- 相關(guān)推薦
新初三數(shù)學(xué)老師公開課教案
作為一名教職工,就不得不需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。那要怎么寫好教案呢?以下是小編收集整理的新初三數(shù)學(xué)老師公開課教案,歡迎閱讀,希望大家能夠喜歡。
新初三數(shù)學(xué)老師公開課教案1
直接開平方法
理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題
提出問題,列出缺一次項的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程
重點
運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次——轉(zhuǎn)化的數(shù)學(xué)思想
難點
通過根據(jù)平方根的`意義解形如x2=n的方程,將知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程
一、復(fù)習(xí)引入
學(xué)生活動:請同學(xué)們完成下列各題
問題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2
解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(2p)22p.
問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學(xué)生分組討論)
老師:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1
(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±
即x+3=,x+3=-
所以,方程的兩根x1=-3+,x2=-3-
解:略
例2 市政府計劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率
分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長率為x,則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因為每年人均住房面積的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去
所以,每年人均住房面積增長率應(yīng)為20%.
(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”
三、鞏固練習(xí)
教材第6頁,練習(xí)
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,達到降次轉(zhuǎn)化之目的若p<0則方程無解
五、作業(yè)布置
教材第16頁,復(fù)習(xí)鞏固1.
新初三數(shù)學(xué)老師公開課教案2
教學(xué)目標(biāo)
1、了解二次根式的概念、
2、掌握二次根式的基本性質(zhì)
教學(xué)過程
一、提出問題
上一節(jié)我們學(xué)習(xí)了平方根和算術(shù)平方根的意義,引進了一個新的記號,現(xiàn)在請同學(xué)們思考并回答下面兩個問題:
1、表示什么?
2、a需要滿足什么條件?為什么?
二、合作交流,解決問題
讓學(xué)生合作交流,然后回答問題(可以補充),歸納為;
1、當(dāng)a是正數(shù)時,表示a的算術(shù)平方根,即正數(shù)a的兩個平方根中的一個正數(shù);
2、當(dāng)a是零時,表示零,也叫零的算術(shù)平方根;
3、a≥0,因為任何一個有理數(shù)的平方都大于或等于零
三、歸納特點,引入二次根式概念
1、基本性質(zhì)、
問題1 你能用一句話概括以上3個結(jié)論嗎?
讓一個學(xué)生回答、其他學(xué)生補充,概括為:(a≥0)表示非負(fù)數(shù)a的算術(shù)平方根,也就是說,(a≥0)是一個非負(fù)數(shù),即≥0(a≥0)。
問題2 ()2(a≥0)等于什么?說說你的理由并舉例驗證。
讓學(xué)生小組討論或自主探索得出結(jié)論:()2=a(a≥0),如()2=4,()2=2等、
以上兩個問題的結(jié)論就是基本性質(zhì),特別是()2=a(a≥0)可以當(dāng)公式使用,直接應(yīng)用于計算。反過來,把()2=a(a≥0)寫成a=()2(a≥0)的形式,這說明:任何一個非負(fù)數(shù)a都可以寫成一個數(shù)的平方的形式、例如:3=()2,0.3= ()2
提問:
(1)0=()2對不對?
(2)-5=()2對不對?如果不對,錯在哪里?
2、二次根式概念
形如(a≥0)的'式子叫做二次根式、
說明:二次根式必須具備以下特點;
(1)有二次根號;
(2)被開方數(shù)不能小于0。
讓學(xué)生舉出二次根式的幾個例子,并判斷,(a<0)、、(a
四、范例
例1、要使式子有意義,字母x的取值必須滿足什么條件?
提問:
若將式子改為,則字母x的取值必須滿足什么條件?
五、課堂練習(xí)
Pl0頁練習(xí)1、2、
六、思考提高
我們已經(jīng)研究了()2(a≥0)等于a,現(xiàn)在研究等于什么
提問:
1、對于抽象問題的研究,常常采用什么策略?
2、在中,a的取值有沒有限制?
3、取一些數(shù)值來驗證。通過驗證,你能發(fā)現(xiàn)什么規(guī)律?
因此,今后我們遇到時,可先改寫成a的絕對值|a|,再按照a取正數(shù)值,0還是負(fù)數(shù)值來取值、例如當(dāng)x<0時,=|4x|=-4x
4、2與是一樣的嗎?說說你的理由,并與同學(xué)交流。
七、小結(jié)
1、什么叫做二次根式?你們能舉出幾個例子嗎?
2、二次根式有哪兩個形式上的特點?
3、二次根式有哪些性質(zhì)?
八、作業(yè)
習(xí)題22.1第1、2、3、4題
新初三數(shù)學(xué)老師公開課教案3
教學(xué)內(nèi)容
一元二次方程概念及一元二次方程一般式及有關(guān)概念
教學(xué)目標(biāo)
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義
2.一元二次方程的一般形式及其有關(guān)概念
3.解決一些概念性的題目
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情
重難點關(guān)鍵
1.重點:一元二次方程的'概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題
2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念
教學(xué)過程
一、復(fù)習(xí)引入
學(xué)生活動:列方程.
問題(1)古算趣題:“執(zhí)竿進屋”
笨人執(zhí)竿要進屋,無奈門框攔住竹,橫多四尺豎多二,沒法急得放聲哭。
有個鄰居聰明者,教他斜竿對兩角,笨伯依言試一試,不多不少剛抵足。
借問竿長多少數(shù),誰人算出我佩服。
如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,長為_______尺,根據(jù)題意,得________
整理、化簡,得:__________
二、探索新知
學(xué)生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?還是與多項式一樣只有式子?
老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項
例1.將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運用整式運算進行整理,包括去括號、移項等
解:略
注意:二次項、二次項系數(shù)、一次項、一次項系數(shù)、常數(shù)項都包括前面的符號.
例2.(學(xué)生活動:請二至三位同學(xué)上臺演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:略
三、鞏固練習(xí)
教材練習(xí)1、2
補充練習(xí):判斷下列方程是否為一元二次方程?
(1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0
四、應(yīng)用拓展
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.
證明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不論m取何值,該方程都是一元二次方程.
練習(xí):1.方程(2a—4)x2—2bx+a=0,在什么條件下此方程為一元二次方程?在什么條件下此方程為一元一次方程?
2.當(dāng)m為何值時,方程(m+1)x/4m/-4+27mx+5=0是關(guān)于的一元二次方程
五、歸納小結(jié)(學(xué)生總結(jié),老師點評)
本節(jié)課要掌握:
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用
六、布置作業(yè)
【新初三數(shù)學(xué)老師公開課教案】相關(guān)文章:
初三語文下冊新修訂推薦教案案例01-06
新的開始初三作文11-07
新幼兒園大班音樂活動《詠柳》公開課教案04-03
我的新數(shù)學(xué)老師作文04-01
數(shù)學(xué)公開課教案01-09
物理公開課教案07-22
體育公開課教案10-12
初三數(shù)學(xué)老師個人實習(xí)總結(jié)范文09-28
中班美術(shù)公開課教案01-13
小班體育公開課教案01-16