- 相關(guān)推薦
正比例和反比例的意義
正比例和反比例的意義1
教學(xué)目標(biāo):
通過(guò)比較,使學(xué)生進(jìn)一步理解正比例和反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律,能夠正確地判斷正、反比例的關(guān)系,進(jìn)一步發(fā)展學(xué)生的分析、比較、抽象、概括等能力。
教學(xué)過(guò)程:
一復(fù)習(xí)
判斷下面每題中的兩種量是成正比例還是成反比例?
1.速度一定,路程和時(shí)間。
2.正方形的.邊長(zhǎng)和它的面積。
3.生產(chǎn)總時(shí)間一定,生產(chǎn)一個(gè)零件所用時(shí)間和零件總數(shù)。
4.中國(guó)兒童報(bào)的訂數(shù)和錢(qián)數(shù)。
二引導(dǎo)練習(xí)
這節(jié)課我們要通過(guò)比較弄清成正、反比例的量有什么相同點(diǎn)和不同點(diǎn)。
板書(shū)課題:正、反比例的比較
出示表格。
表一:
路程/千米4080160200320
時(shí)間/時(shí)12458
表二
速度/每時(shí)行多少千米12090604030
時(shí)間/時(shí)346912
1.說(shuō)一說(shuō)。
提問(wèn):從表1中,你怎樣發(fā)現(xiàn)速度是一定的?根據(jù)什么判斷路程和時(shí)間成正比例?從表2中,你怎樣發(fā)現(xiàn)路程是一定的?根據(jù)什么判斷速度和時(shí)間成反比例?
2.想一想:路程、速度和時(shí)間這三個(gè)量中每?jī)蓚(gè)量之間有什么樣的比例關(guān)系?
師板書(shū):速度×?xí)r間=路程
師:當(dāng)速度一定時(shí),路程和時(shí)間成什么比例關(guān)系?
當(dāng)路程一定時(shí),速度和時(shí)間成什么比例關(guān)系?
當(dāng)時(shí)間一定時(shí),路程和速度成什么比例關(guān)系?
3.比較正比例和反比例關(guān)系。
通過(guò)前面的例子,比較正比例關(guān)系和反比例關(guān)系。你能寫(xiě)出它們的相同點(diǎn)和不同點(diǎn)嗎?
學(xué)生同桌或前后桌討論,教師提問(wèn)并板書(shū)如下:
相同點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。
不同點(diǎn):正比例:兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定。關(guān)系式X×Y=K(一定)
4.小結(jié);正比例和反比例有什么相同點(diǎn)和不同點(diǎn)?判斷兩種量是否比例,成什么比例的,方法是什么?
作業(yè)
正比例和反比例的意義2
教學(xué)內(nèi)容:成反比例的量
教學(xué)目標(biāo):
1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過(guò)程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
教學(xué)重點(diǎn):反比例的意義。
教學(xué)難點(diǎn):正確判斷兩種量是否成反比例。
教學(xué)過(guò)程:
一導(dǎo)入新課
1.讓學(xué)生說(shuō)一說(shuō)成正比例的兩種量的變化規(guī)律。
回答要點(diǎn):
(1)兩種相關(guān)聯(lián)的量;
。2)一個(gè)量增加,另一個(gè)量也相應(yīng)增加;一個(gè)量減少,另一個(gè)量也相應(yīng)減少;
。3)兩個(gè)量的比值一定。
2.舉例說(shuō)明。
如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。
理由:
。1)每袋大米質(zhì)量一定,大米的總質(zhì)量隨著袋數(shù)的變化而變化;
(2)大米的'袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)減少,大米的總質(zhì)量也相應(yīng)減少;
(3)總質(zhì)量與袋數(shù)的比值一定。
所以,大米的袋數(shù)與總質(zhì)量成正比例。
板書(shū):
3.揭示課題。
今天,我們一起來(lái)學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時(shí),這兩種量成反比例呢?
板書(shū)課題:成反比例的量
二探索新知
1.教學(xué)例3。
。1)出示課文例題情境圖。
問(wèn):從圖中你看到了什么?
①把相同體積的水倒入底面積不同的杯子。
、诒锼母叨炔幌嗤
、郾拥酌娣e小的,水的高度比較高,杯子底面積大的,水的高度比較低。
。2)出示表格。
高度/㎝302015105
底面積/㎝21015203060
體積/㎝3
請(qǐng)學(xué)生認(rèn)真觀察表中數(shù)據(jù)的變化情況。
問(wèn):你有什么發(fā)現(xiàn)?
學(xué)生不難發(fā)現(xiàn):底面積越大,水的高度越低,底面積越小,水的高度越高,而且高底和底面積的乘積(水的體積)一定。
教師板書(shū)配合說(shuō)明這一規(guī)律:
30×10=20×15=15×20=……=300
(3)歸納反比例的意義。
在這一基礎(chǔ)上,教師明確說(shuō)明反比例的意義,并板書(shū)。
因?yàn)樗捏w積一定,所以水的高度隨著底面積的變化而變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定。
板書(shū)出示:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
。4)用字母表示。
如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用K表示它們的乘積(一定),反比例關(guān)系的式子可以怎么表示?
學(xué)生探討后得出結(jié)果。
X×Y=K(一定)
2.想一想。
師:生活中還有哪些成反比例的量?
在教師的引導(dǎo)下,學(xué)生舉例說(shuō)明。如:
。1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
。2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。
。3)長(zhǎng)方形的面積一定,長(zhǎng)和寬成反比例。
3.你還有什么疑問(wèn)?
如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察課文“你知道嗎”中的圖像。
。1)反比例關(guān)系也可以用圖像來(lái)表示。
(2)表示兩個(gè)量的點(diǎn)不在同一條直線上,點(diǎn)所連接起來(lái)是一條曲線。
。3)圖像特征不要求掌握。
4.課堂小結(jié)。
說(shuō)一說(shuō)成反比例關(guān)系的量的變化特征。
三鞏固練習(xí)
完成課文練習(xí)七第6~11題。
正比例和反比例的意義3
教學(xué)目標(biāo):
1.使學(xué)生進(jìn)一步理解反比例的意義,能正確判斷兩種量是否成反比例。
2.使學(xué)生能正確判斷兩種量是否成比例,成什么比例,提高學(xué)生的人析能力。
教學(xué)過(guò)程:
一基礎(chǔ)練習(xí)
1.填一填,說(shuō)一說(shuō)。
。1)每箱木瓜的個(gè)數(shù)一定,運(yùn)來(lái)木瓜的箱數(shù)和木瓜總個(gè)數(shù)如下表。
箱數(shù)/箱481632
總個(gè)數(shù)/個(gè)3264
①把表格填寫(xiě)完整,說(shuō)一說(shuō)你是怎么做的。
②說(shuō)一說(shuō)箱數(shù)和總個(gè)數(shù)的變化情況。
、圻@里哪一個(gè)量不變?
、芟鋽(shù)和總個(gè)數(shù)成什么比例?
。2)木瓜的總個(gè)數(shù)一定,每箱個(gè)數(shù)與所裝的箱數(shù)情況如下表。
每箱個(gè)數(shù)481020
箱數(shù)5025
、倌隳馨驯砀裉顚(xiě)完整嗎?
、谡f(shuō)一說(shuō)每箱個(gè)數(shù)和箱數(shù)的變化情況。
、圻@里哪一個(gè)量一定?
、苊肯鋫(gè)數(shù)和箱數(shù)成什么比例?
。3)看一本書(shū),每天看的頁(yè)數(shù)和所看天數(shù)的情況如下表。
每天看的頁(yè)數(shù)48101620
所看天數(shù)804032
①把表格填寫(xiě)完整。
、谡f(shuō)一說(shuō)你是怎么做的。
、圻@里哪一個(gè)量一定,你是怎么知道的?
、苊刻炜吹捻(yè)數(shù)與所看天數(shù)有什么關(guān)系?說(shuō)明理由。
。4)征訂《XX學(xué)習(xí)報(bào)》,征訂的份數(shù)與應(yīng)付的錢(qián)數(shù)如下表。
征訂份數(shù)/份5040302010
應(yīng)付的錢(qián)數(shù)/元15001200
①請(qǐng)你把表格補(bǔ)充完整。
②征訂的份數(shù)與應(yīng)付的錢(qián)數(shù)成什么比例?說(shuō)明理由。
2.正、反比例意義。
問(wèn):你是怎樣判斷兩種量是否成正比例或反比例的?正反比例關(guān)系和反比例關(guān)系有什么不同?
過(guò)程要求:
。1)學(xué)生獨(dú)立思考,嘗試歸納。
。2)同學(xué)之間互相交流,學(xué)會(huì)表達(dá)。
。3)全班交流。
使學(xué)生明確幾個(gè)要點(diǎn):
正比例:
、賰煞N相關(guān)聯(lián)的量。
、谝环N量增加,另一種量也相應(yīng)增加;一種量減少,另一種量也相應(yīng)減少。
③兩種量的比值一定。
反比例:
、賰煞N相關(guān)聯(lián)的量;
、谝环N理增加,另一種量反而減少;一種量減少,另一種量反而增加;
、蹆煞N量的乘積一定。
二綜合練習(xí)
判斷下面各題中兩種量是否成下比例或反比例。
(1)每袋面粉的質(zhì)量一字,面粉的`總質(zhì)量和袋數(shù)。()
。2)一個(gè)人的年齡和體重。()
。3)長(zhǎng)方形的周長(zhǎng)和寬。()
。4)長(zhǎng)方形的長(zhǎng)一定,面積與寬。()
。5)三角形的高一定,面積與底。()
(6)圓的面積與半徑。()
過(guò)程要求:
。1)逐一出示以上各題。
。2)學(xué)生判斷,并說(shuō)明理由。
(3)教師小結(jié)。(方法,關(guān)鍵)
正比例和反比例的意義4
教學(xué)內(nèi)容:成正比例的量
教學(xué)目標(biāo):
1.使學(xué)生理解正比例的意義,會(huì)正確判斷成正比例的量。
2.使學(xué)生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關(guān)簡(jiǎn)單問(wèn)題。
教學(xué)重點(diǎn):正比例的意義。
教學(xué)難點(diǎn):正確判斷兩個(gè)量是否成正比例的關(guān)系。
教學(xué)過(guò)程:
一揭示課題
1.在現(xiàn)實(shí)生活中,我們常常遇到兩種相關(guān)聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?
在教師的此導(dǎo)下,學(xué)生會(huì)舉出一些簡(jiǎn)單的例子,如:
。1)班級(jí)人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。
。2)送來(lái)的牛奶包數(shù)多了,牛奶的總質(zhì)量也多了;包數(shù)少了,總質(zhì)量也少了。
(3)上學(xué)時(shí),去的速度快了,時(shí)間用少了;速度慢了,時(shí)間用多了。
。4)排隊(duì)時(shí),每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。
2.這種變化的量有什么規(guī)律?存在什么關(guān)系呢?今天,我們首先來(lái)學(xué)習(xí)成正比例的量。
板書(shū):成正比例的量
二探索新知
1.教學(xué)例1
。1)出示例題情境圖。
問(wèn):你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。
。2)出示表格。
高度/㎝24681012
體積/㎝350100150200250300
底面積/㎝2
問(wèn):你有什么發(fā)現(xiàn)?
學(xué)生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。
板書(shū):
教師:體積與高度的比值一定。
。2)說(shuō)明正比例的意義。
①在這一基礎(chǔ)上,教師明確說(shuō)明正比例的意義。
因?yàn)楸拥牡酌娣e一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應(yīng)增加,水的高度降低,體積也相應(yīng)減少,而且水的體積和高度的比值一定。
板書(shū)出示:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值一定,這兩種理就叫做成正比例的'量,它們的關(guān)系叫做正比例關(guān)系。
、趯W(xué)生讀一讀,說(shuō)一說(shuō)你是怎么理解正比例關(guān)系的。
要求學(xué)生把握三個(gè)要素:
第一,兩種相關(guān)聯(lián)的量;
第二,其中一個(gè)量增加,另一個(gè)量也增加;一個(gè)量減少,另一個(gè)量也減少。
第三,兩個(gè)量的比值一定。
(3)用字母表示。
如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用K表示它們的比值(一定),比例關(guān)系可以用正的式子表示:
。4)想一想:
師:生活中還有哪些成正比例的量?
學(xué)生舉例說(shuō)明。如:
長(zhǎng)方形的寬一定,面積和長(zhǎng)成正比例。
每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例。
衣服的單價(jià)一不定期,購(gòu)買(mǎi)衣服的數(shù)量和應(yīng)付錢(qián)數(shù)成正比例。
地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。
2.教學(xué)例2。
。1)出示表格(見(jiàn)書(shū))
。2)依據(jù)下表中的數(shù)據(jù)描點(diǎn)。(見(jiàn)書(shū))
(3)從圖中你發(fā)現(xiàn)了什么?
這些點(diǎn)都在同一條直線上。
。4)看圖回答問(wèn)題。
、偃绻兴母叨仁7㎝,那么水的體積是多少?
生:175㎝3。
②體積是225㎝3的水,杯里水面高度是多少?
生:9㎝。
、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對(duì)應(yīng)的點(diǎn)是否在直線上?
生:水的體積是350㎝3,相對(duì)應(yīng)的點(diǎn)一定在這條直線上。
。5)你還能提出什么問(wèn)題?有什么體會(huì)?
通過(guò)交流使學(xué)生了解成正比例量的圖像特往。
3.做一做。
過(guò)程要求:
。1)讀一讀表中的數(shù)據(jù),寫(xiě)出幾組路程和時(shí)間的比,說(shuō)一說(shuō)比值表示什么?
比值表示每小時(shí)行駛多少千米。
。2)表中的路程和時(shí)間成正比例嗎?為什么?
成正比例。理由:
、俾烦屉S著時(shí)間的變化而變化;
、跁r(shí)間增加,路程也增加,時(shí)間減少,路程也隨著減少;
、鄯N程和時(shí)間的比值(速度)一定。
(3)在圖中描出表示路程和時(shí)間的點(diǎn),并連接起來(lái)。有什么發(fā)現(xiàn)?所描的點(diǎn)在一條直線上。
(4)行駛120KM大約要用多少時(shí)間?
(5)你還能提出什么問(wèn)題?
4.課堂小結(jié)
說(shuō)一說(shuō)成正比例關(guān)系的量的變化特征。
三鞏固練習(xí)
完成課文練習(xí)七第1~5題。
【正比例和反比例的意義】相關(guān)文章:
正比例和反比例08-16
正比例和反比例的比較08-16
正比例和反比例的教學(xué)反思03-13
數(shù)學(xué)教案-正比例和反比例的比較08-16
正比例的意義08-16
反比例的意義08-16
正比例反比例教學(xué)反思08-26
正、反比例的意義08-16