天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

高一數(shù)學教案

時間:2024-10-30 12:07:57 高一數(shù)學教案 我要投稿

[實用]高一數(shù)學教案

  作為一名教職工,通常需要準備好一份教案,教案有利于教學水平的提高,有助于教研活動的開展。那么你有了解過教案嗎?以下是小編為大家收集的高一數(shù)學教案,僅供參考,歡迎大家閱讀。

[實用]高一數(shù)學教案

高一數(shù)學教案1

  一、教學目標

  1. 知識與技能:

  理解三角函數(shù)(正弦、余弦、正切)的定義,掌握特殊角的三角函數(shù)值。

  能夠利用三角函數(shù)的基本關系式進行簡單的計算。

  2. 過程與方法:

  通過實例引入,理解三角函數(shù)在解決實際問題中的應用。

  采用講授與練習相結合的方法,鞏固所學知識。

  3. 情感態(tài)度與價值觀:

  培養(yǎng)學生嚴謹?shù)臄?shù)學態(tài)度,提高數(shù)學應用意識。

  激發(fā)學生的學習興趣,增強學習數(shù)學的信心。

  二、教學重點和難點

  重點:三角函數(shù)的定義及其基本關系式。

  難點:理解三角函數(shù)在直角三角形中的幾何意義,以及特殊角的三角函數(shù)值的記憶。

  三、教學過程

  1. 引入新課(約2分鐘)

  通過展示生活中的實例(如角度測量、高度計算等),引出三角函數(shù)的學習主題。

  2. 新知講解(約10分鐘)

  講解三角函數(shù)的定義,包括正弦、余弦、正切的.定義及其幾何意義。

  展示特殊角的三角函數(shù)值表,引導學生記憶并理解其意義。

  3. 例題講解(約10分鐘)

  通過例題講解如何利用三角函數(shù)的基本關系式進行簡單的計算。

  強調計算過程中的注意事項和易錯點。

  4. 課堂練習(約10分鐘)

  布置課堂練習題目,讓學生獨立完成,教師巡回指導。

  講解練習中的共性問題,鞏固所學知識。

  5. 課堂小結(約5分鐘)

  總結本節(jié)課的知識點,強調三角函數(shù)的重要性。

  布置課后作業(yè),鼓勵學生進一步鞏固所學知識。

  四、教學方法

  采用講授與練習相結合的教學方法,注重知識的鞏固和應用。

  引導學生積極參與課堂討論,培養(yǎng)學生的數(shù)學思維能力和解決問題的能力。

  五、教學器材

  黑板、粉筆、多媒體課件等。

高一數(shù)學教案2

  教學 目標

  1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項、

  (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的、

  (2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第 項 與項數(shù) 的關系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式、

  (3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項、

  2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力、

  3、通過由 求 的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣、

  教學 建議

 。1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等、

  (2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關系、在 教學 中強調數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列、函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法、由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關系,從而數(shù)列就有其特殊的表示法??遞推公式法、

  (3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法, 教師 應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助、

 。4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用 來調整等、如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關系、

  (5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前 項和的概念,用 表示 的問題是重點問題,可先提出一個具體問題讓學生分析 與 的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調 的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況、

  (6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的、

  教學 設計示例

  數(shù)列的概念

  教學 目標

  1、通過 教學 使學生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項公式寫出數(shù)列的項、

  2、通過數(shù)列定義的'歸納概括,初步培養(yǎng)學生的觀察、抽象概括能力;滲透函數(shù)思想、

  3、通過有關數(shù)列實際應用的介紹,激發(fā)學生學習研究數(shù)列的積極性、

  教學 重點,難點

  教學 重點是數(shù)列的定義的歸納與認識; 教學 難點是數(shù)列與函數(shù)的聯(lián)系與區(qū)別、

  教學 用具: 電腦,課件(媒體資料),投影儀,幻燈片

  教學 方法: 講授法為主

  教學 過程

  一、揭示課題

  今天開始我們研究一個新課題、

  先舉一個生活中的例子:場地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律、實際上我們要研究的是這樣的一列數(shù)

 。 板書 ) 象這樣排好隊的數(shù)就是我們的研究對象??數(shù)列、

 。 板書 )第三章 數(shù)列

  (一)數(shù)列的概念

  二、講解新課

  要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學概括出數(shù)列的定義,再給出幾列數(shù):

 。ɑ脽羝

 、

  自然數(shù)排成一列數(shù):

 、

  3個1排成一列:

 、

  無數(shù)個1排成一列:

 、

  的不足近似值,分別近似到 排列起來:

 、

  正整數(shù) 的倒數(shù)排成一列數(shù):

  ⑥

  函數(shù) 當 依次取 時得到一列數(shù):

 、

  函數(shù) 當 依次取 時得到一列數(shù):

 、

  請學生觀察8列數(shù),說明每列數(shù)就是一個數(shù)列,數(shù)列中的每個數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù)、

 。 板書 )1、數(shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列、

  為表述方便給出幾個名稱:項,項數(shù),首項(以幻燈片的形式給出)、以上述八個數(shù)列為例,讓學生練習了指出某一個數(shù)列的首項是多少,第二項是多少,指出某一個數(shù)列的一些項的項數(shù)、

  由此可以看出,給定一個數(shù)列,應能夠指明第一項是多少,第二項是多少,……,每一項都是確定的,即指明項數(shù),對應的項就確定、所以數(shù)列中的每一項與其項數(shù)有著對應關系,這與我們學過的函數(shù)有密切關系、

  ( 板書 )2、數(shù)列與函數(shù)的關系

  數(shù)列可以看作特殊的函數(shù),項數(shù)是其自變量,項是項數(shù)所對應的函數(shù)值,數(shù)列的定義域是正整數(shù)集 ,或是正整數(shù)集 的有限子集 、

  于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點看待數(shù)列、

  遇到數(shù)學概念不單要下定義,還要給其數(shù)學表示,以便研究與交流,下面探討數(shù)列的表示法、

  ( 板書 )3、數(shù)列的表示法

  數(shù)列可看作特殊的函數(shù),其表示也應與函數(shù)的表示法有聯(lián)系,首先請學生回憶函數(shù)的表示法:列表法,圖象法,解析式法、相對于列表法表示一個函數(shù),數(shù)列有這樣的表示法:用 表示第一項,用 表示第一項,……,用 表示第 項,依次寫出成為

  ( 板書 )(1)列舉法

  (如幻燈片上的例子)簡記為

  一個函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個數(shù)列,把它稱作圖示法、

 。 板書 )(2)圖示法

  啟發(fā)學生仿照函數(shù)圖象的畫法畫數(shù)列的圖形、具體方法是以項數(shù) 為橫坐標,相應的項 為縱坐標,即以 為坐標在平面直角坐標系中做出點(以前面提到的數(shù)列 為例,做出一個數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點,因為橫坐標為正整數(shù),所以這些點都在 軸的右側,而點的個數(shù)取決于數(shù)列的項數(shù)、從圖象中可以直觀地看到數(shù)列的項隨項數(shù)由小到大變化而變化的趨勢、

  有些函數(shù)可以用解析式來表示,解析式反映了一個函數(shù)的函數(shù)值與自變量之間的數(shù)量關系,類似地有一些數(shù)列的項能用其項數(shù)的函數(shù)式表示出來,即 ,這個函數(shù)式叫做數(shù)列的通項公式、

 。 板書 )(3)通項公式法

  如數(shù)列 的通項公式為 ;

  的通項公式為 ;

  的通項公式為 ;

  數(shù)列的通項公式具有雙重身份,它表示了數(shù)列的第 項,又是這個數(shù)列中所有各項的一般表示、通項公式反映了一個數(shù)列項與項數(shù)的函數(shù)關系,給了數(shù)列的通項公式,這個數(shù)列便確定了,代入項數(shù)就可求出數(shù)列的每一項、

  例如,數(shù)列 的通項公式 ,則 、

  值得注意的是,正如一個函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項公式,即便有通項公式,通項公式也未必唯一、

  除了以上三種表示法,某些數(shù)列相鄰的兩項(或幾項)有關系,這個關系用一個公式來表示,叫做遞推公式、

 。 板書 )(4)遞推公式法

  如前面所舉的鋼管的例子,第 層鋼管數(shù) 與第 層鋼管數(shù) 的關系是 ,再給定 ,便可依次求出各項、再如數(shù)列 中, ,這個數(shù)列就是 、

  像這樣,如果已知數(shù)列的第1項(或前幾項),且任一項與它的前一項(或前幾項)間的關系用一個公式來表示,這個公式叫做這個數(shù)列的遞推公式、遞推公式是數(shù)列所特有的表示法,它包含兩個部分,一是遞推關系,一是初始條件,二者缺一不可、

  可由學生舉例,以檢驗學生是否理解、

  三、小結

  1、數(shù)列的概念

  2、數(shù)列的四種表示

  四、作業(yè)? 略

  五、 板書 設計

  數(shù)列

 。ㄒ唬⿺(shù)列的概念 涉及的數(shù)列及表示

  1、數(shù)列的定義

  2、數(shù)列與函數(shù)的關系

  3、數(shù)列的表示法

 。1)列舉法

  (2)圖示法

 。3)通項公式法

  (4)遞推公式法

  探究活動

  將邊長為 厘米的正方形分成 個邊長為1厘米的正方形,數(shù)出其中所有正方形的個數(shù)、

  解:當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;歸納猜想邊長為 厘米的正方形中的正方形共有 個、

高一數(shù)學教案3

  [教學重、難點]

  認識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。

  [教學準備]

  學生、老師剪下附頁2中的圖2。

  [教學過程]

  一、畫一畫,說一說

  1、學生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。

  2、教師巡查練習情況。

  3、學生展示練習,說一說為什么是銳角、直角、鈍角?

  二、分一分

  1、小組活動;把附頁2中的圖2中的三角形進行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?

  2、匯報:分類的`標準和方法。可以按角來分,可以按邊來分。

  二、按角分類:

  1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。

  2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的三角形是直角三角形

  3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的三角形是鈍角三角形。

  三、按邊分類:

  1、觀察這類三角形的邊有什么共同的特點,引導學生發(fā)現(xiàn)每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。

  2、引導學生發(fā)現(xiàn)有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?

  四、填一填:

  24、25頁讓學生辨認各種三角形。

  五、練一練:

  第1題:通過“猜三角形游戲”讓學生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。

  第2題:在點子圖上畫三角形第3題:剪一剪。

  六、完成26頁實踐活動。

高一數(shù)學教案4

  一、教學目標

  1.知識與技能:(1)通過實物操作,增強學生的直觀感知。

 。2)能根據(jù)幾何結構特征對空間物體進行分類。

 。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

 。4)會表示有關于幾何體以及柱、錐、臺的分類。

  2.過程與方法:

 。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

  (2)讓學生觀察、討論、歸納、概括所學的知識。

  3.情感態(tài)度與價值觀:

  (1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

 。2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

  難點:柱、錐、臺、球的結構特征的概括。

  三、教學用具

 。1)學法:觀察、思考、交流、討論、概括。

 。2)實物模型、投影儀。

  四、教學過程

 。ㄒ唬﹦(chuàng)設情景,揭示課題

  1、由六根火柴最多可搭成幾個三角形?(空間:4個)

  2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?

  3、展示具有柱、錐、臺、球結構特征的空間物體。

  問題:請根據(jù)某種標準對以上空間物體進行分類。

 。ǘ⒀刑叫轮

  空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;

  旋轉體(軸):圓柱、圓錐、圓臺、球。

  1、棱柱的結構特征:

  (1)觀察棱柱的幾何物體以及投影出棱柱的圖片,思考:它們各自的特點是什么?共同特點是什么?

  (學生討論)

 。2)棱柱的主要結構特征(棱柱的概念):

  ①有兩個面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。

 。3)棱柱的表示法及分類:

  (4)相關概念:底面(底)、側面、側棱、頂點。

  2、棱錐、棱臺的結構特征:

 。1)實物模型演示,投影圖片;

 。2)以類似的方法,根據(jù)出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。

  棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。

  棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

  3、圓柱的結構特征:

 。1)實物模型演示,投影圖片——如何得到圓柱?

 。2)根據(jù)圓柱的概念、相關概念及圓柱的表示。

  4、圓錐、圓臺、球的結構特征:

 。1)實物模型演示,投影圖片

  ——如何得到圓錐、圓臺、球?

 。2)以類似的'方法,根據(jù)圓錐、圓臺、球的結構特征,以及相關概念和表示。

  5、柱體、錐體、臺體的概念及關系:

  探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當?shù)酌姘l(fā)生變化時,它們能否互相轉化?

  圓柱、圓錐、圓臺呢?

  6、簡單組合體的結構特征:

 。1)簡單組合體的構成:由簡單幾何體拼接或截去或挖去一部分而成。

 。2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。

 。3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。

 。ㄈ┡烹y解惑,發(fā)展思維

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

 。ㄋ模╈柟躺罨

  練習:課本P7練習1、2;課本P8習題1.1第1、2、3、4、5題

 。ㄎ澹w納整理:由學生整理學習了哪些內容

  高一數(shù)學必修2教案:空間幾何體的三視圖

  一、教學目標

  1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。

  2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

  3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。

  二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;

  難點:識別三視圖所表示的空間幾何體。

  三、學法指導:觀察、動手實踐、討論、類比。

  四、教學過程

 。ㄒ唬﹦(chuàng)設情景,揭開課題

  展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

  (二)講授新課

  1、中心投影與平行投影:

  中心投影:光由一點向外散射形成的投影;

  平行投影:在一束平行光線照射下形成的投影。

  正投影:在平行投影中,投影線正對著投影面。

  2、三視圖:

  正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

  側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

  俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

  三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

  三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

  長對正:正視圖與俯視圖的長相等,且相互對正;

  高平齊:正視圖與側視圖的高度相等,且相互對齊;

  寬相等:俯視圖與側視圖的寬度相等。

  3、畫長方體的三視圖:

  正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

  長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

  4、畫圓柱、圓錐的三視圖:

  5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。

  (三)鞏固練習

  課本P15練習1、2;P20習題1.2 [A組] 2。

 。ㄋ模w納整理

  請學生回顧發(fā)表如何作好空間幾何體的三視圖

 。ㄎ澹┎贾米鳂I(yè)

  課本P20習題1.2 [A組] 1。

高一數(shù)學教案5

  一、案例背景:

  對數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎。

  (師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù)。

  反函數(shù)的實質是研究兩個函數(shù)的關系,所以自然我們應從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù)。這個熟悉的函數(shù)就是指數(shù)函數(shù)。

  所求反函數(shù)為。

 。◣煟耗敲次覀兘裉炀褪茄芯恐笖(shù)函數(shù)的反函數(shù)—————對數(shù)函數(shù)。

 。◣煟河捎诙x就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā)。如從定義中你能了解對數(shù)函數(shù)的什么性質嗎?最初步的認識是什么?

 。ń處熖崾緦W生從反函數(shù)的三定與三反去認識,學生自主探究,合作交流)

 。▽W生)對數(shù)函數(shù)的定義域為,對數(shù)函數(shù)的值域為,且底數(shù)就是指數(shù)函數(shù)中的,故有著相同的限制條件。

 。ㄌ釂枺┯檬裁捶椒▉懋嫼瘮(shù)圖像?

 。▽W生1)利用互為反函數(shù)的兩個函數(shù)圖像之間的關系,利用圖像變換法畫圖。

  (學生2)用列表描點法也是可以的。

  請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖。

 。◣煟┯捎谥笖(shù)函數(shù)的圖像按和分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應以1為分界線分成兩種情況和,并分別以和為例畫圖。

  具體操作時,要求學生做到:

 。1)指數(shù)函數(shù)和的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等)。

 。2)畫出直線。

 。3)的圖像在翻折時先將特殊點對稱點找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而的圖像在翻折時可提示學生分兩段翻折,在左側的先翻,然后再翻在右側的部分。

  學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出

  和的圖像。(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內)如圖:

  教師畫完圖后再利用電腦將和的圖像畫在同一坐標系內,如圖:

  然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(要求從幾何與代數(shù)兩個角度說明)

  由以上兩條可說明圖像位于軸的右側。

 。4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于軸對稱。

  當時,在上是減函數(shù),即圖像是下降的

  之后可以追問學生有沒有值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:

  當時,有;當時,有。

  學生回答后教師可指導學生巧記這個結論的方法:當?shù)讛?shù)與真數(shù)在1的同側時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的'兩側時,函數(shù)值為負,并把它當作第(6)條性質板書記下來。

  最后教師在總結時,強調記住性質的關鍵在于要腦中有圖。且應將其性質與指數(shù)函數(shù)的性質對比記憶。(特別強調它們單調性的一致性)

  對圖像和性質有了一定的了解后,一起來看看它們的應用。

  先由學生依次列出相應的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制。

 。1)與;(2)與;

 。3)與;(4)與。

  讓學生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構造對數(shù)函數(shù)利用單調性來比大小。最后讓學生以其中一組為例寫出詳細的比較過程。

  二、案例反思:

  本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質。難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。

  在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,從而提高學習興趣。

高一數(shù)學教案6

  學 習 目 標

  1明確空間直角坐標系是如何建立;明確空間中任意一點如何表示;

  2 能夠在空間直角坐標系中求出點坐標

  教 學 過 程

  一 自 主 學 習

  1平面直角坐標系建立方法,點坐標確定過程、表示方法?

  2一個點在平面怎么表示?在空間呢?

  3關于一些對稱點坐標求法

  關于坐標平面 對稱點 ;

  關于坐標平面 對稱點 ;

  關于坐標平面 對稱點 ;

  關于 軸對稱點 ;

  關于 對軸稱點 ;

  關于 軸對稱點 ;

  二 師 生 互動

  例1在長方體 中, , 寫出 四點坐標

  討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標系,則各頂點坐標又是怎樣呢?

  變式:已知 ,描出它在空間位置

  例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標系,并確定各頂點坐標

  練1 建立適當直角坐標系,確定棱長為3正四面體各頂點坐標

  練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當空間直角坐標系,試寫出圖中各中點坐標

  三 鞏 固 練 習

  1 關于空間直角坐標系敘述正確是( )

  A 中 位置是可以互換

  B空間直角坐標系中點與一個三元有序數(shù)組是一種一一對應關系

  C空間直角坐標系中三條坐標軸把空間分為八個部分

  D某點在不同空間直角坐標系中坐標位置可以相同

  2 已知點 ,則點 關于原點對稱點坐標為( )

  A B C D

  3 已知 三個頂點坐標分別為 ,則 重心坐標為( )

  A B C D

  4 已知 為平行四邊形,且 , 則頂點 坐標

  5 方程 幾何意義是

  四 課 后 反 思

  五 課 后 鞏 固 練 習

  1 在空間直角坐標系中,給定點 ,求它分別關于坐標平面,坐標軸和原點對稱點坐標

  2 設有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標系

 、徘 坐標;

 、魄 坐標;

高一數(shù)學教案7

  【摘要】鑒于大家對數(shù)學網(wǎng)十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學教案,供大家參考!

  本文題目:空間幾何體的三視圖和直觀圖高一數(shù)學教案

  第一課時 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖

  教學要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.

  教學重點:畫出三視圖、識別三視圖.

  教學難點:識別三視圖所表示的空間幾何體.

  教學過程:

  一、新課導入:

  1. 討論:能否熟練畫出上節(jié)所學習的幾何體?工程師如何制作工程設計圖紙?

  2. 引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.

  三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;

  直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形.

  用途:工程建設、機械制造、日常生活.

  二、講授新課:

  1. 教學中心投影與平行投影:

 、 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產生影子。人們將這種自然現(xiàn)象加以科學的抽象,總結其中的規(guī)律,提出了投影的方法。

  ② 中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形.

 、 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.

  討論:點、線、三角形在平行投影后的結果.

  2. 教學柱、錐、臺、球的三視圖:

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖

  討論:三視圖與平面圖形的關系? 畫出長方體的三視圖,并討論所反應的長、寬、高

  結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果. 正視圖、側視圖、俯視圖.

 、 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖. (

 、 討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數(shù)量(長、寬、高)

  正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

 、 討論:根據(jù)以上的'三視圖,如何逆向得到幾何體的形狀.

  (試變化以上的三視圖,說出相應幾何體的擺放)

  3. 教學簡單組合體的三視圖:

 、 畫出教材P16 圖(2)、(3)、(4)的三視圖.

  ② 從教材P16思考中三視圖,說出幾何體.

  4. 練習:

 、 畫出正四棱錐的三視圖.

  畫出右圖所示幾何體的三視圖.

 、 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

  5. 小結:投影法;三視圖;順與逆

  三、鞏固練習: 練習:教材P17 1、2、3、4

  第二課時 1.2.3 空間幾何體的直觀圖

  教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.

  教學重點:畫出直觀圖.

高一數(shù)學教案8

  目標:

  1.讓學生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;

  2.讓學生了解函數(shù)的零點與方程根的聯(lián)系 ;

  3.讓學生認識到函數(shù)的圖象及基本性質(特別是單調性)在確定函數(shù)零點中的作用 ;

  4。培養(yǎng)學生動手操作的`能力 。

  二、教學重點、難點

  重點:零點的概念及存在性的判定;

  難點:零點的確定。

  三、復習引入

  例1:判斷方程 x2-x-6=0 解的存在。

  分析:考察函數(shù)f(x)= x2-x-6, 其

  圖像為拋物線容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

  點B (0,-6)與點C(4,6)之間的那部分曲線

  必然穿過x軸,即在區(qū)間(0,4)內至少有點

  X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內也至

  少有點X2,使得f( X2)=0,而方程至多有兩

  個解,所以在(-4,0),(0,4)內各有一解

  定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的零點

  抽象概括

  y=f(x)的圖像與x軸的交點的橫坐標叫做該函數(shù)的零點,即f(x)=0的解。

  若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內至少有一個零點,即f(x)=0在 (a,b)內至少有一個實數(shù)解。

  f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點

  所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點

  注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的實數(shù)解的存在性,并不能判斷具體有多少個解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)內是單調的,那么,方程f(x)=0在(a,b)內有唯一實數(shù)解;

  3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

  4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。

  四、知識應用

  例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內沒有實數(shù)解?為什么?

  解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在區(qū)間[-1,0]內有零點,即f(x)=0在區(qū)間[-1,0]內有實數(shù)解

  練習:求函數(shù)f(x)=lnx+2x-6 有沒有零點?

  例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。

  解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內有一個交點,在( -,2)內也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。

  練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內,求m的取值范圍。

  五、課后作業(yè)

  p133第2,3題

高一數(shù)學教案9

  子集、全集、補集

  教學目標:

  (1)理解子集、真子集、補集、兩個集合相等概念;

 。2)了解全集、空集的意義,(3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;

 。4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

 。5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數(shù)學結合的數(shù)學思想;

 。6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力。

  教學重點:子集、補集的概念

  教學難點:弄清元素與子集、屬于與包含之間的區(qū)別

  教學用具:幻燈機

  教學過程設計

 。ㄒ唬⿲胄抡n

  上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。

  提出問題(投影打出)

  已知 , , ,問:

  1、哪些集合表示方法是列舉法。

  2、哪些集合表示方法是描述法。

  3、將集M、集從集P用圖示法表示。

  4、分別說出各集合中的元素。

  5、將每個集合中的元素與該集合的關系用符號表示出來。將集N中元素3與集M的關系用符號表示出來。

  6、集M中元素與集N有何關系。集M中元素與集P有何關系。

  找學生回答

  1、集合M和集合N;(口答)

  2、集合P;(口答)

  3、(筆練結合板演)

  4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5、 , , , , , , , (筆練結合板演)

  6、集M中任何元素都是集N的元素。集M中任何元素都是集P的元素。(口答)

  引入在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經(jīng)常出現(xiàn),本節(jié)將研究有關兩個集合間關系的問題。

 。ǘ┬率谥R

  1、子集

 。1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的.元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作: 讀作:A包含于B或B包含A

  當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.

  性質:① (任何一個集合是它本身的子集)

 、 (空集是任何集合的子集)

  置疑能否把子集說成是由原來集合中的部分元素組成的集合?

  解疑不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的?占彩荁的子集,而這個集合中并不含有B中的元素。由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

 。2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例: ,可見,集合 ,是指A、B的所有元素完全相同。

 。3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

  思考能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集!

  集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B.

  提問

 。1) 寫出數(shù)集N,Z,Q,R的包含關系,并用文氏圖表示。

 。2) 判斷下列寫法是否正確

 、 A ② A ③ ④A A

  性質:

 。1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

  (2)如果 , ,則 。

  例1 寫出集合 的所有子集,并指出其中哪些是它的真子集。

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集。

  注意(1)子集與真子集符號的方向。

  (2)易混符號

 、佟 ”與“ ”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如 R,{1} {1,2,3}

 、趝0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

  如: {0}。不能寫成 ={0}, ∈{0}

  例2 見教材P8(解略)

  例3 判斷下列說法是否正確,如果不正確,請加以改正。

  (1) 表示空集;

 。2)空集是任何集合的真子集;

 。3) 不是 ;

 。4) 的所有子集是 ;

 。5)如果 且 ,那么B必是A的真子集;

  (6) 與 不能同時成立。

  解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

 。2)不正確?占侨魏畏强占系恼孀蛹

 。3)不正確。 與 表示同一集合;

  (4)不正確。 的所有子集是 ;

 。5)正確

  (6)不正確。當 時, 與 能同時成立。

  例4 用適當?shù)姆枺?, )填空:

 。1) ; ; ;

 。2) ; ;

 。3) ;

 。4)設 , , ,則A B C.

  解:(1)0 0 ;

 。2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

  練習教材P9

  用適當?shù)姆枺?, )填空:

 。1) ; (5) ;

  (2) ; (6) ;

 。3) ; (7) ;

  (4) ; (8) 。

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) 。

  提問:見教材P9例子

 。ǘ 全集與補集

  1、補集:一般地,設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即A在S中的補集 可用右圖中陰影部分表示。

  性質: S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

  (2)若A={0},則 NA=N-;

  (3) RQ是無理數(shù)集。

  2、全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用 表示。

  注: 是對于給定的全集 而言的,當全集不同時,補集也會不同。

  例如:若 ,當 時, ;當 時,則 。

  例5 設全集 , , ,判斷 與 之間的關系。

  解:∵

  :見教材P10練習

  1、填空:

  , , ,那么 , 。

  解: ,2、填空:

 。1)如果全集 ,那么N的補集 ;

 。2)如果全集, ,那么 的補集 ( )= 。

  解:(1) ;(2) 。

 。ㄈ┬〗Y:本節(jié)課學習了以下內容:

  1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

  2、五條性質

 。1)空集是任何集合的子集。Φ A

 。2)空集是任何非空集合的真子集。Φ A (A≠Φ)

 。3)任何一個集合是它本身的子集。

 。4)如果 , ,則 。

 。5) S( SA)=A

  3、兩組易混符號:(1)“ ”與“ ”:(2){0}與

 。ㄋ模┱n后作業(yè):見教材P10習題

高一數(shù)學教案10

  學習目標

  1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質

  2、掌握標準方程中的幾何意義

  3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題

  一、預習檢查

  1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、

  2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、

  3、雙曲線的.漸進線方程為、

  4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、

  二、問題探究

  探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、

  探究2、雙曲線與其漸近線具有怎樣的關系、

  練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、

  例1根據(jù)以下條件,分別求出雙曲線的標準方程、

  (1)過點,離心率、

  (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、

  例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、

  例3(理)求離心率為,且過點的雙曲線標準方程、

  三、思維訓練

  1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是、

  2、橢圓的離心率為,則雙曲線的離心率為、

  3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、

  4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、

  四、知識鞏固

  1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、

  2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為、

  3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、

  4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、

  5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、

高一數(shù)學教案11

  教學目標:①掌握對數(shù)函數(shù)的性質。

 、趹脤(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復

  合函數(shù)的定義域、值 域及單調性。

 、 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高

  解題能力。

  教學重點與難點:對數(shù)函數(shù)的性質的應用。

  教學過程設計:

  ⒈復習提問:對數(shù)函數(shù)的概念及性質。

 、查_始正課

  1 比較數(shù)的大小

  例 1 比較下列各組數(shù)的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

 、苐og0.50.6 ,logЛ0.5 ,lnЛ

  師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?

  生:這兩個對數(shù)底相等。

  師:那么對于兩個底相等的對數(shù)如何比大小?

  生:可構造一個以a為底的'對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。

  師:對,請敘述一下這道題的解題過程。

  生:對數(shù)函數(shù)的單調性取決于底的大。寒0

  調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞

  增,所以loga5.1

  板書:

  解:Ⅰ)當0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),

  ∵5.1<5.9 ∴l(xiāng)oga5.1

  師:請同學們觀察一下⑵中這三個對數(shù)有何特征?

  生:這三個對數(shù)底、真數(shù)都不相等。

  師:那么對于這三個對數(shù)如何比大小?

  生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書:略。

  師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函

  數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)

  函數(shù)圖象的位置關系來比大小。

  2 函數(shù)的定義域, 值 域及單調性。

高一數(shù)學教案12

  一、教學目標

  1. 知識與技能:

  掌握集合的并集、交集、補集的概念及表示方法。

  能夠運用集合的基本運算解決簡單問題。

  2. 過程與方法:

  通過實例分析,引導學生理解集合運算的實質。

  采用講練結合的方法,提高學生的.運算能力。

  3. 情感態(tài)度與價值觀:

  培養(yǎng)學生的邏輯思維能力和嚴謹?shù)目茖W態(tài)度。

  二、教學重點和難點

  重點:集合的并集、交集、補集的概念及表示方法。

  難點:運用集合的基本運算解決復雜問題。

  三、教學方法

  講授法:通過教師講解,引導學生理解集合運算的基本概念。

  練習法:通過大量練習,提高學生的運算能力和解題技巧。

  多媒體輔助教學:利用PPT等多媒體工具展示實例,幫助學生直觀理解。

  四、教學過程

  1. 引入新課(約2分鐘)

  通過復習集合的概念和表示方法,引出集合運算的重要性。

  2. 新課講授(約20分鐘)

  概念講解:詳細講解集合的并集、交集、補集的概念及表示方法。

  實例分析:通過具體實例,引導學生理解集合運算的實質和運算規(guī)則。

  例題講解:給出幾道例題,教師邊講邊練,引導學生掌握解題技巧。

  3. 鞏固練習(約15分鐘)

  給出幾道練習題,讓學生獨立完成,然后小組內交流答案,教師點評。

  4. 課堂小結(約5分鐘)

  總結本節(jié)課的知識點,強調集合運算的重要性,布置課后作業(yè)。

  五、教學器材

  多媒體PPT課件

  黑板及粉筆

  練習冊或作業(yè)本

高一數(shù)學教案13

  教學目標:

  使學生理解函數(shù)的概念,明確決定函數(shù)的三個要素,學會求某些函數(shù)的定義域,掌握判定兩個函數(shù)是否相同的方法;使學生理解靜與動的辯證關系.

  教學重點:

  函數(shù)的概念,函數(shù)定義域的求法.

  教學難點:

  函數(shù)概念的理解.

  教學過程:

 、.課題導入

  [師]在初中,我們已經(jīng)學習了函數(shù)的概念,請同學們回憶一下,它是怎樣表述的?

  (幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).

  設在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說y是x的函數(shù),x叫做自變量.

  [師]我們學習了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請同學們思考下面兩個問題:

  問題一:y=1(xR)是函數(shù)嗎?

  問題二:y=x與y=x2x 是同一個函數(shù)嗎?

  (學生思考,很難回答)

  [師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認識函數(shù)概念(板書課題).

  Ⅱ.講授新課

  [師]下面我們先看兩個非空集合A、B的元素之間的一些對應關系的例子.

  在(1)中,對應關系是乘2,即對于集合A中的每一個數(shù)n,集合B中都有一個數(shù)2n和它對應.

  在(2)中,對應關系是求平方,即對于集合A中的每一個數(shù)m,集合B中都有一個平方數(shù)m2和它對應.

  在(3)中,對應關系是求倒數(shù),即對于集合A中的每一個數(shù)x,集合B中都有一個數(shù) 1x 和它對應.

  請同學們觀察3個對應,它們分別是怎樣形式的對應呢?

  [生]一對一、二對一、一對一.

  [師]這3個對應的共同特點是什么呢?

  [生甲]對于集合A中的任意一個數(shù),按照某種對應關系,集合B中都有惟一的數(shù)和它對應.

  [師]生甲回答的很好,不但找到了3個對應的共同特點,還特別強調了對應關系,事實上,一個集合中的數(shù)與另一集合中的數(shù)的對應是按照一定的關系對應的,這是不能忽略的 實際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對應關系.

  現(xiàn)在我們把函數(shù)的概念進一步敘述如下:(板書)

  設A、B是非空的數(shù)集,如果按照某個確定的.對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對應,那么就稱f︰AB為從集合A到集合B的一個函數(shù).

  記作:y=f(x),xA

  其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對應的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.

  一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數(shù)x,在R中都有一個數(shù)f(x)=ax+b(a0)和它對應.

  反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數(shù)x,在B中都有一個實數(shù)f(x)= kx (k0)和它對應.

  二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當a0時B={f(x)|f(x)4ac-b24a };當a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對應.

  函數(shù)概念用集合、對應的語言敘述后,我們就很容易回答前面所提出的兩個問題.

  y=1(xR)是函數(shù),因為對于實數(shù)集R中的任何一個數(shù)x,按照對應關系函數(shù)值是1,在R中y都有惟一確定的值1與它對應,所以說y是x的函數(shù).

  Y=x與y=x2x 不是同一個函數(shù),因為盡管它們的對應關系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數(shù).

  [師]理解函數(shù)的定義,我們應該注意些什么呢?

  (教師提出問題,啟發(fā)、引導學生思考、討論,并和學生一起歸納、總結)

  注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對應.

 、诜杅:AB表示A到B的一個函數(shù),它有三個要素;定義域、值域、對應關系,三者缺一不可.

 、奂螦中數(shù)的任意性,集合B中數(shù)的惟一性.

 、躥表示對應關系,在不同的函數(shù)中,f的具體含義不一樣.

  ⑤f(x)是一個符號,絕對不能理解為f與x的乘積.

  [師]在研究函數(shù)時,除用符號f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號來表示

  Ⅲ.例題分析

  [例1]求下列函數(shù)的定義域.

  (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

  分析:函數(shù)的定義域通常由問題的實際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)x的集合.

  解:(1)x-20,即x2時,1x-2 有意義

  這個函數(shù)的定義域是{x|x2}

  (2)3x+20,即x-23 時3x+2 有意義

  函數(shù)y=3x+2 的定義域是[-23 ,+)

  (3) x+10 x2

  這個函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).

  注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.

  從上例可以看出,當確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時,常有以下幾種情況:

  (1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R;

  (2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合;

  (3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號內的式子不小于零的實數(shù)的集合;

  (4)如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)的定義域是使各部分式子都有意義的實數(shù)的集合(即使每個部分有意義的實數(shù)的集合的交集);

  (5)如果f(x)是由實際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實際意義的實數(shù)的集合.

  例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域為x0而不是全體實數(shù).

  由以上分析可知:函數(shù)的定義域由數(shù)學式子本身的意義和問題的實際意義決定.

  [師]自變量x在定義域中任取一個確定的值a時,對應的函數(shù)值用符號f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當x=2時的函數(shù)值是f(2)=22+32+1=11

  注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當自變量x=a時的函數(shù)值.

  下面我們來看求函數(shù)式的值應該怎樣進行呢?

  [生甲]求函數(shù)式的值,嚴格地說是求函數(shù)式中自變量x為某一確定的值時函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應確定的數(shù)(或字母,或式子)進行計算即可.

  [師]回答正確,不過要準確地求出函數(shù)式的值,計算時萬萬不可粗心大意噢!

  [生乙]判定兩個函數(shù)是否相同,就看其定義域或對應關系是否完全一致,完全一致時,這兩個函數(shù)就相同;不完全一致時,這兩個函數(shù)就不同.

  [師]生乙的回答完整嗎?

  [生]完整!(課本上就是如生乙所述那樣寫的).

  [師]大家說,判定兩個函數(shù)是否相同的依據(jù)是什么?

  [生]函數(shù)的定義.

  [師]函數(shù)的定義有三個要素:定義域、值域、對應關系,我們判定兩個函數(shù)是否相同為什么只看兩個要素:定義域和對應關系,而不看值域呢?

  (學生竊竊私語:是啊,函數(shù)的三個要素不是缺一不可嗎?怎不看值域呢?)

  (無人回答)

  [師]同學們預習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對應關系決定的嗎!關注了函數(shù)的定義域與對應關系,三者就全看了!

  (生恍然大悟,我們怎么就沒想到呢?)

  [例2]求下列函數(shù)的值域

  (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

  (3)y=x2+4x+3 (-31)

  分析:求函數(shù)的值域應確定相應的定義域后再根據(jù)函數(shù)的具體形式及運算確定其值域.

  對于(1)(2)可用直接法根據(jù)它們的定義域及對應法則得到(1)(2)的值域.

  對于(3)可借助數(shù)形結合思想利用它們的圖象得到值域,即圖象法.

  解:(1)yR

  (2)y{1,0,-1}

  (3)畫出y=x2+4x+3(-31)的圖象,如圖所示,

  當x[-3,1]時,得y[-1,8]

 、.課堂練習

  課本P24練習17.

  Ⅴ.課時小結

  本節(jié)課我們學習了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學習函數(shù)定義應注意的問題及求定義域時的各種情形應該予以重視.(本小結的內容可由學生自己來歸納)

 、.課后作業(yè)

  課本P28,習題1、2. 文 章來

高一數(shù)學教案14

  教學目標

  1.理解分數(shù)指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義。

  2.掌握有理數(shù)指數(shù)冪的運算性質,靈活的運用乘法公式進行有理數(shù)指數(shù)冪的運算和化簡,會進行根式與分數(shù)指數(shù)冪的相互轉化。

  教學重點

  1.分數(shù)指數(shù)冪含義的理解。

  2.有理數(shù)指數(shù)冪的運算性質的理解。

  3.有理數(shù)指數(shù)冪的運算和化簡。

  教學難點

  1.分數(shù)指數(shù)冪含義的理解。

  2.有理數(shù)指數(shù)冪的運算和化簡。

  教學過程

  一.問題情景

  上節(jié)課研究了根式的意義及根式的性質,那么根式與指數(shù)冪有什么關系?整數(shù)指數(shù)冪有那些運算性質?

  二.學生活動

  1.說出下列各式的'意義,并指出其結果的指數(shù),被開方數(shù)的指數(shù)及根指數(shù)三者之間的關系

 。1)=(2)=

  2.從上述問題中,你能得到的結論為

  3.(a0)及(a0)能否化成指數(shù)冪的形式?

  三.數(shù)學理論

  正分數(shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))

  負分數(shù)指數(shù)冪的意義:=(a0,m,n均為正整數(shù))

  1.規(guī)定:0的正分數(shù)指數(shù)冪仍是0,即=0

  0的負分數(shù)指數(shù)冪無意義。

  3.規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),因而整數(shù)指數(shù)冪的運算性質同樣適用于有理數(shù)指數(shù)冪。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.數(shù)學運用

  例1求值:

 。1)(2)(3)(4)

  例2用分數(shù)指數(shù)冪的形式表示下列各式(a0)

 。1)(2)

  例3化簡

  (1)

 。2)(3)

  例4化簡

  例5已知求(1)(2)

  五.回顧小結

  1.分數(shù)指數(shù)冪的意義。=(0,m,n)

  無意義

  2.有理數(shù)指數(shù)冪的運算性質

  3.整式運算律及乘法公式在分數(shù)指數(shù)冪運算中仍適用

  4.指數(shù)概念從整數(shù)指數(shù)冪推廣到有理數(shù)指數(shù)冪,同樣可以推廣到實數(shù)指數(shù)冪,請同學們閱讀P47的閱讀部分

  練習P47-48練習1,2,3,4

  六.課外作業(yè)

  P48習題2.2(1)2,4

高一數(shù)學教案15

  教學目標:

 、僬莆諏(shù)函數(shù)的性質。

 、趹脤(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復合函數(shù)的定義域、值 域及單調性。

 、 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高解題能力。

  教學重點與難點:對數(shù)函數(shù)的性質的應用。

  教學過程設計:

 、睆土曁釂枺簩(shù)函數(shù)的概念及性質。

  ⒉開始正課

  1 比較數(shù)的大小

  例 1 比較下列各組數(shù)的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

 、苐og0.50.6 ,logЛ0.5 ,lnЛ

  師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?

  生:這兩個對數(shù)底相等。

  師:那么對于兩個底相等的對數(shù)如何比大。

  生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。

  師:對,請敘述一下這道題的解題過程。

  生:對數(shù)函數(shù)的單調性取決于底的大小:當0

  調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞

  增,所以loga5.1

  板書:

  解:Ⅰ)當0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9 ∴l(xiāng)oga5.1

  師:請同學們觀察一下⑵中這三個對數(shù)有何特征?

  生:這三個對數(shù)底、真數(shù)都不相等。

  師:那么對于這三個對數(shù)如何比大?

  生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書:略。

  師:比較對數(shù)值的大小常用方法:

  ①構造對數(shù)函數(shù),直接利用對數(shù)函

  數(shù) 的單調性比大小

 、诮栌谩爸虚g量”間接比大小

  ③利用對數(shù)

  函數(shù)圖象的位置關系來比大小。

  2 函數(shù)的'定義域, 值 域及單調性。

  例 2 ⑴求函數(shù)y=的定義域。

 、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3)

  師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)

  生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。

  板書:

  解:∵   2x-1≠0      x≠0.5

  log0.8x-1≥0 ,  x≤0.8

  x>0        x>0

  ∴x(0,0.5)∪(0.5,0.8〕

  師:接下來我們一起來解這個不等式。

  分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,再根據(jù)對數(shù)函數(shù)的單調性求解。

  師:請你寫一下這道題的解題過程。

  生:<板書>

  解:  x2+2x-3>0      x<-3 x="">1

  (3x+3)>0    ,   x>-1

  x2+2x-3<(3x+3)    -2

  不等式的解為:1

  例 3 求下列函數(shù)的值域和單調區(qū)間。

 、舮=log0.5(x- x2)

 、苰=loga(x2+2x-3)(a>0,a≠1)

  師:求例3中函數(shù)的的值域和單調區(qū)間要用及復合函數(shù)的思想方法。

  下面請同學們來解⑴。

  生:此函數(shù)可看作是由y= log0.5u, u= x- x2復合而成。

  板書:

  解:⑴∵u= x- x2>0, ∴0

  u= x- x2=-(x-0.5)2+0.25, ∴0

  ∴y= log0.5u≥log0.50.25=2

  ∴y≥2

  x    x(0,0.5]   x[0.5,1)

  u= x- x2

  y= log0.5u

  y=log0.5(x- x2)

  函數(shù)y=log0.5(x- x2)的單調遞減區(qū)間(0,0.5],單調遞 增區(qū)間[0.5,1)

  注:研究任何函數(shù)的性質時,都應該首先保證這個函數(shù)有意義,否則

  函數(shù)都不存在,性質就無從談起。

  師:在⑴的基礎上,我們一起來解

  ⑵。請同學們觀察一下⑴與⑵有什

  么區(qū)別?

  生:

 、诺牡讛(shù)是常值

  ⑵的底數(shù)是字母。

  師:那么⑵如何來解?

  生:只要對a進行分類討論,做法與⑴類似。

  板書:略。

 、承〗Y

  這堂課主要講解如何應用對數(shù)函數(shù)的性質解決一些問題,希望能

  通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

  ⒋作業(yè)

 、沤獠坏仁

  ①lg(x2-3x-4)≥lg(2x+10);

 、趌oga(x2-x)≥loga(x+1),(a為常數(shù))

 、埔阎瘮(shù)y=loga(x2-2x),(a>0,a≠1)

 、偾笏膯握{區(qū)間;

 、诋0

  ⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)

 、偾笏亩x域;

 、谟懻撍钠媾夹;

 、塾懻撍膯握{性。

 、纫阎瘮(shù)y=loga(ax-1) (a>0,a≠1)

 、偾笏亩x域;

  ②當x為何值時,函數(shù)值大于1;

 、塾懻撍

  單調性。

  5、課堂教學設計說明

  這節(jié)課是安排為習題課,主要利用對數(shù)函數(shù)的性質解決一些問題,整個一堂課分兩個部分:一 。比較數(shù)的大小,想通過這一部分的練習,培養(yǎng)同學們構造函數(shù)的思想和分類討論、數(shù)形結合的思想。二。函數(shù)的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數(shù)的定義域。因為學生在求函數(shù)的值域和單調區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

【高一數(shù)學教案】相關文章:

高一數(shù)學教案11-08

高一數(shù)學教案【熱門】11-28

【熱門】高一數(shù)學教案11-26

高一數(shù)學教案【精】11-29

【薦】高一數(shù)學教案11-27

高一數(shù)學教案【推薦】11-30

【精】高一數(shù)學教案12-01

高一數(shù)學教案【薦】12-02

高一數(shù)學教案優(yōu)秀09-05

高一數(shù)學教案函數(shù)12-28