八年級上冊數(shù)學教案[熱門]
作為一位無私奉獻的人民教師,常常要根據(jù)教學需要編寫教案,教案是保證教學取得成功、提高教學質(zhì)量的基本條件。我們應該怎么寫教案呢?以下是小編整理的八年級上冊數(shù)學教案,僅供參考,希望能夠幫助到大家。
八年級上冊數(shù)學教案1
第11章平面直角坐標系
11。1平面上點的坐標
第1課時平面上點的坐標(一)
教學目標
【知識與技能】
1。知道有序?qū)崝?shù)對的概念,認識平面直角坐標系的相關(guān)知識,如平面直角坐標系的構(gòu)成:橫軸、縱軸、原點等。
2。理解坐標平面內(nèi)的點與有序?qū)崝?shù)對的一一對應關(guān)系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。
3。能在方格紙中建立適當?shù)钠矫嬷苯亲鴺讼祦砻枋鳇c的位置。
【過程與方法】
1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標系的作用。
2。學會用有序?qū)崝?shù)對和平面直角坐標系中的點來描述物體的位置。
【情感、態(tài)度與價值觀】
通過引入有序?qū)崝?shù)對、平面直角坐標系讓學生體會到現(xiàn)實生活中的問題的解決與數(shù)學的發(fā)展之間有聯(lián)系,感受到數(shù)學的價值。
重點難點
【重點】
認識平面直角坐標系,寫出坐標平面內(nèi)點的坐標,已知坐標能在坐標平面內(nèi)描出點。
【難點】
理解坐標系中的坐標與坐標軸上的數(shù)字之間的關(guān)系。
教學過程
一、創(chuàng)設(shè)情境、導入新知
師:如果讓你描述自己在班級中的位置,你會怎么說?
生甲:我在第3排第5個座位。
生乙:我在第4行第7列。
師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。
二、合作探究,獲取新知
師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體
的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?
生:3排5號。
師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?
生:用一個有序的實數(shù)對來表示。
師:對。我們學過實數(shù)與數(shù)軸上的點是一一對應的,有序?qū)崝?shù)對是不是也可以和一個點對應起來呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為
正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標系,這個平面叫做坐標平面。
師:有了平面直角坐標系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了,F(xiàn)在請大家自己動手畫一個平面直角坐標系。
學生操作,教師巡視。教師指正學生易犯的錯誤。
教師邊操作邊講解:
如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。
教師多媒體出示:
師:如圖,請同學們寫出A、B、C、D這四點的坐標。
生甲:A點的坐標是(—5,4)。
生乙:B點的坐標是(—3,—2)。
生丙:C點的坐標是(4,0)。
生。篋點的坐標是(0,—6)。
師:很好!我們已經(jīng)知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?
教師邊操作邊講解:
在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。
學生動手作圖,教師巡視指導。
三、深入探究,層層推進
師:兩個坐標軸把坐標平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?
生:都一樣。
師:對,由作垂線求坐標的`過程,我們知道第一象限內(nèi)的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內(nèi)點的坐標的符號嗎?
生:能。第二象限內(nèi)的點的坐標的符號為(—,+),第三象限內(nèi)的點的坐標的符號為(—,—),第四象限內(nèi)的點的坐標的符號為(+,—)。
師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?
生:能,在第二象限。
四、練習新知
師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。
教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點在第三象限。
生乙:B點在第四象限。
生丙:C點不屬于任何一個象限,它在y軸上。
生。篋點不屬于任何一個象限,它在x軸上。
師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。
學生作圖,教師巡視,并予以指導。
五、課堂小結(jié)
師:本節(jié)課你學到了哪些新的知識?
生:認識了平面直角坐標系,會寫出坐標平面內(nèi)點的坐標,已知坐標能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。
教師補充完善。
教學反思
物體位置的說法和表述物體的位置等問題,學生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學的聯(lián)系。教師在這節(jié)課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數(shù)學的魅力。在教學中我讓學生由生活中的實例與坐標的聯(lián)系感受坐標的實用性,增強了學生學習數(shù)學的興趣。
第2課時平面上點的坐標(二)
教學目標
【知識與技能】
進一步學習和應用平面直角坐標系,認識坐標系中的圖形。
【過程與方法】
通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。
【情感、態(tài)度與價值觀】
培養(yǎng)學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。
重點難點
【重點】
理解平面上的點連接成的圖形,計算圍成的圖形的面積。
【難點】
不規(guī)則圖形面積的求法。
教學過程
一、創(chuàng)設(shè)情境,導入新知
師:上節(jié)課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。
學生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計算出它的面積嗎?
生:能。
教師挑一名學生:你是怎樣算的呢?
生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么
圖形?
學生完成操作后回答:平行四邊形。
師:你能計算它的面積嗎?
生:能。
教師挑一名學生:你是怎么計算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:
教師多媒體出示下圖:
八年級上冊數(shù)學教案2
第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理
1、探究活動一
內(nèi)容:投影顯示如下地板磚示意圖,引導學生從面積角度觀察圖形:
問:你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?
學生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:從觀察實際生活中常見的地板磚入手,讓學生感受到數(shù)學就在我們身邊。通過對特殊情形的探究得到結(jié)論1,為探究活動二作鋪墊。
效果:1.探究活動一讓學生獨立觀察,自主探究,培養(yǎng)獨立思考的習慣和能力;
2.通過探索發(fā)現(xiàn),讓學生得到成功體驗,激發(fā)進一步探究的熱情和愿望。
2、探究活動二
內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
(1)觀察下面兩幅圖:
。2)填表:
A的面積
。▎挝幻娣e)B的面積
。▎挝幻娣e)C的面積
。▎挝幻娣e)
左圖
右圖
。3)你是怎樣得到正方形C的`面積的?與同伴交流(學生可能會做出多種方法,教師應給予充分肯定)。
學生的方法可能有:
方法一:
如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形。
方法二:
如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。
方法三:
如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。
。4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學生通過分析數(shù)據(jù),歸納出:
結(jié)論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:探究活動二意在讓學生通過觀察、計算、探討、歸納進一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計算是一個難點,為此設(shè)計了一個交流環(huán)節(jié)。
效果:學生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結(jié)論2.
3、議一議
內(nèi)容:(1)你能用直角三角形的邊長,來表示上圖中正方形的面積嗎?
。2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?
。3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度。2中發(fā)現(xiàn)的規(guī)律對這個三角形仍然成立嗎?
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。
數(shù)學小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。
意圖:議一議意在讓學生在結(jié)論2的基礎(chǔ)上,進一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。
效果:1.讓學生歸納表述結(jié)論,可培養(yǎng)學生的抽象概括能力及語言表達能力;
2.通過作圖培養(yǎng)學生的動手實踐能力。
八年級上冊數(shù)學教案3
【教學目標】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學重難點】
重點:理解分式有意義的條件,分式的值為零的條件.
難點:能熟練地求出分式有意義的條件,分式的'值為零的條件.
【教學過程】
一、課堂導入
1.讓學生填寫[思考],學生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時.
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是A÷B的形式.分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學生思考分式的分母應滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式才有意義.
二、例題講解
例1:當x為何值時,分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.
(補充)例2:當m為何值時,分式的值為0?
(1);(2);(3).
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當x取何值時,下列分式有意義?
3.當x為何值時,分式的值為0?
四、小結(jié)
談談你的收獲.
五、布置作業(yè)
課本128~129頁練習.
八年級上冊數(shù)學教案4
教學內(nèi)容
本節(jié)課主要介紹全等三角形的概念和性質(zhì).
教學目標
1.知識與技能
領(lǐng)會全等三角形對應邊和對應角相等的有關(guān)概念.
2.過程與方法
經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應邊、對應角.
3.情感、態(tài)度與價值觀
培養(yǎng)觀察、操作、分析能力,體會全等三角形的應用價值.
重、難點與關(guān)鍵
1.重點:會確定全等三角形的對應元素.
2.難點:掌握找對應邊、對應角的方法.
3.關(guān)鍵:找對應邊、對應角有下面兩種方法:(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;(2)對應邊所對的角是對應角,?兩條對應邊所夾的角是對應角.教具準備
四張大小一樣的紙片、直尺、剪刀.
教學方法
采用“直觀──感悟”的教學方法,讓學生自己舉出形狀、大小相同的實例,加深認識.教學過程
一、動手操作,導入課題
1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的'圖形有何特點?
2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?
【學生活動】動手操作、用腦思考、與同伴討論,得出結(jié)論.
【教師活動】指導學生用剪刀剪出重疊的兩個多邊形和三角形.
學生在操作過程中,教師要讓學生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心.
【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個圖形叫做全等形,用“≌”表示.
概念:能夠完全重合的兩個三角形叫做全等三角形.
【教師活動】在紙版上任意剪下一個三角形,要求學生手拿一個三角形,做如下運動:平移、翻折、旋轉(zhuǎn),觀察其運動前后的三角形會全等嗎?
【學生活動】動手操作,實踐感知,得出結(jié)論:兩個三角形全等.
【教師活動】要求學生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊.
【學生活動】把兩個三角形按上述要求標上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?
【交流討論】通過同桌交流,實驗得出下面結(jié)論:
1.任意放置時,并不一定完全重合,?只有當把相同的角旋轉(zhuǎn)到一起時才能完全重合.
2.這時它們的三個頂點、三條邊和三個內(nèi)角分別重合了.
3.完全重合說明三條邊對應相等,三個內(nèi)角對應相等,?對應頂點在相對應的位置.
八年級上冊數(shù)學教案5
教學目標
1.知識與技能
領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.
重、難點與關(guān)鍵
1.重點:理解完全平方公式因式分解,并學會應用.
2.難點:靈活地應用公式法進行因式分解.
3.關(guān)鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應用公式法分解因式的目的
教學方法
采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內(nèi)容.
教學過程
一、回顧交流,導入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識遷移】
2.計算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學生活動】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學習,應用所學
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點撥】根據(jù)完全平方式的定義,解此題時應分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應求出a的值,即可求出a3.
三、隨堂練習,鞏固深化
課本P170練習第1、2題.
【探研時空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項式的.因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運用公式因式分解時,要注意:
(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.
五、布置作業(yè),專題突破
八年級上冊數(shù)學教案6
教學目標:
1、知識目標:了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。
2、能力目標:經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進一步發(fā)展學生的空間觀念,增強審美意識,培養(yǎng)學生積極進取的生活態(tài)度。
重點與難點:
重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設(shè)計。
難點:分析典型圖案的設(shè)計意圖。
疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖
教具學具準備:
提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
教學過程設(shè)計:
1、情境導入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)
明確在欣賞了圖案后,簡單地復習平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本
1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的.基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。
評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
(二)課內(nèi)練習
(1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。
(四)課時小結(jié)
本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。
通過今天的學習,你對圖案的設(shè)計又增加了哪些新的認識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)
八年級數(shù)學上冊教案(五)延伸拓展
進一步搜集身邊的各種標志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。
八年級上冊數(shù)學教案7
一、教學目標
1、理解分式的基本性質(zhì)。
2、會用分式的基本性質(zhì)將分式變形。
二、重點、難點
1、重點:理解分式的基本性質(zhì)。
2、難點:靈活應用分式的基本性質(zhì)將分式變形。
3、認知難點與突破方法
教學難點是靈活應用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
三、練習題的意圖分析
1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的.是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應用之一,所以補充例5。
四、課堂引入
1、請同學們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。
五、例題講解
P7例2.填空:
[分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
P11例3.約分:
[分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
八年級上冊數(shù)學教案8
學習目標
1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。
2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。
3、初步學會運用平方差公式進行計算。
學習重難點重點:
平方差公式的推導及應用。
難點是對公式中a,b的廣泛含義的理解及正確運用。
自學過程設(shè)計教學過程設(shè)計
看一看
認真閱讀教材,記住以下知識:
文字敘述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列練習:
、(m+n)(p+q)
、(a+b)(x-y)
、(2x+3y)(a-b)
、(a+2)(a-2)
、(3-x)(3+x)
、(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請寫出來。
_______________________________
_______________________________
________________________________、
1、下列計算對不對?若不對,請在橫線上寫出正確結(jié)果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、計算:50×49=_________、
應用探究
1、幾何解釋平方差公式
展示:邊長a的大正方形中有一個邊長為b的小正方形。
(1)請計算圖的陰影部分的面積(讓學生用正方形的面積公式計算)。
(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的`面積嗎?
2、用平方差公式計算
(1)103×93 (2)59、8×60、2
拓展提高
1、閱讀題:
我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!
2、仔細觀察,探索規(guī)律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個位數(shù)、
堂堂清
一、選擇題
1、下列各式中,能用平方差公式計算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
八年級上冊數(shù)學教案9
一.教學目標:
1.了解方差的定義和計算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
二.重點、難點和難點的突破方法:
1.重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。
(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學生知道描述數(shù)據(jù),波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
三.例習題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學生的學習興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學生體會到學習方差的.意義和目的。
2.教材P154例1的設(shè)計意圖:
(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。
(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個統(tǒng)計量,為什么?學生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。
3.方差怎樣去體現(xiàn)波動大小?
這一問題的提出主要復習鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
六.隨堂練習:
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?
測試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強的成績要穩(wěn)定。
七.課后練習:
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?
4.小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級上冊數(shù)學教案10
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認識其他圖形的基礎(chǔ),在本章中,學好了三角形的有關(guān)概念和性質(zhì),為進一步學習多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學生對三角形的有關(guān)知識有更為深刻的理解.
本節(jié)課的教學重點:三角形中的相關(guān)概念和三角形三邊關(guān)系.
本節(jié)課的教學難點:三角形的三邊關(guān)系.
二、目標和目標解析
1.教學目標
(1)了解三角形中的相關(guān)概念,學會用符號語言表示三角形中的對應元素.
(2)理解并且靈活應用三角形三邊關(guān)系.
2.教學目標解析
(1)結(jié)合具體圖形,識三角形的概念及其基本元素.
(2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類.
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題.
三、教學問題診斷分析
在探索三角形三邊關(guān)系的過程中,讓學生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學生的和推理能力和合作學習的精神.
四、教學過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義.
師生活動:先讓學生分組討論,然后各小組派代表發(fā)言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.
【設(shè)計意圖】三角形概念的獲得,要讓學生經(jīng)歷其描述的過程,借此培養(yǎng)學生的語言表述能力,加深學生對三角形概念的理解.
2.抽象概括,形成概念
動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義.
師生活動:
三角形的定義:由不在同一直線上的.三條線段首尾順次相接所組成的圖形叫做三角形.
【設(shè)計意圖】讓學生體會由抽象到具體的過程,培養(yǎng)學生的語言表述能力.
補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.
師生活動:結(jié)合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡.
【設(shè)計意圖】進一步加深學生對三角形中相關(guān)元素的認知,并進一步熟悉幾何語言在學習中的應用.
3.概念辨析,應用鞏固
如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來.
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內(nèi)角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角.
師生活動:引導學生從概念出發(fā)進行思考,加深學生對三角形中相關(guān)元素概念的理解.
4.拓廣延伸,探究分類
我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法.
師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯(lián)系,強化學生對三角形按邊分類的理解.
八年級上冊數(shù)學教案11
分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當x>0時,是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>
2。當x
>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的`被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
(3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
八年級上冊數(shù)學教案12
教學目標:
1.了解軸對稱圖形和兩個圖形關(guān)于某直線對稱的概念.
2.能識別簡單的軸對稱圖形及其對稱軸(直線),能找出兩個圖形關(guān)于某直線對稱的對稱點.
3.了解軸對稱圖形與兩個圖形關(guān)于某直線對稱的區(qū)別和聯(lián)系.
教學重點:
1、軸對稱圖形和兩個圖形成軸對稱的概念;
2、探索軸對稱的性質(zhì)。
教學難點:
1、能夠識別軸對稱圖形并找出它的對稱軸;
2、能運用其性質(zhì)解答簡單的`幾何問題。
教學方法啟發(fā)誘導法
教具準備多媒體課件,剪刀,彩色紙
教學過程
一、情境導入
同學們,自古以來,對稱圖形被認為是和諧、美麗的.不論在自然界里還是在建筑中,不論在藝術(shù)中還是在科學中,甚至最普通的日常生活用品中,對稱圖形隨處可見,對稱給我們帶來了美的感受!而軸對稱是對稱中很重要的一種,今天就讓我們一起走進軸對稱世界,探索它的秘密吧!
我們先來看一下這節(jié)課的學習目標
1.了解軸對稱圖形和兩個圖形關(guān)于某直線對稱的概念.
2.能識別簡單的軸對稱圖形及其對稱軸,能找出兩個圖形關(guān)于某直線對稱的對稱點.
3.了解軸對稱圖形與兩個圖形關(guān)于某直線對稱的區(qū)別和聯(lián)系.
二、自主探究
【探究一】
。ㄒ唬┪覀兿葋砜磶追鶊D片,觀察它們都有些什么共同特征.
1、它們都是對稱的.
2、它們沿著某條直線折疊后,直線兩旁的部分能完全重合。
。ǘ﹦赢嬚故竞恼郫B過程
。ㄈ┳鲆蛔
1.準備一張紙;
2.對折紙;
3.用鉛筆在紙上畫出你喜歡的圖案;
4.剪下你畫的圖案;
5.把紙打開鋪平,觀察所得的圖案,位于折痕兩側(cè)的部分有什么關(guān)系?
【答】能互相重合一模一樣是對稱的
從而得出軸對稱圖形的概念:
如果一個圖形沿著一條直線折疊,只限兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們說這個圖形關(guān)于這條直線對稱。
八年級上冊數(shù)學教案13
【教學目標】
知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式.
過程與方法
使學生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學化歸思想方法進行因式分解.
情感、態(tài)度與價值觀
培養(yǎng)學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應用價值.
【教學重難點】
重點:掌握用提公因式法把多項式分解因式.
難點:正確地確定多項式的最大公因式.
關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
【教學過程】
一、回顧交流,導入新知
【復習交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
教師提問:多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的'公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學習,應用所學
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用簡便的方法計算:
0.84×12+12×0.6-0.44×12.
【教師活動】引導學生觀察并分析怎樣計算更為簡便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學生完成例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習,鞏固深化
課本115頁練習第1、2、3題.
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/p>
1.利用提公因式法因式分解,關(guān)鍵是找準最大公因式.在找最大公因式時應注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.
2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本119頁習題14.3第1、4(1)、6題.
八年級上冊數(shù)學教案14
教學目標:
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。
重點難點:
重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點:勾股定理的發(fā)現(xiàn)
教學過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學生的`學習熱情,導入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖
1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即A的面積為______個單位。
正方形C中有_______個小方格,即A的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?在學生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖
1—2中,A,B,C之間的面積之間有什么關(guān)系?
學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖
1—3中,A,B,C之間有什么關(guān)系?
2、圖
1—4中,A,B,C之間有什么關(guān)系?
3、從圖
1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學生討論、交流形成共識后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖
1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以
5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習
1、錯例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題
△ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個題目條件不足,第三邊無法求得。
2、練習P
7 §1.1 1
六、作業(yè)
課本P7 §1.1 2、3、4
八年級上冊數(shù)學教案15
《正方形》教學設(shè)計
教學內(nèi)容分析:
、艑W習特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
⑵前面學習了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
⑶對本節(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。
學生分析:
⑴學生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。
、茖W生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學生的思維能力還不成熟,有待于提高。
教學目標:
⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。
⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學生的推理能力。
、乔楦袘B(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質(zhì)與判定,并進行簡單的推理。
難點:探索正方形的判定,發(fā)展學生的推理能
教學方法:類比與探究
教具準備:可以活動的四邊形模型。
一、教學分析
(一)教學內(nèi)容分析
1.教材:義務教育課程標準實驗教科書《數(shù)學》九年級上冊(人民教育出版社)
2.本課教學內(nèi)容的地位、作用,知識的前后聯(lián)系
《中心對稱圖形》是新人教版九年級數(shù)學上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學習了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學生對中心對稱圖形的性質(zhì)有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構(gòu)知識的規(guī)律,有利于激發(fā)學生的學習情趣。
(二)教學對象分析
1.學生所在地區(qū)、學校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調(diào)動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。
2.學生的年齡特點和認知特點
班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結(jié)合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。
教學過程:
一:復習鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學生活動】
學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。
【教師活動】
評析學生的結(jié)果,給予表揚。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學生活動】
學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的.菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學生活動】
小組討論,舉手搶答。
【教師活動】
表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學生活動
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學生活動
小組充分交流,表達不同的意見。
教師活動
評析活動,總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學生交流,感受正方形
三,應用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學生舉手談論自己的收獲。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評論
教學目標:
情意目標:培養(yǎng)學生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學重點、難點
重點:等腰梯形性質(zhì)的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
。ㄒ唬⿲
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學生回顧本課教學內(nèi)容,并提出尚存問題;
學生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
【八年級上冊數(shù)學教案】相關(guān)文章:
八年級上冊人教版數(shù)學教案02-27
八年級上冊數(shù)學教案12-11
八年級上冊數(shù)學教案11-09
[精華]八年級上冊數(shù)學教案06-08
[推薦]八年級上冊數(shù)學教案05-23
(集合)八年級上冊數(shù)學教案05-24
人教版八年級上冊數(shù)學教案02-22
八年級上冊數(shù)學教案15篇11-09