天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現在位置:范文先生網>教案大全>數學教案>高中數學教案

高中數學教案

時間:2024-06-28 14:48:06 數學教案 我要投稿

高中數學教案15篇(精品)

  作為一名老師,很有必要精心設計一份教案,教案是教材及大綱與課堂教學的紐帶和橋梁。教案要怎么寫呢?下面是小編為大家整理的高中數學教案,僅供參考,希望能夠幫助到大家。

高中數學教案15篇(精品)

高中數學教案1

  第一章:空間幾何體

  1.1.1柱、錐、臺、球的結構特征

  一、教學目標

  1.知識與技能

 。1)通過實物操作,增強學生的直觀感知。

 。2)能根據幾何結構特征對空間物體進行分類。

 。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

 。4)會表示有關于幾何體以及柱、錐、臺的分類。

  2.過程與方法

 。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

 。2)讓學生觀察、討論、歸納、概括所學的知識。

  3.情感態(tài)度與價值觀

  (1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

 。2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點、難點

  重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

  難點:柱、錐、臺、球的結構特征的概括。

  三、教學用具

 。1)學法:觀察、思考、交流、討論、概括。

 。2)實物模型、投影儀

  四、教學思路

 。ㄒ唬﹦(chuàng)設情景,揭示課題

  1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

  2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。

  (二)、研探新知

  1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

  2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

  3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。

  5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

  6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

  7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。

  8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

  9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  10.現實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

  (三)質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

  1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

  2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3.課本P8,習題1.1A組第1題。

  4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

  5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

  四、鞏固深化

  練習:課本P7練習1、2(1)(2)

  課本P8習題1.1第2、3、4題

  五、歸納整理

  由學生整理學習了哪些內容

  六、布置作業(yè)

  課本P8練習題1.1B組第1題

  課外練習課本P8習題1.1B組第2題

  1.2.1空間幾何體的三視圖(1課時)

  一、教學目標

  1.知識與技能

  (1)掌握畫三視圖的基本技能

 。2)豐富學生的空間想象力

  2.過程與方法

  主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

  3.情感態(tài)度與價值觀

  (1)提高學生空間想象力

 。2)體會三視圖的作用

  二、教學重點、難點

  重點:畫出簡單組合體的三視圖

  難點:識別三視圖所表示的空間幾何體

  三、學法與教學用具

  1.學法:觀察、動手實踐、討論、類比

  2.教學用具:實物模型、三角板

  四、教學思路

 。ㄒ唬﹦(chuàng)設情景,揭開課題

  “橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

  在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

  (二)實踐動手作圖

  1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;

  2.教師引導學生用類比方法畫出簡單組合體的三視圖

 。1)畫出球放在長方體上的三視圖

 。2)畫出礦泉水瓶(實物放在桌面上)的三視圖

  學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。

  作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。

  3.三視圖與幾何體之間的相互轉化。

 。1)投影出示圖片(課本P10,圖1.2-3)

  請同學們思考圖中的三視圖表示的幾何體是什么?

 。2)你能畫出圓臺的三視圖嗎?

 。3)三視圖對于認識空間幾何體有何作用?你有何體會?

  教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。

  4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

  (三)鞏固練習

  課本P12練習1、2P18習題1.2A組1

 。ㄋ模w納整理

  請學生回顧發(fā)表如何作好空間幾何體的三視圖

 。ㄎ澹┱n外練習

  1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。

  2.自己制作一個上、下底面都是相似的'正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

  1.2.2空間幾何體的直觀圖(1課時)

  一、教學目標

  1.知識與技能

  (1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。

  (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

  2.過程與方法

  學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

  3.情感態(tài)度與價值觀

 。1)提高空間想象力與直觀感受。

  (2)體會對比在學習中的作用。

 。3)感受幾何作圖在生產活動中的應用。

  二、教學重點、難點

  重點、難點:用斜二測畫法畫空間幾何值的直觀圖。

  三、學法與教學用具

  1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

  2.教學用具:三角板、圓規(guī)

  四、教學思路

 。ㄒ唬﹦(chuàng)設情景,揭示課題

  1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱

  把實物圓柱放在講臺上讓學生畫。

  2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內容。

  (二)研探新知

  1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。

  畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。

  練習反饋

  根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。

  2.例2,用斜二測畫法畫水平放置的圓的直觀圖

  教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。

  教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。

  3.探求空間幾何體的直觀圖的畫法

 。1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

  教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。

 。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

  5.鞏固練習,課本P16練習1(1),2,3,4

  三、歸納整理

  學生回顧斜二測畫法的關鍵與步驟

  四、作業(yè)

  1.書畫作業(yè),課本P17練習第5題

  2.課外思考課本P16,探究(1)(2)

高中數學教案2

  教學目的:掌握圓的標準方程,并能解決與之有關的問題

  教學重點:圓的標準方程及有關運用

  教學難點:標準方程的'靈活運用

  教學過程:

  一、導入新課,探究標準方程

  二、掌握知識,鞏固練習

  練習:⒈說出下列圓的方程

 、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的圓心和半徑

  ⑴(x-2)2+(y+3)2=3

 、苮2+y2=2

 、莤2+y2-6x+4y+12=0

  ⒊判斷3x-4y-10=0和x2+y2=4的位置關系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)

  練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

  例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

  四、小結練習P771,2,3,4

  五、作業(yè)P811,2,3,4

高中數學教案3

  教學目標:

  (1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義。

  (3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;

  (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

  (5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數學結合的數學思想;

  (6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力。

  教學重點:

  子集、補集的概念

  教學難點:

  弄清元素與子集、屬于與包含之間的區(qū)別

  教學用具:

  幻燈機

  教學過程設計

  (一)導入新課

  上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。

  【提出問題】(投影打出)

  已知xx,xx,xx,問:

  1、哪些集合表示方法是列舉法。

  2、哪些集合表示方法是描述法。

  3、將集M、集從集P用圖示法表示。

  4、分別說出各集合中的元素。

  5、將每個集合中的元素與該集合的關系用符號表示出來、將集N中元素3與集M的關系用符號表示出來。

  6、集M中元素與集N有何關系、集M中元素與集P有何關系。

  【找學生回答】

  1、集合M和集合N;(口答)

  2、集合P;(口答)

  3、(筆練結合板演)

  4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

  5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結合板演)

  6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節(jié)將研究有關兩個集合間關系的問題、

  (二)新授知識

  1、子集

  (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作:xx讀作:A包含于B或B包含A

  當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、

  性質:①xx(任何一個集合是它本身的子集)

 、趚x(空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

  (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例:xx,可見,集合xx,是指A、B的所有元素完全相同。

  (3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集!

  集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B。

  【提問】

  (1)xx寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。

  (2)xx判斷下列寫法是否正確

 、賦xAxx②xxAxx③xx④AxxA

  性質:

  (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

  (2)如果xx,xx,則xx。

  例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、

  解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

  【注意】(1)子集與真子集符號的方向。

  (2)易混符號

 、佟皒x”與“xx”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如xxR,{1}xx{1,2,3}

 、趝0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。

  如:xx{0}。不能寫成xx={0},xx∈{0}

  例2xx見教材P8(解略)

  例3xx判斷下列說法是否正確,如果不正確,請加以改正、

  (1)xx表示空集;

  (2)空集是任何集合的真子集;

  (3)xx不是xx;

  (4)xx的所有子集是xx;

  (5)如果xx且xx,那么B必是A的`真子集;

  (6)xx與xx不能同時成立、

  解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確、空集是任何非空集合的真子集;

  (3)不正確、xx與xx表示同一集合;

  (4)不正確、xx的所有子集是xx;

  (5)正確

  (6)不正確、當xx時,xx與xx能同時成立、

  例4xx用適當的符號(xx,xx)填空:

  (1)xx;xx;xx;

  (2)xx;xx;

  (3)xx;

  (4)設xx,xx,xx,則AxxBxxC、

  解:(1)0xx0xx;

  (2)xx=xx,xx;

  (3)xx,xx∴xx;

  (4)A,B,C均表示所有奇數組成的集合,∴A=B=C、

  【練習】教材P9

  用適當的符號(xx,xx)填空:

  (1)xx;xx(5)xx;

  (2)xx;xx(6)xx;

  (3)xx;xx(7)xx;

  (4)xx;xx(8)xx、

  解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

  提問:見教材P9例子

  (二)xx全集與補集

  1、補集:一般地,設S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即

  、

  A在S中的補集xx可用右圖中陰影部分表示、

  性質:xxS(xxSA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

  (2)若A={0},則xxNA=N;

  (3)xxRQ是無理數集。

  2、全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。

  注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。

  例如:若xx,當xx時,xx;當xx時,則xx。

  例5xx設全集xx,xx,xx,判斷xx與xx之間的關系。

  解:

  練習:見教材P10練習

  1、填空:

  xx,xx,那么xx,xx。

  解:xx,

  2、填空:

  (1)如果全集xx,那么N的補集xx;

  (2)如果全集,xx,那么xx的補集xx(xx)=xx、

  解:(1)xx;(2)xx。

  (三)小結:本節(jié)課學習了以下內容:

  1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

  2、五條性質

  (1)空集是任何集合的子集。ΦxxA

  (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

  (3)任何一個集合是它本身的子集。

  (4)如果xx,xx,則xx、

  (5)xxS(xxSA)=A

  3、兩組易混符號:(1)“xx”與“xx”:(2){0}與

  (四)課后作業(yè):見教材P10習題1、2

高中數學教案4

  1.教學目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.

  (2)能力目標: 1.進一步培養(yǎng)學生用解析法研究幾何問題的能力;

  2.使學生加深對數形結合思想和待定系數法的理解;

  3.增強學生用數學的意識.

  (3)情感目標:培養(yǎng)學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發(fā)學生的學習興趣.

  2.教學重點.難點

  (1)教學重點:圓的標準方程的求法及其應用.

  (2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關的實際問題.

  3.教學過程

  (一)創(chuàng)設情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

  [引導] 畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的'定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學生活動] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經過點 ,圓心在點 .

  2.根據圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學生活動]探究方法

  [教師預設]

  方法一:待定系數法(利用幾何關系求斜率-垂直)

  方法二:待定系數法(利用代數關系求斜率-聯立方程)

  方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關系式)

  3.你能歸納出具有一般性的結論嗎?

  已知圓的方程是 ,經過圓上一點 的切線的方程是: .

  iii.實際應用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創(chuàng)設實際問題情境]

  (四)反饋訓練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

高中數學教案5

  1. 幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現仍然贏得了很好的人際關系,學習上你認真刻苦,也能及時的完成作業(yè),但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關注學習成績對你才是更有意義的事!

  2. 身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學科學習中,也一定會收獲很多的!加油吧!

  3. 你能嚴格遵守校規(guī),上課認真聽講,作業(yè)完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結果,而且你還是一個愿意動腦筋的好學生,如果繼續(xù)保持下去定會取得驕人的成績!

  4. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠專心聽講,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的進步! 你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業(yè)時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業(yè)的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!

  5. 雖然你個頭小,但每次你領讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的'你,經過不斷的努力,你會更出色的!

  6. 你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數你最有感情。中午你還主動給老師捶背,真是個會關心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

  7. 學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!

  8. 許麗君——你思想上進,踏實穩(wěn)重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發(fā)揮你的聰明才智,進一步激發(fā)活力,提高學習效率,持之以恒,美好的明天屬于你!

  9. 每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!

  10. 你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優(yōu),熱愛班級,關愛同學,勤奮好學,思維敏捷,成績優(yōu)秀。愿你扎實各科基礎,堅持不懈,!一定能考上重點! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

高中數學教案6

  一、教材分析

  1、教材地位和作用:二面角是我們日常生活中經常見到的、很普通的一個空間圖形!岸娼恰笔侨私贪妗稊祵W》第二冊(下B)中9.7的內容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學目標:

  知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

 。2)進一步培養(yǎng)學生把空間問題轉化為平面問題的化歸思想。

  能力目標:(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

  德育目標:(1)使學生認識到數學知識來自實踐,并服務于實踐,增強學生應用數學的意識(2)通過揭示線線、線面、面面之間的內在聯系,進一步培養(yǎng)學生聯系的辯證唯物主義觀點。

  情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。

  3、重點、難點:

  重點:“二面角”和“二面角的平面角”的概念

  難點:“二面角的平面角”概念的形成過程

  二、教法分析

  1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發(fā)現法,在形成技能時以訓練法、探究研討法為主。

 。、教學控制與調節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據學生及教學的實際情況,估計二面角的具體求法一節(jié)課內完成有一定的困難,所以將其放在下節(jié)課。

  3、教學手段:教學手段的現代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據本節(jié)課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。

  三、學法指導

  1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。

  2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯想等數學思想方法的運用,學會建立完善的認知結構。

  3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新,既能解決問題,更能發(fā)現問題。

  四、教學過程

  心理學研究表明,當學生明確數學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

  (一)、二面角

  1、揭示概念產生背景。

  問題情境1、在平面幾何中“角”是怎樣定義的?

  問題情境2、在立體幾何中我們還學習了哪些角?

  問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過這三個問題,打開了學生的原有認知結構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為它與我們的生活密不可分,激發(fā)學生的求知欲。2、展現概念形成過程。

  問題情境4、那么,應該如何定義二面角呢?

  創(chuàng)設這個問題情境,為學生創(chuàng)新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創(chuàng)新意識和創(chuàng)新結果,教師要給與積極的評價。

  問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。

 。ǘ、二面角的平面角

  1、揭示概念產生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

  與平面的位置關系,總的.說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。

  問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產生的背景。

  2、展現概念形成過程

 。1)、類比。教師啟發(fā),尋找類比聯想的對象。

  問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。

  問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。

  問題情境9、這個平面的角的頂點及兩邊是如何確定的?

 。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習慣,這對強化他們的創(chuàng)新意識大有幫助。

  問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內。這也是學生直覺思維的結果。

 。3)、探索實驗。通過實驗,激發(fā)了學生的學習興趣,培養(yǎng)了學生的動手操作能力。

 。4)、繼續(xù)探索,得到定義。

  問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現,角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內唯一確定,聯想到平面內過直線上一點的垂線的唯一性,由此發(fā)現二面角的大小的一種描述方法。

 。5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當的引導,并加以理論證明。

  (三)、二面角及其平面角的畫法

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

 。ㄋ模⒎独治

  為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養(yǎng)了學生分析問題和解決問題的能力,也讓學生領會到數學概念來自生活實際,并服務于生活實際,從而增強他們應用數學的意識。

  例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

  分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質,最后發(fā)現可由定義找出該二面角的平面角?勺寣W生先做,為調動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

  變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據課堂實際情況,本題的變式訓練也可作為課后思考題。

  題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

 。ㄎ澹⒕毩、小結與作業(yè)

  練習:習題9.7的第3題

  小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統(tǒng)。同時要求學生對本節(jié)課的學習方法進行總結,領會復習類比和深入研究這兩種知識創(chuàng)新的方法。

  作業(yè):習題9.7的第4題

  思考題:見例題

  五、板書設計(見課件)

  以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!

高中數學教案7

  教學目的:

  掌握圓的標準方程,并能解決與之有關的問題

  教學重點:

  圓的標準方程及有關運用

  教學難點:

  標準方程的靈活運用

  教學過程:

  一、導入新課,探究標準方程

  二、掌握知識,鞏固練習

  練習:

  1、說出下列圓的方程

 、艌A心(3,—2)半徑為5

  ⑵圓心(0,3)半徑為3

  2、指出下列圓的圓心和半徑

  ⑴(x—2)2+(y+3)2=3

 、苮2+y2=2

 、莤2+y2—6x+4y+12=0

  3、判斷3x—4y—10=0和x2+y2=4的位置關系

  4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數的`數學方法)

  練習:1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

  例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

  四、小結練習P771,2,3,4

  五、作業(yè)P811,2,3,4

高中數學教案8

  教學目標1.進一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;

  2.在運用建模和數形結合等數學思想方法分析、解決問題的過程中;提高解決問題的能力;

  3.進一步提高學生的合作意識和探究意識。

  教學重點:線性規(guī)劃的概念及其解法

  教學難點

  代數問題幾何化的過程

  教學方法:啟發(fā)探究式

  教學手段運用多媒體技術

  教學過程:1.實際問題引入。

  問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現知道油箱內油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠?

  2.探究和討論下列問題。

  (1)實際問題轉化為一個怎樣的數學問題?

  (2)滿足不等式組①的條件的點構成的區(qū)域如何表示?

  (3)關于x、y的一個表達式z=70x+50y的幾何意義是什么?

  (4)z的幾何意義是什么?

  (5)z的最大值如何確定?

  讓學生達成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行駛路程可以表示成關于x、y的一個表達式:z=70x+50y 由數形結合可知:經過點B(6,6)的直線所對應的z最大.

  則zmax=6×70+6×50=720

  結論:小王和小李分別駕車6小時時,行駛路程最遠為720公里.

  解題反思:

  問題解決過程中體現了那些重要的數學思想?

  3.線性規(guī)劃的有關概念。

  什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標函數、線性目標函數、可行解、可行域和最優(yōu)解等概念.

  4.進一步探究線性規(guī)劃問題的解。

  問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠?

  要求:請你寫出約束條件、目標函數,作出可行域,求出最優(yōu)解。

  問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優(yōu)解?

  5.小結。

  (1)數學知識;(2)數學思想。

  6.作業(yè)。

  (1)閱讀教材:P.60-63;

  (2)課后練習:教材P.65-2,3;

  (3)在自己生活中尋找一個簡單的線性規(guī)劃問題,寫出約束條件,確定目標函數,作出可行域,并求出最優(yōu)解。

  《一個數列的研究》教學設計

  教學目標:

  1.進一步理解和掌握數列的有關概念和性質;

  2.在對一個數列的探究過程中,提高提出問題、分析問題和解決問題的能力;

  3.進一步提高問題探究意識、知識應用意識和同伴合作意識。

  教學重點:

  問題的提出與解決

  教學難點:

  如何進行問題的探究

  教學方法:

  啟發(fā)探究式

  教學過程:

  問題:已知{an}是首項為1,公比為 的'無窮等比數列。對于數列{an},提出你的問題,并進行研究,你能得到一些什么樣的結論?

  研究方向提示:

  1.數列{an}是一個等比數列,可以從等比數列角度來進行研究;

  2.研究所給數列的項之間的關系;

  3.研究所給數列的子數列;

  4.研究所給數列能構造的新數列;

  5.數列是一種特殊的函數,可以從函數性質角度來進行研究;

  6.研究所給數列與其它知識的聯系(組合數、復數、圖形、實際意義等)。

  針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。

  課堂小結:

  1.研究一個數列可以從哪些方面提出問題并進行研究?

  2.你最喜歡哪位同學的研究?為什么?

  課后思考題: 1.將{an}推廣為一般的無窮等比數列:1,q,q2,…,qn-1,… ,上述一些研究結論會有什么變化?

  2.若將{an}改為等差數列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進行類比研究?

  開展研究性學習,培養(yǎng)問題解決能力

  一、對“研究性學習”和“問題解決”的認識 研究性學習是一種與接受性學習相對應的學習方式,泛指學生主動探究問題的學習。研究性學習也可以說是一種學習活動:學生在教師指導下,在自己的學習生活和社會生活中選擇課題,以類似科學研究的方式去主動地獲取知識、應用知識、解決問題。

  “問題解決”(problem solving)是美國數學教育界在二十世紀八十年代的主要口號,即認為應當以“問題解決”作為學校數學教育的中心。

  問題解決能力是一種重要的數學能力,其核心是“創(chuàng)新精神”與“實踐能力”。在數學教學活動中開展研究性學習是培養(yǎng)問題解決能力的主要途徑。

  二、“問題解決”課堂教學模式的建構與實踐 以研究性學習活動為載體,以培養(yǎng)問題解決能力為核心的課堂教學模式(以下簡稱為“問題解決”課堂教學模式)試圖通過問題情境創(chuàng)設,激發(fā)學生的求知欲,以獨立思考和交流討論的形式,發(fā)現、分析并解決問題,培養(yǎng)處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。

 。ㄒ唬╆P于“問題解決”課堂教學模式

  通過實施“問題解決”課堂教學模式,希望能夠達到以下的功能目標:學習發(fā)現問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團結協作精神,增進師生、同伴之間的情感交流,形成自覺運用數學基礎知識、基本技能和數學思想方法分析問題、解決問題的能力和意識。

 。ǘ⿺祵W學科中的問題解決能力的培養(yǎng)目標

  數學問題解決能力培養(yǎng)的目標可以有不同層次的要求:會審題,會建模,會轉化,會歸類,會反思,會編題。

 。ㄈ皢栴}解決”課堂教學模式的教學流程

 。ㄋ模皢栴}解決”課堂教學評價標準

  1. 教學目標的確定;

  2. 教學方法的選擇;

  3. 問題的選擇;

  4. 師生主體意識的體現;

  5.教學策略的運用。

 。ㄎ澹┝私鈱W生的數學問題解決能力的途徑

 。╅_展研究性學習活動對教師的能力要求

高中數學教案9

  教學目標

 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

 。2)理解直線與二元一次方程的關系及其證明

 。3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發(fā)引導法,討論法

  教學過程

  下面給出教學實施過程設計的簡要思路:

  教學設計思路

 。ㄒ唬┮氲脑O計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:

  問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

 。ǘ┍竟(jié)主體內容教學的設計

  這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區(qū)別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的..

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統(tǒng)一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發(fā)現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

 。1)當 時,方程可化為

  這是表示斜率為 、在 軸上的截距為 的直線.

 。2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計

  略

高中數學教案10

  教學目標:

  1、使學生了解角的形成,理解角的概念掌握角的各種表示法;

  2、通過觀察、操作培養(yǎng)學生的觀察能力和動手操作能力。

  3、使學生掌握度、分、秒的進位制,會作度、分、秒間的單位互化

  4、采用自學與小組合作學習相結合的方法,培養(yǎng)學生主動參與、勇于探究的精神。

  教學重點:

  理解角的概念,掌握角的三種表示方法

  教學難點:

  掌握度、分、秒的進位制, ,會作度、分、秒間的單位互化

  教學手段:

  教具:電腦課件、實物投影、量角器

  學具:量角器需測量的角

  教學過程:

  一、建立角的概念

 。ㄒ唬┮虢牵ɡ谜n件演示)

  1、從生活中引入

  提問:

  A、以前我們曾經認識過角,那你們能從這兩個圖形中指出哪些地方是角嗎?

  B、在我們的生活當中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?

  2、從射線引入

  提問:

  A、昨天我們認識了射線,想從一點可以引出多少條射線?

  B、如果從一點出發(fā)任意取兩條射線,那出現的是什么圖形?

  C、哪兩條射線可以組成一個角?誰來指一指。

 。ǘ┱J識角,總結角的定義

  3、 過渡:角是怎么形成的呢?一起看

  (1)、演示:老師在這畫上一個點,現在從這點出發(fā)引出一條射線,再從這點出發(fā)引出第二條射線。

  提問:觀察從這點引出了幾條射線?此時所組成的圖形是什么圖形?

 。2)、判斷下列哪些圖形是角。

 。ā蹋 (×) (√) (×) (√)

  為何第二幅和第四幅圖形不是角?(學生回答)

  誰能用自己的話來概括一下怎樣組成的圖形叫做角?

  總結:有公共端點的兩條射線所組成的圖形叫做角(angle)

  角的第二定義:角也可以看做由一條射線繞端點旋轉所形成的圖形.如下圖中的角,可以看做射線OA繞端點0按逆時針方向旋轉到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.

  B

  0 A

  4、認識角的各部分名稱,明確頂點、邊的作用

 。1)觀看角的圖形提問:這個點叫什么?這兩條射線叫什么?(學生邊說師邊標名稱)

  (2)角可以畫在本上、黑板上,那角的位置是由誰決定的?

 。3)頂點可以確定角的位置,從頂點引出的兩條邊可以組成一個角。

  5、學會用符號表示角

  提問:那么,角的符號是什么?該怎么寫,怎么讀的呢?(電腦顯示)

 。1)可以標上三個大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.

 。2)觀察這兩種方法,有什么特點?(字母B都在中間)

 。3)所以,在只有一個角的時候,我們還可以寫作: ∠B,讀作:角B

 。4)為了方便,有時我們還可以標上數字,寫作∠1,讀作:角1

 。5)注:區(qū)別 “∠”和“<”的不同。請同學們指著用學具折出的一個角,訓練一下這三種讀法。

  6、強調角的大小與兩邊張開的程度有關,與兩條邊的長短無關。

  二、 角的度量

  1、學習角的.度量

 。1)教學生認識量角器

  (2) 認識了量角器,那怎樣使用它去測量角的度數呢?這部分知識請同學們合作學習。

  提出要求:小組合作邊學習測量方法邊嘗試測量

  第一個角,想想有幾種方法?

  1、要求合作學習探究、測量。

  2、反饋匯報:學生邊演示邊復述過程

  3、教師利用課件演示正確的操作過程,糾正學生中存在的問題。

  4、歸納概括測量方法(兩重合一對)

 。1)用量角器的中心點與角的頂點重合

 。2)零刻度線與角的一邊重合(可與內零度刻度線重合;也可與外零度刻度線重合)

 。3)另一條邊所對的角的度數,就是這個角的度數。

  5、小結:同一個角無論是用內刻度量角,還是用外刻度量角,結果都一樣。

  6、獨立練習測量角的度數(書做一做中第一題1,3與第二題)

 。1) 獨立測量,師注意查看學生中存在的問題。

 。2) 課件演示糾正問題

  三、度、分、秒的進位制及這些單位間的互化

  為了更精細地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 將57.32°用度、分、秒表示.

  解:先把0.32°化為分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化為秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化為分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化為度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、鞏固練習

  課本P122練習

  五、總結:請大家回憶一下,今天都學了那些知識,通過學習你想說些什么?

  六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

高中數學教案11

  課題:

  等比數列的概念

  教學目標

  1、通過教學使學生理解等比數列的概念,推導并掌握通項公式、

  2、使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力、

  3、培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹的科學態(tài)度、

  教學重點,難點

  重點、難點是等比數列的定義的歸納及通項公式的推導、

  教學用具

  投影儀,多媒體軟件,電腦、

  教學方法

  討論、談話法、

  教學過程

  一、提出問題

  給出以下幾組數列,將它們分類,說出分類標準、(幻燈片)

 、佟2,1,4,7,10,13,16,19,…

 、8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,,,…

  ⑤31,29,27,25,23,21,19,…

 、1,—1,1,—1,1,—1,1,—1,…

  ⑦1,—10,100,—1000,10000,—100000,…

 、0,0,0,0,0,0,0,…

  由學生發(fā)表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列)、

  二、講解新課

  請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數

  這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列、(這里播放變形蟲分裂的多媒體軟件的第一步)

  等比數列(板書)

  1、等比數列的定義(板書)

  根據等比數列與等差數列的名字的區(qū)別與聯系,嘗試給等比數列下定義、學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的教師寫出等比數列的定義,標注出重點詞語、

  請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列、學生通過觀察可以發(fā)現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數列的一般形式,學生可能說形如的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當時,數列既是等差又是等比數列,當時,它只是等差數列,而不是等比數列、教師追問理由,引出對等比數列的認識:

  2、對定義的認識(板書)

 。1)等比數列的首項不為0;

  (2)等比數列的每一項都不為0,即

  問題:一個數列各項均不為0是這個數列為等比數列的什么條件?

 。3)公比不為0、

  用數學式子表示等比數列的定義、

  是等比數列

 、佟⒃谶@個式子的寫法上可能會有一些爭議,如寫成

  ,可讓學生研究行不行,好不好;接下來再問,能否改寫為

  是等比數列?為什么不能?式子給出了數列第項與第

  項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、

  3、等比數列的通項公式(板書)

  問題:用和表示第項

 、俨煌耆珰w納法

  ②疊乘法,…,,這個式子相乘得,所以(板書)

  (1)等比數列的通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)

 。2)對公式的認識

  由學生來說,最后歸結:

 、俸瘮涤^點;

 、诜匠趟枷耄ㄒ蛟诘炔顢盗兄幸延姓J識,此處再復習鞏固而已)、

  這里強調方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的.訓練)

  如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節(jié)課再研究、同學可以試著編幾道題。

  三、小結

  1、本節(jié)課研究了等比數列的概念,得到了通項公式;

  2、注意在研究內容與方法上要與等差數列相類比;

  3、用方程的思想認識通項公式,并加以應用。

  探究活動

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0、01毫米。

  參考答案:

  30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數算也行)。

高中數學教案12

  教學目標

 。1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程。

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程。

 。3)掌握直線方程各種形式之間的互化。

 。4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力。

 。5)通過直線方程特殊式與一般式轉化的教學,培養(yǎng)學生靈活的思維品質和辯證唯物主義觀點。

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。

  教學建議

  1、教材分析

 。1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式。

  (2)重點、難點分析

 、俦竟(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程。

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線。本節(jié)內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用。

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭。學生對點斜式學習的效果將直接影響后繼知識的學習。

 、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明。

  2、教法建議

 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的'方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯。教學中各部分知識之間過渡要自然流暢,不生硬。

 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續(xù)學習“曲線方程”打下基礎。

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證。教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點

 。3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解。

 。4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件。兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要。教學中應突出點斜式、兩點式和一般式三個教學高潮。

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程。根據兩個條件運用待定系數法和方程思想求直線方程。

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數)。

 。6)本節(jié)中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養(yǎng)學生的綜合能力。

 。7)直線方程的理論在其他學科和生產生活實際中有大量的應用。教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力。

  (8)本節(jié)不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上。

  教學設計示例

  直線方程的一般形式

  教學目標:

 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。

 。2)理解直線與二元一次方程的關系及其證明

 。3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點。

  教學重點、難點:直線方程的一般式。直線與二元一次方程(不同時為0)的對應關系及其證明。

  教學用具:計算機

  教學方法:啟發(fā)引導法,討論法

  教學過程:

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

 。ㄒ唬┮氲脑O計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的次數為一次。

  肯定學生回答,并糾正學生中不規(guī)范的表述。再看一個問題:

  問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的次數為一次。

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的次數為一次”。

  啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。

  學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

 。ǘ┍竟(jié)主體內容教學的設計

  這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。

  學生或獨立研究,或合作研究,教師巡視指導。

  經過一定時間的研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定方案(其它待課下研究)如下:

  按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。

  當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。

  當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區(qū)別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于直線的二元一次方程。

  至此,我們的問題1就解決了。簡單點說就是:直線方程都是二元一次方程。而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統(tǒng)一的形式。

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。

  啟發(fā):任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面。這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論。那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發(fā)現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即

 。1)當時,方程可化為

  這是表示斜率為、在軸上的截距為的直線。

 。2)當時,由于、不同時為0,必有,方程可化為

  這表示一條與軸垂直的直線。

  因此,得到結論:

  在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線。

  為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的。

  【動畫演示】

  演示“直線各參數。gsp”文件,體會任何二元一次方程都表示一條直線。

  至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系。

 。ㄈ┚毩曥柟、總結提高、板書和作業(yè)等環(huán)節(jié)的設計在此從略

高中數學教案13

  教學目標

  1使學生理解本章的知識結構,并通過本章的知識結構掌握本章的全部知識;

  2對線段、射線、直線、角的概念及它們之間的關系有進一步的認識;

  3掌握本章的全部定理和公理;

  4理解本章的數學思想方法;

  5了解本章的題目類型。

  教學重點和難點

  重點是理解本章的知識結構,掌握本章的全部定和公理;難點是理解本章的數學思想方法。

  教學設計過程

  一、本章的知識結構

  二、本章中的概念

  1直線、射線、線段的概念。

  2線段的中點定義。

  3角的兩個定義。

  4直角、平角、周角、銳角、鈍角的概念。

  5互余與互補的角。

  三、本章中的公理和定理

  1直線的公理;線段的公理。

  2補角和余角的性質定理。

  四、本章中的主要習題類型

  1對直線、射線、線段的概念的理解。

  例1下列說法中正確的是( )。

  A延長射線OP B延長直線CD

  C延長線段CD D反向延長直線CD

  解:C因為射線和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯誤的。而線段有兩個端點,可以向兩方延長。

  例2如圖1-57中的線段共有多少條?

  解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。

  2線段的和、差、倍、分。

  例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD= BC,那么線段AD是線段AC的( )。

  A.B. C. D.

  解:B如圖1-58,因為AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如圖1-59,B為線段AC上的一點,AB=4cm,BC=3cm,M,N分別為AB,BC的中點,求MN的長。

  解:因為AB=4,M是AB的中點,所以MB=2,又因為N是BC的中點,所以BN=1.5。則MN=2+1.5=3.5

  3角的概念性質及角平分線。

  例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數。

  解:因為OD是∠AOB的平分線,所以∠BOD= ∠AOB;又因為OE是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  則∠EOD=90°。

  例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數的比是多少?

  解:因為∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  則∠AOC=60°,(同角的余角相等)

  ∠AOC與∠COB的度數的比是2∶1。

  4互余與互補角的性質。

  例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數。

  解:因為COD為直線,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB為直線,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB為直線,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一個角是另一個角的3倍,且小有的余角與大角的余角之差為20°,求這兩個角的度數。

  解:設第一個角為x°,則另一個角為3x°,

  依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一個角為10°,另一個角為30°。

  5度分秒的換算及和、差、倍、分的計算。

  例9 (1)將4589°化成度、分、秒的形式。

  (2)將80°34′45″化成度。

  (3)計算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)約為8058°。

  (3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進位,做除法后得9°44′11″)

  五、本章中所學到的數學思想

  1運動變化的觀點:幾何圖形不是孤立和靜止的,也應看作不斷發(fā)展和變化的.,如線段向一個方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點旋轉就形成角;角的終邊不斷旋轉就變化成直角、平角和周角。從圖形的運動中可以看到變化,從變化中看到聯系和區(qū)別及特性。

  2數形結合的思想:在幾何的知識中經常遇到計算問題,對形的研究離不開數。正如數學家華羅庚所說:“數缺形時少直觀,形缺數時難如微”。本章的知識中,將線段的長度用數量表示,利用方程的方法解決余角與補角的問題。因此我們對幾何的學習不能與代數的學習截然分開,在形的問題難以解決時,發(fā)揮數的功能,在數的問題遇到困難時,畫出與它相關的圖形,都會給問題的解決帶來新的思路。從幾何的起始課,就注意數形結合,就會養(yǎng)成良好的思維習慣。

  3聯系實際,從實際事物中抽象出數學模型。數學的產生來源于生產和生活實踐,因此學習數學不能脫離實際生活,尤其是幾乎何的學習更離不開實際生活。一方面要讓學生知道本章的主要內容是線和角,都在生活中有大量的原型存在,另一方面又要引導學生將所學的知識去解決某些簡單的實際問題,這才是理論聯系實際的觀點。

  六、本章的疑點和誤點分析

  概念在應用中的混淆。

  例10判斷正誤:

  (1)在∠AOB的邊OA的延長線上取一點D。

  (2)大于90°的角是鈍角。

  (3)任何一個角都可以有余角。

  (4)∠A是銳角,則∠A的所有余角都相等。

  (5)兩個銳角的和一定小于平角。

  (6)直線MN是平角。

  (7)互補的兩個角的和一定等于平角。

  (8)如果一個角的補角是銳角,那么這個角就沒有余角。

  (9)鈍角一定大于它的補角。

  (10)經過三點一定可以畫一條直線。

  解:(1)錯。因為角的兩邊是射線,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。

  (2)錯。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

  (3)錯。余角的定義是:如果兩個角的和是一個直角,這兩個角互為余角。因此大于直角的角沒有余角。

  (4)對.∠A的所有余角都是90°-∠A。

  (5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

  (6)錯。平角是一個角就要有頂點,而直線上沒有表示平角頂點的點。如果在直線上標出表示角的頂點的點,就可以了。

  (7)對。符合互補的角的定義。

  (8)對。如果一個角的補角是銳角,那么這個角一定是鈍角,而鈍角是沒有余角的。

  (9)對。因為鈍角的補角是銳角,鈍角一定大于銳角。

  (10)錯。這個題應該分情況討論:如果這三點在同一條直線上,這個結論是正確的。如果這三個點不在同一條直線上,那么過這三個點就不能畫一條直線。

  板書設計

  回顧與反思

  (一)知識結構(四)主要習題類型(五)本章的數學思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑誤點分析

  (三)本章的公理和定理·

  例9

高中數學教案14

  教學目標:

  1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關系.

  2.會求一些簡單函數的反函數.

  3.在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識.

  4.進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.

  教學重點:求反函數的方法.

  教學難點:反函數的概念.

  教學過程

  教學活動

  設計意圖一、創(chuàng)設情境,引入新課

  1.復習提問

 、俸瘮档母拍

  ②y=f(x)中各變量的意義

  2.同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數.在這種情況下,我們說t=是函數S=vt的反函數.什么是反函數,如何求反函數,就是本節(jié)課學習的內容.

  3.板書課題

  由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.

  二、實例分析,組織探究

  1.問題組一:

  (用投影給出函數與;與()的圖象)

  (1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱.是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

  (2)由,已知y能否求x?

  (3)是否是一個函數?它與有何關系?

  (4)與有何聯系?

  2.問題組二:

  (1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

  (2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

  (3)函數 ()的定義域與函數()的值域有什么關系?

  3.滲透反函數的概念.

  (教師點明這樣的函數即互為反函數,然后師生共同探究其特點)

  從學生熟知的函數出發(fā),抽象出反函數的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力.

  通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎.

  三、師生互動,歸納定義

  1.(根據上述實例,教師與學生共同歸納出反函數的定義)

  函數y=f(x)(x∈A) 中,設它的值域為 C.我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數.這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數.記作: .考慮到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫成.

  2.引導分析:

  1)反函數也是函數;

  2)對應法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;

  4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

  5)函數y=f(x)與x=f(y)互為反函數;

  6)要理解好符號f;

  7)交換變量x、y的原因.

  3.兩次轉換x、y的對應關系

  (原函數中的自變量x與反函數中的函數值y 是等價的,原函數中的函數值y與反函數中的自變量x是等價的)

  4.函數與其反函數的關系

  函數y=f(x)

  函數

  定義域

  A

  C

  值 域

  C

  A

  四、應用解題,總結步驟

  1.(投影例題)

  【例1】求下列函數的反函數

  (1)y=3x-1 (2)y=x 1

  【例2】求函數的反函數.

  (教師板書例題過程后,由學生總結求反函數步驟.)

  2.總結求函數反函數的步驟:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x與y互換得.

  3° 寫出反函數的定義域.

  (簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?

  (2)的反函數是________.

  (3)(x<0)的反函數是__________.

  在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數.在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握.

  通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解.

  通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養(yǎng)學生分析、思考的習慣,以及歸納總結的能力.

  題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進.并體現了對定義的反思理解.學生思考練習,師生共同分析糾正.

  五、鞏固強化,評價反饋

  1.已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函數f(x)=(xR,且x)存在反函數,求f(7)的值.

  五、反思小結,再度設疑

  本節(jié)課主要研究了反函數的`定義,以及反函數的求解步驟.互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.

  (讓學生談一下本節(jié)課的學習體會,教師適時點撥)

  進一步強化反函數的概念,并能正確求出反函數.反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性."問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.

  六、作業(yè)

  習題2.4第1題,第2題

  進一步鞏固所學的知識.

  教學設計說明

  "問題是數學的心臟".一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念.

  反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念.為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維.使學生自然成為學習的主人。

高中數學教案15

  一、活動主題的提出

  根據新課改課程標準及高中數學教學要求,為切實實施素質教育,改革教學方式與方法,變教教材為用教材,有機地開展校本課程,培養(yǎng)學生的綜合實踐能力和創(chuàng)新能力,培養(yǎng)學生的探索精神和用數學的意識,以教材中的閱讀與思考為素教材,推進高中數學研究性學習的進程,對該問題進行研究,旨在為深化課堂教學內容,促進性自主研究和學習,從而探討高中數學研究性學習的實施辦法。

  二、活動的具體目標

  1、知識目標:通過集合中元素的個數問題的研究,探求有限集合中元素個數間的關系,比較幾個集合中元素個數的多少的方法。

  2、能力目標:能多方面、多角度、多層面來探究問題,運用知識來解決問題,培養(yǎng)學生的發(fā)散思維和創(chuàng)新思維能力。

  3、情感目標:學該課題的研究,激發(fā)學生的學習熱情和學習興趣,享受探索成功的樂趣,培養(yǎng)科學態(tài)度與科學精神。

  三、活動的實施過程、方式

  1、出示活動內容與思考的問題(5分鐘)

 。1)、學校小賣部進了兩次貨,第一次進的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進了幾種貨?回答兩次一共進了10(6+4)種,對嗎?應如何解答?有哪些方法?因此可以得出什么結論(集合中元素個數間的關系)?

 。2)、學校先舉辦了一次田徑運動會,某班有8名同學參賽,又舉辦了一次球類運動會,這個班有12名同學參賽,兩次運動會都參賽的有3人。兩次運動會中,這個班共有多少名同學參賽?應如何解答?由此解出以下結論(集合中元素個數間的關系)?又如:某班共30人,其中15人喜愛籃球運動,10人喜愛乒乓球運動,8人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人是多少?應如何解答?

 。3)涉及三個及三個以上,集合的并、交問題,能用類似的結論嗎?應怎樣表達?如:學校開運動會,設。若參加一百米的同學有5人,參加二百米跑的同學有6人,參加四百米跑的同學有7人,參加一百、二百同學有2人,參加一百、四百的同學有3人,參加二百、四百的同學有5人,三項都參加的人有1人,求有多少人參賽?

 。4)設計比較集合與集合B=中元素的個數的多少的方法。

  2、活動分工及時間安排(25分鐘)

  全班以大組為單位(共四個大組)來研究以上4個問題。第一大組研究(1)問題,第二大組研究(2)個問題,第三大組研究(3)個問題,第四大組研究(4)個問題。要求每組由學生自行確定一位負責人,并由此同學組織具體活動,明確該同學是下步活動交流中心發(fā)言人。有余力的組可協助思考其它組的問題。教師下到各組視察,了解情況,并作必要的指導。

  3、活動交流(15分鐘)

  請每一小組中心發(fā)言人回答各自分配的問題,全班其它同學補充,教師引導學生概括,得出結論:

  列舉法

  問題(1)涉及的集合元素個數較少而且具體,可用列舉法寫出,很快可解決此問題,并由特殊到一般的思維方式概括得出:

  圖解法

  當集合元素個數較少而不具體時,據題意畫出集合的韋恩圖,從而解決實際問題如問題(2),并歸納得出:這一結論。

  數形結合法

  利用集合間的關系,結合示意圖,據未知可設適當的未知數,建立方程求解,如問題(2)中的第二個問題。設喜愛籃球運動但不喜愛乒乓球運動的人數為x,則兩項都喜愛的有(15-x)人,喜愛乒乓球而不喜愛籃球的有[10-(15-x)]人,據題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛籃球運動但不喜愛乒乓球運動的有12人。

  歸納、猜想法

  通過對問題(3)的求解,并結合問題(1)、(2)的求解,歸納、猜想出:。

  概念派生法

  通過問題(4)的研究求解,大部分學生較易得出A,因此,由真子集的概念得出集合B的元素的個數少于集合A的元素的個數。這個結論是由概念的內涵派生出來的。

  “對應”法

  經研究討論,同學中有“集合A的元素個數等于集合B的元素個數”的結論。少數同學運用“對應”思想:,顯然有此結論。這是一個多好的.想法。

  四、活動評價

  充分運用高中數學子教材資源“閱讀與思考”,廣泛開展第二課堂活動,能很好地調動學生的學習興趣,能很好地開發(fā)學生的創(chuàng)造潛能,有助于學生探究能力和創(chuàng)新能力的提高。通過本課題的研究,至少有以下成功之處:第一、深化了課堂知識,進一步鞏固和拓展了所學知識;第二、培養(yǎng)了學生探究能力,很好地改變了學生的學習方式、方法;第三、增強了學生運用知識解決問題的意識:該課題以解決問題為背景,通過分工與合作和恰當地引導,學生用知識的意識明顯增強,運用知識解決問題的能力明顯提高;第四、培養(yǎng)了學生的思維品質。通過問題(4)的研究,我們得出了不一樣的結論,但都有道理,學生向引發(fā)爭議,學生的批判性思維得到較好的發(fā)展。

  五、注意事項

  1、教師課題準備要充分。要認真鉆研材料;查閱相關資料或研究成果;作好周密的活動計劃。切忌無準備或準備不充分就上課。

  2、避免“活動研究課”上課學科化,要充分地讓學生自主的活動,不人為地牽制學生。

  3、積極引導學生搞好“交流——合作”環(huán)節(jié)的活動,充分聽取學生的意見,讓學生自己總結作法和研究成果,切忌教師包辦,強加于人。

  4、堅持引導學生寫好活動總結和體會,歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。

【高中數學教案】相關文章:

高中數學教案12-30

高中數學教案02-21

高中數學教案模板02-02

高中數學教案【精】02-01

高中數學教案【推薦】01-25

【推薦】高中數學教案01-25

【熱】高中數學教案01-25

高中數學教案優(yōu)秀12-10

【通用】高中數學教案06-17

高中數學教案(通用)10-27