nèi)容遺忘得差不多時(shí)才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識必須及時(shí)復(fù)習(xí)。

  可以一個(gè)人單獨(dú)回憶,也可以幾個(gè)人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點(diǎn)內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過程中要不失時(shí)機(jī)整理筆記,因?yàn)檎砉P記也是一種有效的復(fù)習(xí)方法。

  二、定期重復(fù)鞏固

  即使是復(fù)習(xí)過的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時(shí)間的增長而逐步減小,間隔也可以逐漸拉長?梢援(dāng)天鞏固新知識,每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識即時(shí)回顧,每單元進(jìn)行知識梳理,每章節(jié)進(jìn)行知識歸納總結(jié),必須把相關(guān)知識串聯(lián)在一起,形成知識網(wǎng)絡(luò),達(dá)到對知識和方法的整體把握。

  三、科學(xué)合理安排

  復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實(shí)驗(yàn)證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識記的材料適當(dāng)分類,并且與其他的學(xué)習(xí)或娛樂或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識記素材的特點(diǎn),把握重復(fù)次數(shù)與間隔時(shí)間,并非間隔時(shí)間越長越好,而要適合自己的復(fù)習(xí)規(guī)律。

高一數(shù)學(xué)教案4

  教學(xué)目標(biāo)

 。1)正確理解充分條件、必要條件和充要條件的概念;

 。2)能正確判斷是充分條件、必要條件還是充要條件;

 。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

 。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

  教學(xué)建議

 。ㄒ唬┙滩姆治

  1.知識結(jié)構(gòu)

  首先給出推斷符號“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識.

  2.重點(diǎn)難點(diǎn)分析

  本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.

 。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.

 。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:

 、偈紫确智鍡l件是什么,結(jié)論是什么;

 、谌缓髧L試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;

 、圩詈笤僦赋鰲l件是結(jié)論的什么條件.

  (3)在討論條件和條件的關(guān)系時(shí),要注意:

 、偃,但,則是的充分但不必要條件;

 、谌,但,則是的必要但不充分條件;

  ③若,且,則是的充要條件;

  ④若,且,則是的充要條件;

 、萑,且,則是的既不充分也不必要條件.

 。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識,有助于充要條件的理解和判斷.

  ①若,則是的充分條件;

  顯然,要使元素,只需就夠了.類似地還有:

 、谌簦瑒t是的必要條件;

  ③若,則是的充要條件;

  ④若,且,則是的既不必要也不充分條件.

 。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.

 。ǘ┙谭ńㄗh

  1.學(xué)習(xí)充分條件、必要條件和充要條件知識,要注意與前面有關(guān)邏輯初步知識內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.

  2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會概念的本質(zhì)屬性.

  3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的`真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.

  4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來認(rèn)識“充分條件”的概念,從互為逆否命題的等價(jià)性來引出“必要條件”的概念.

  教學(xué)設(shè)計(jì)示例

  充要條件

  教學(xué)目標(biāo)

 。1)正確理解充分條件、必要條件和充要條件的概念;

  (2)能正確判斷是充分條件、必要條件還是充要條件;

 。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

 。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

  教學(xué)重點(diǎn)難點(diǎn):

  關(guān)于充要條件的判斷

  教學(xué)用具:

  幻燈機(jī)或?qū)嵨锿队皟x

  教學(xué)過程設(shè)計(jì)

  1.復(fù)習(xí)引入

  練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):

 。1)若,則;

  (2)若,則;

 。3)全等三角形的面積相等;

  (4)對角線互相垂直的四邊形是菱形;

 。5)若,則;

 。6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.

 。▽W(xué)生口答,教師板書.)

 。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

  置疑:對于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?

  答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

  對于命題“若,則”,如果由經(jīng)過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱條件是成立的充分條件,記作.

  2.講授新課

  (板書充分條件的定義.)

  一般地,如果已知,那么我們就說是成立的充分條件.

  提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.

 。▽W(xué)生口答)

  (1)“,”是“”成立的充分條件;

 。2)“三角形全等”是“三角形面積相等”成立的充分條件;

 。3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.

  從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.

  (板書必要條件的定義.)

  提出問題:用“充分條件”和“必要條件”來敘述上述6個(gè)命題.

 。▽W(xué)生口答).

 。1)因?yàn),所以是的充分條件,是的必要條件;

 。2)因?yàn),所以是的必要條件,是的充分條件;

 。3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

  (4)因?yàn)椤八倪呅蔚膶蔷互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;

  (5)因?yàn),所以是的必要條件,是的充分條件;

 。6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.

  總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.

 。ò鍟湟獥l件的定義.)

  3.鞏固新課

  例1(用投影儀投影.)

 。▽W(xué)生活動,教師引導(dǎo)學(xué)生作出下面回答.)

 、僖?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;

 、谝欢芡瞥,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;

 、邸⑹瞧鏀(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;

 、鼙硎净,所以是成立的必要非充分條件;

 、萦山患亩x可知且是成立的充要條件;

 、抻芍,所以是成立的充分非必要條件;

 、哂芍颍允,成立的必要非充分條件;

 、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;

  (通過對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認(rèn)識.)

  例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)

  解:由已知得,

  所以是的充分條件,或是的必要條件.

  4.小結(jié)回授

  今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).

  課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(上))第35頁練習(xí)l、2;第36頁練習(xí)l、2.

  (通過練習(xí),檢查學(xué)生掌握情況,有針對性的進(jìn)行講評.)

  5.課外作業(yè):教材第36頁 習(xí)題 1、2、3.

【高一數(shù)學(xué)教案】相關(guān)文章:

高一數(shù)學(xué)教案11-08

高一數(shù)學(xué)教案11-27

高一數(shù)學(xué)教案范文11-30

高一數(shù)學(xué)教案優(yōu)秀09-05

[實(shí)用]高一數(shù)學(xué)教案10-30

高一數(shù)學(xué)教案(薦)03-16

高一數(shù)學(xué)教案[必備]05-25

高一數(shù)學(xué)教案(通用)06-29

高一數(shù)學(xué)教案(精品)10-14

高一數(shù)學(xué)教案模板11-08