(經(jīng)典)初二數(shù)學(xué)上冊(cè)教案優(yōu)秀3篇
作為一位無私奉獻(xiàn)的人民教師,可能需要進(jìn)行教案編寫工作,借助教案可以讓教學(xué)工作更科學(xué)化。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編為大家整理的初二數(shù)學(xué)上冊(cè)教案優(yōu)秀,歡迎閱讀與收藏。
初二數(shù)學(xué)上冊(cè)教案優(yōu)秀1
1、教材分析
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2、教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡(jiǎn)單的`、已知的問題。
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2、了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。
(二)能力訓(xùn)練點(diǎn)
1、通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。
2、通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想。
3、會(huì)根據(jù)比較簡(jiǎn)單的條件畫出指定的四邊形。
4、講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類比思想。
(三)德育滲透點(diǎn)
使學(xué)生認(rèn)識(shí)到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣。
(四)美育滲透點(diǎn)
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法
1、教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題。
2、教學(xué)難點(diǎn):理解四邊形的。有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3、疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角。
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師引入新課,學(xué)生觀察圖形,類比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。
第一課時(shí)
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對(duì)四邊形、長(zhǎng)方形、平形四邊形的有關(guān)知識(shí)有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識(shí)解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長(zhǎng)方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形)。
【講解新課】
1、四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對(duì)角線(同時(shí)學(xué)生在書上畫出上述概念),講解這些概念時(shí):
(1)要結(jié)合圖形。
(2)要與三角形類比。
(3)講清定義中的關(guān)鍵詞語(yǔ)。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn)。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
(4)強(qiáng)調(diào)四邊形對(duì)角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對(duì)角線分成的這些三角形與原四邊形的關(guān)系。
(5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖41。
(6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4—4,圖4—5。
2、四邊形內(nèi)角和定理
教師問:
(1)在圖4—3中對(duì)角線AC把四邊形ABCD分成幾個(gè)三角形?
(2)在圖4—6中兩條對(duì)角線AC和BD把四邊形分成幾個(gè)三角形?
(3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
、2180=360如圖4
、4180—360=360如圖4—7。
例1已知:如圖48,直線于B、于C。
求證:(1) (2) 。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴(kuò)展】
1、四邊形的有關(guān)概念。
2、四邊形對(duì)角線的作用。
3、四邊形內(nèi)角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書設(shè)計(jì)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習(xí)
教材P122中1、2、3。
初二數(shù)學(xué)上冊(cè)教案優(yōu)秀2
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的.方法——公式法。
1.請(qǐng)看乘法公式
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
初二數(shù)學(xué)上冊(cè)教案優(yōu)秀3
教學(xué)目標(biāo)
1、理解并掌握等腰三角形的判定定理及推論
2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系。
教學(xué)重點(diǎn):等腰三角形的判定定理及推論的運(yùn)用
教學(xué)難點(diǎn):正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系。
教學(xué)過程:
一、復(fù)習(xí)等腰三角形的性質(zhì)
二、新授:
I提出問題,創(chuàng)設(shè)情境
出示投影片。某地質(zhì)專家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測(cè)得∠ACB為30°,這時(shí),地質(zhì)專家測(cè)得AC的長(zhǎng)度就可知河流寬度。
學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”。
II引入新課
1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?
作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的'邊有什么關(guān)系?
2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證。
2、小結(jié),通過論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡(jiǎn)稱“等角對(duì)等邊”。
4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測(cè)量方法的根據(jù)。
III例題與練習(xí)
1.如圖2
其中△ABC是等腰三角形的是[ ]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).
、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).
、廴粢阎螦=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
④若已知AD=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例:如果三角形一個(gè)外角的平分線平行于三角形的一邊,求證這個(gè)三角形是等腰三角形。
分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明。
練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過F作DE//BC,交AB于點(diǎn)D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習(xí):P53練習(xí)1、2、3。
IV課堂小結(jié)
1.判定一個(gè)三角形是等腰三角形有幾種方法?
2.判定一個(gè)三角形是等邊三角形有幾種方法?
3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4.現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?
V布置作業(yè):P56頁(yè)習(xí)題12.3第5、6題
【初二數(shù)學(xué)上冊(cè)教案優(yōu)秀】相關(guān)文章:
初二數(shù)學(xué)上冊(cè)教案優(yōu)秀08-28
初二上冊(cè)數(shù)學(xué)優(yōu)秀教案08-29
初二數(shù)學(xué)上冊(cè)教案 (15篇)12-06
初二數(shù)學(xué)上冊(cè)教案15篇11-16