數(shù)學(xué)等差數(shù)列教案
作為一名優(yōu)秀的教育工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。怎樣寫教案才更能起到其作用呢?以下是小編為大家整理的數(shù)學(xué)等差數(shù)列教案,希望能夠幫助到大家。
數(shù)學(xué)等差數(shù)列教案1
教學(xué)目標(biāo)
1.明確等差數(shù)列的定義.
2.掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問(wèn)題
3.培養(yǎng)學(xué)生觀察、歸納能力.
教學(xué)重點(diǎn)
1. 等差數(shù)列的概念;
2. 等差數(shù)列的通項(xiàng)公式
教學(xué)難點(diǎn)
等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用
教學(xué)方法
啟發(fā)式數(shù)學(xué)
教具準(zhǔn)備
投影片1張(內(nèi)容見(jiàn)下面)
教學(xué)過(guò)程
(I)復(fù)習(xí)回顧
師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片)
。á颍┲v授新課
師:看這些數(shù)列有什么共同的特點(diǎn)?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
、
生:積極思考,找上述數(shù)列共同特點(diǎn)。
對(duì)于數(shù)列① (1≤n≤6); (2≤n≤6)
對(duì)于數(shù)列② -2n(n≥1)
。╪≥2)
對(duì)于數(shù)列③
(n≥1)
。╪≥2)
共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。
師:也就是說(shuō),這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。
一、定義:
等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的`公差依次是1,-2, 。
二、等差數(shù)列的通項(xiàng)公式
師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列 的首項(xiàng)是 ,公差是d,則據(jù)其定義可得:
若將這n-1個(gè)等式相加,則可得:
即:
即:
即:
……
由此可得:
師:看來(lái),若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng) 和公差d,便可求得其通項(xiàng) 。
如數(shù)列① (1≤n≤6)
數(shù)列②: (n≥1)
數(shù)列③:
。╪≥1)
由上述關(guān)系還可得:
即:
則: =
如:
三、例題講解
例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng)
。2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?
解:(1)由
n=20,得
。2)由
得數(shù)列通項(xiàng)公式為:
由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。
。á螅┱n堂練習(xí)
生:(口答)課本P118練習(xí)3
。〞婢毩(xí))課本P117練習(xí)1
師:組織學(xué)生自評(píng)練習(xí)(同桌討論)
(Ⅳ)課時(shí)小結(jié)
師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。
即 (n≥2)
②等差數(shù)列通項(xiàng)公式 (n≥1)
推導(dǎo)出公式:
。╒)課后作業(yè)
一、課本P118習(xí)題3.2 1,2
二、1.預(yù)習(xí)內(nèi)容:課本P116例2—P117例4
2.預(yù)習(xí)提綱:①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問(wèn)題?
②等差數(shù)列有哪些性質(zhì)?
板書設(shè)計(jì)
課題
一、定義
1.(n≥2)
一、通項(xiàng)公式
2.公式推導(dǎo)過(guò)程
例題
教學(xué)后記
數(shù)學(xué)等差數(shù)列教案2
一、教材分析
1、教學(xué)目標(biāo):
A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;
B.培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
C 通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
2、教學(xué)重點(diǎn)和難點(diǎn)
①等差數(shù)列的概念。
②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項(xiàng)公式。
二、教法分析
采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。
三、教學(xué)程序
本節(jié)課的教學(xué)過(guò)程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼(表示鞋底長(zhǎng),單位是c)分別是
21,22,23,24,25,
2.某劇場(chǎng)前10排的座位數(shù)分別是:
38,40,42,44,46,48,50,52,54,56。
3.某長(zhǎng)跑運(yùn)動(dòng)員7天里每天的訓(xùn)練量(單位:)是:
7500,8000,8500,9000,9500,10000,10500。
共同特點(diǎn):
從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一個(gè)常數(shù)。
(二) 新課探究
1、給出等差數(shù)列的概念:
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):
、 “從第二項(xiàng)起”滿足條件;
、诠頳一定是由后項(xiàng)減前項(xiàng)所得;
、酃羁梢允钦龜(shù)、負(fù)數(shù),也可以是0。
2、推導(dǎo)等差數(shù)列的通項(xiàng)公式
若等差數(shù)列{an }的首項(xiàng)是 ,公差是d, 則據(jù)其定義可得:
- =d 即: = +d
– =d 即: = +d = +2d
– =d 即: = +d = +3d
進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:
= +(n-1)d
此時(shí)指出:
這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:
– =d
– =d
– =d
– =d
將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d
當(dāng)n=1時(shí),上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時(shí)上面公式都成立,因此它就是等差數(shù)列{an }的通項(xiàng)公式。
接著舉例說(shuō)明:若一個(gè)等差數(shù)列{ }的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是: =1+(n-1)×2 , 即 =2n-1 以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用
。ㄈ⿷(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過(guò)例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的 、d、n、 這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項(xiàng);
(2)-401是不是等差數(shù)列-5,-9,-13,…的項(xiàng)?如果是,是第幾項(xiàng)?
第二問(wèn)實(shí)際上是求正整數(shù)解的問(wèn)題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式
例2 在等差數(shù)列{an}中,已知 =10, =31,求首項(xiàng) 與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固
例3 梯子的最高一級(jí)寬33c,最低一級(jí)寬110c,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。
(四)反饋練習(xí)
1、小節(jié)后的'練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。
2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列
此題是對(duì)學(xué)生進(jìn)行數(shù)列問(wèn)題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問(wèn)題同時(shí)強(qiáng)化了等差數(shù)列的概念。
(五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.
強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)
2.等差數(shù)列的通項(xiàng)公式 = +(n-1) d會(huì)知三求一
(六) 布置作業(yè)
必做題:課本P114 習(xí)題3.2第2,6 題
選做題:已知等差數(shù)列{ }的首項(xiàng) = -24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。(目的:通過(guò)分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
四、板書設(shè)計(jì)
在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。
數(shù)學(xué)等差數(shù)列教案3
一、設(shè)計(jì)思想
數(shù)學(xué)是思維的體操,是培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力及創(chuàng)造能力的載體,新課程倡導(dǎo):強(qiáng)調(diào)過(guò)程,強(qiáng)調(diào)學(xué)生探索新知識(shí)的經(jīng)歷和獲得新知的體驗(yàn),不能在讓教學(xué)脫離學(xué)生的內(nèi)心感受,必須讓學(xué)生追求過(guò)程的體驗(yàn);谝陨险J(rèn)識(shí),在設(shè)計(jì)本節(jié)課時(shí),教師所考慮的不是簡(jiǎn)單告訴學(xué)生等差數(shù)列的定義和通項(xiàng)公式,而是創(chuàng)造一些數(shù)學(xué)情境,讓學(xué)生自己去發(fā)現(xiàn)、證明。在這個(gè)過(guò)程中,學(xué)生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學(xué)生的學(xué)習(xí)興趣,也提高了他們提出問(wèn)題解決問(wèn)題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導(dǎo)的數(shù)學(xué)理念。
本節(jié)課借助多媒體輔助手段,創(chuàng)設(shè)問(wèn)題的情境,讓探究式教學(xué)走進(jìn)課堂,保障學(xué)生的主體地位,喚醒學(xué)生的主體意識(shí),發(fā)展學(xué)生的主體能力,塑造學(xué)生的主體人格,讓學(xué)生在參與中學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)合作、學(xué)會(huì)創(chuàng)新。
二、教材分析
高中數(shù)學(xué)必修五第二章第二節(jié),等差數(shù)列,兩課時(shí)內(nèi)容,本節(jié)是第一課時(shí)。研究等差數(shù)列的定義、通項(xiàng)公式的推導(dǎo),借助生活中豐富的典型實(shí)例,讓學(xué)生通過(guò)分析、推理、歸納等活動(dòng)過(guò)程,從中了解和體驗(yàn)等差數(shù)列的定義和通項(xiàng)公式。通過(guò)本節(jié)課的學(xué)習(xí)要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式,并且了解等差數(shù)列與一次函數(shù)的關(guān)系。
本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點(diǎn)內(nèi)容。在高考中也是重點(diǎn)考察內(nèi)容之一,并且在實(shí)際生活中有著廣泛的應(yīng)用,它起著承前啟后的作用。同時(shí)也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列是學(xué)生探究特殊數(shù)列的開始,它對(duì)后續(xù)內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上,還是在方法上都具有積極的意義。
三、學(xué)情分析
學(xué)生已經(jīng)具有一定的理性分析能力和概括能力,且對(duì)數(shù)列的知識(shí)有了初步的接觸和認(rèn)識(shí),對(duì)數(shù)學(xué)公式的運(yùn)用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動(dòng)過(guò)程,對(duì)函數(shù)、方程思想體會(huì)逐漸深刻。他們的思維正從屬于經(jīng)驗(yàn)性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗(yàn)材料來(lái)理解抽象的邏輯關(guān)系。同時(shí)思維的嚴(yán)密性還有待加強(qiáng)。
四、教學(xué)目標(biāo)
1.知識(shí)目標(biāo):理解等差數(shù)列概念,掌握等差數(shù)列的通項(xiàng)公式,了解等差數(shù)列與一次函數(shù)的關(guān)系。
2.能力目標(biāo):培養(yǎng)學(xué)生觀察、歸納能力,應(yīng)用數(shù)學(xué)公式的能力及滲透函數(shù)、方程的思想。
3.情感目標(biāo):體驗(yàn)從特殊到一般,又到特殊的認(rèn)知規(guī)律,提高數(shù)學(xué)猜想、歸納的能力。
五、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):等差數(shù)列的概念及通項(xiàng)公式的推導(dǎo)。
教學(xué)難點(diǎn):對(duì)等差數(shù)列概念的理解及學(xué)會(huì)通項(xiàng)公式的推導(dǎo)及應(yīng)用。
六、教學(xué)策略和手段
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)共同發(fā)展的過(guò)程,結(jié)合學(xué)生的實(shí)際情況,及本節(jié)內(nèi)容的特點(diǎn),我采用的是“問(wèn)題教學(xué)法”,其主導(dǎo)思想是以探究式教學(xué)思想為主導(dǎo),由教師提出一系列精心設(shè)計(jì)的問(wèn)題,在教師的啟發(fā)指導(dǎo)下,讓學(xué)生自己去分析、探索,在探索過(guò)程中研究和領(lǐng)悟得出的結(jié)論,從而使學(xué)生即獲得知識(shí)又發(fā)展智能的目的。
教學(xué)手段:多媒體計(jì)算機(jī)和傳統(tǒng)黑板相結(jié)合。通過(guò)計(jì)算機(jī)模擬演示,使學(xué)生獲得感性知識(shí)的同時(shí),為掌握理性知識(shí)創(chuàng)造條件,這樣做,可以使學(xué)生有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學(xué)生更好的經(jīng)歷整個(gè)教學(xué)過(guò)程。
七、課前準(zhǔn)備
學(xué)生預(yù)習(xí),教師做好課件并安裝好。
八、教學(xué)過(guò)程
創(chuàng)設(shè)情景,引入概念
設(shè)計(jì)意圖:希望學(xué)生能通過(guò)日常生活中的實(shí)際問(wèn)題的分析對(duì)比,建立等差數(shù)列模型,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過(guò)程。
師生活動(dòng):
情景1:
師—把班上學(xué)生學(xué)號(hào)從小到大排成一列:
學(xué)生:
師—這是數(shù)列嗎?你能歸納出它的通項(xiàng)公式嗎?
學(xué)生—是,師—把上面的數(shù)列各項(xiàng)依次記為,填空:
學(xué)生—填空并歸納出一般規(guī)律:,( )
師—上面這個(gè)規(guī)律還有其他形式嗎?
學(xué)生—或者寫成,( )
注:要對(duì)強(qiáng)調(diào),原因在于有意義。
師—你能用普通語(yǔ)言概括上面的規(guī)律嗎?
學(xué)生—自由發(fā)言,選擇最恰當(dāng)?shù)恼Z(yǔ)言。
上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。
情景2:看幻燈片上的實(shí)例
(1)2008年北京奧運(yùn)會(huì),女子舉重共設(shè)置7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):
48,53,58,63
(2)水庫(kù)的管理員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,定期放水清庫(kù)的'辦法清理水庫(kù)中的雜魚。如果一個(gè)水庫(kù)的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位組成數(shù)列(單位:m)
18,15.5,13,10.5,8,5.5
(3)我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計(jì)算下一期的利息。按照單利計(jì)算本利和的公式是:
本利和=本金(1+利率存期)
時(shí)間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅)
各年末本利和(單位:元)
10072,10144,10216,10288,10360
師:上面的三個(gè)數(shù)列又分別有什么規(guī)律呢?
學(xué)生—(1),(2),(3),師—?dú)w納上面數(shù)列的共同特征:
(d是常數(shù)),師—滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個(gè)名字?
學(xué)生(共同)—等差數(shù)列。
提出課題《等差數(shù)列》
師—給出文字?jǐn)⑹龅亩x(學(xué)生敘述,板書定義):
一般的,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項(xiàng)。
對(duì)定義進(jìn)行分析,強(qiáng)調(diào):= 1 GB3 ①同一個(gè)常數(shù);= 2 GB3 ②從第二項(xiàng)起。
師—這樣的數(shù)列在生活中的例子,誰(shuí)能再舉幾個(gè)?
學(xué)生—某劇場(chǎng)前8排的座位數(shù)分別是
52,50,48,46,44,42,40,38.
學(xué)生—全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼分別是
21,21.5,22,22.5,23,23.5,24,24.5,25
搶答:觀察下列數(shù)列是否為等差數(shù)列
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
注:常數(shù)列也是等差數(shù)列,公差是0。
推進(jìn)概念,發(fā)現(xiàn)性質(zhì)
設(shè)計(jì)意圖:概括等差中項(xiàng)的概念。總結(jié)等差中項(xiàng)公式,用于發(fā)現(xiàn)等差數(shù)列的性質(zhì)。
師生活動(dòng):
師—想一想,一個(gè)等差數(shù)列最少有幾項(xiàng)?它們之間有什么關(guān)系?
學(xué)生思考后回答,至少三項(xiàng),然后老師引導(dǎo)學(xué)生概括等差中項(xiàng)的概念。
設(shè)三個(gè)數(shù)成等差數(shù)列,則A叫a與b的等差中項(xiàng)。同時(shí)有A-a=b-A,說(shuō)明:(1)上面式子反過(guò)來(lái)也成立。(2)等差數(shù)列中的任意連續(xù)三項(xiàng)都構(gòu)成等差數(shù)列,反之亦成立。
(三)探究通項(xiàng)公式
設(shè)計(jì)意圖:通過(guò)具體數(shù)列的通項(xiàng)公式,總結(jié)一般等差數(shù)列的通項(xiàng)公式,體會(huì)特殊到一般的數(shù)學(xué)思想方法。
師生活動(dòng):
師—對(duì)于一個(gè)數(shù)列,我們最關(guān)心的是每一項(xiàng),而這就要求我們能知道它的通項(xiàng)公式。下面一起來(lái)研究等差數(shù)列的通項(xiàng)公式。
先寫出上面引例中等差數(shù)列的通項(xiàng)公式。再推導(dǎo)一般等差數(shù)列的通項(xiàng)公式。
師—若一個(gè)數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項(xiàng)公式是什么?
啟發(fā)學(xué)生:(歸納、猜想)可用首項(xiàng)與公差表示數(shù)列中任意一項(xiàng)。
學(xué)生—即:
即:
即:
由此可得:
師—從第幾項(xiàng)開始?xì)w納的?
學(xué)生—第二項(xiàng),所以n≥2。
師—n=1時(shí)呢?
學(xué)生—當(dāng)n=1時(shí),等式也是成立,因而等差數(shù)列的通項(xiàng)公式
( )
師—很好!
數(shù)學(xué)等差數(shù)列教案4
2。2。1等差數(shù)列學(xué)案
一、預(yù)習(xí)問(wèn)題:
1、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從 起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè) ,那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。
2、等差中項(xiàng):若三個(gè)數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,
即 或 。
3、等差數(shù)列的.單調(diào)性:等差數(shù)列的公差 時(shí),數(shù)列為遞增數(shù)列; 時(shí),數(shù)列為遞減數(shù)列; 時(shí),數(shù)列為常數(shù)列;等差數(shù)列不可能是 。
4、等差數(shù)列的通項(xiàng)公式: 。
5、判斷正誤:
、1,2,3,4,5是等差數(shù)列; ( )
②1,1,2,3,4,5是等差數(shù)列; ( )
③數(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )
④數(shù)列 是公差為 的等差數(shù)列; ( )
、輸(shù)列 是等差數(shù)列; ( )
⑥若 ,則 成等差數(shù)列; ( )
⑦若 ,則數(shù)列 成等差數(shù)列; ( )
、嗟炔顢(shù)列是相鄰兩項(xiàng)中后項(xiàng)與前項(xiàng)之差等于非零常數(shù)的數(shù)列; ( )
⑨等差數(shù)列的公差是該數(shù)列中任何相鄰兩項(xiàng)的差。 ( )
6、思考:如何證明一個(gè)數(shù)列是等差數(shù)列。
二、實(shí)戰(zhàn)操作:
例1、(1)求等差數(shù)列8,5,2,的第20項(xiàng)。
(2) 是不是等差數(shù)列 中的項(xiàng)?如果是,是第幾項(xiàng)?
。3)已知數(shù)列 的公差 則
例2、已知數(shù)列 的通項(xiàng)公式為 ,其中 為常數(shù),那么這個(gè)數(shù)列一定是等差數(shù)列嗎?
例3、已知5個(gè)數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個(gè)數(shù)。
數(shù)學(xué)等差數(shù)列教案5
[教學(xué)目標(biāo)]
1.知識(shí)與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問(wèn)題。
2.過(guò)程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過(guò)程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過(guò)階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力。
3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時(shí)總結(jié)的好習(xí)慣。
[教學(xué)重難點(diǎn)]
1.教學(xué)重點(diǎn):等差數(shù)列的概念的理解,通項(xiàng)公式的推導(dǎo)及應(yīng)用。
2.教學(xué)難點(diǎn):
(1)對(duì)等差數(shù)列中“等差”兩字的把握;
(2)等差數(shù)列通項(xiàng)公式的推導(dǎo)。
[教學(xué)過(guò)程]
一.課題引入
創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)
二、新課探究
(一)等差數(shù)列的定義
1、等差數(shù)列的定義
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的'公差,通常用字母d來(lái)表示。
(1)定義中的關(guān)健詞有哪些?
(2)公差d是哪兩個(gè)數(shù)的差?
(二)等差數(shù)列的通項(xiàng)公式
探究1:等差數(shù)列的通項(xiàng)公式(求法一)
如果等差數(shù)列首項(xiàng)是,公差是,那么這個(gè)等差數(shù)列如何表示?呢?
根據(jù)等差數(shù)列的定義可得:
因此等差數(shù)列的通項(xiàng)公式就是:,
探究2:等差數(shù)列的通項(xiàng)公式(求法二)
根據(jù)等差數(shù)列的定義可得:
將以上-1個(gè)式子相加得等差數(shù)列的通項(xiàng)公式就是:,
三、應(yīng)用與探索
例1、(1)求等差數(shù)列8,5,2,…,的第20項(xiàng)。
(2)等差數(shù)列-5,-9,-13,…,的第幾項(xiàng)是–401?
(2)、分析:要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出通項(xiàng)公式,并判斷是否存在正整數(shù)n,使得成立,實(shí)質(zhì)上是要求方程的正整數(shù)解。
例2、在等差數(shù)列中,已知=10,=31,求首項(xiàng)與公差d.
解:由,得。
在應(yīng)用等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d過(guò)程中,對(duì)an,a1,n,d這四個(gè)變量,知道其中三個(gè)量就可以求余下的一個(gè)量,這是一種方程的思想。
鞏固練習(xí)
1.等差數(shù)列{an}的前三項(xiàng)依次為a-6,-3a-5,-10a-1,則a=()。
2.一張?zhí)葑幼罡咭患?jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。求公差d。
四、小結(jié)
1.等差數(shù)列的通項(xiàng)公式:
公差;
2.等差數(shù)列的計(jì)算問(wèn)題,通常知道其中三個(gè)量就可以利用通項(xiàng)公式an=a1+(n-1)d,求余下的一個(gè)量;
3.判斷一個(gè)數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;
4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問(wèn)題.
五、作業(yè):
1、必做題:課本第40頁(yè)習(xí)題2.2第1,3,5題
2、選做題:如何以最快的速度求:1+2+3+???+100=
數(shù)學(xué)等差數(shù)列教案6
教學(xué)目標(biāo):
1.知識(shí)與技能目標(biāo):理解等差數(shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握并會(huì)用等差數(shù)列的通項(xiàng)公式,初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\(yùn)用。
2.過(guò)程與方法目標(biāo):培養(yǎng)學(xué)生觀察分析、猜想歸納、應(yīng)用公式的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。
3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)對(duì)等差數(shù)列的研究培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知的精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
教學(xué)重點(diǎn):
等差數(shù)列的概念及通項(xiàng)公式。
教學(xué)難點(diǎn):
(1)理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。
(2)等差數(shù)列的通項(xiàng)公式的'推導(dǎo)過(guò)程及應(yīng)用。
教具:多媒體、實(shí)物投影儀
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1.回憶上一節(jié)課學(xué)習(xí)數(shù)列的定義,請(qǐng)舉出一個(gè)具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項(xiàng)公式、遞推公式。我們這節(jié)課接著學(xué)習(xí)一類特殊的數(shù)列——等差數(shù)列。
2.由生活中具體的數(shù)列實(shí)例引入
(1).國(guó)際奧運(yùn)會(huì)早期,撐桿跳高的記錄近似的由下表給出:
你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項(xiàng)之間有什么關(guān)系嗎?
(2)某劇場(chǎng)前10排的座位數(shù)分別是:
48、46、44、42、40、38、36、34、32、30
引導(dǎo)學(xué)生觀察:數(shù)列①、②有何規(guī)律?
引導(dǎo)學(xué)生發(fā)現(xiàn)這些數(shù)字相鄰兩個(gè)數(shù)字的差總是一個(gè)常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。
二.新課探究,推導(dǎo)公式
1.等差數(shù)列的概念
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。
強(qiáng)調(diào)以下幾點(diǎn):
① “從第二項(xiàng)起”滿足條件;
、诠頳一定是由后項(xiàng)減前項(xiàng)所得;
③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );
所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。
在學(xué)生對(duì)等差數(shù)列有了直觀認(rèn)識(shí)的基礎(chǔ)上,我將給出練習(xí)題,以鞏固知識(shí)的學(xué)習(xí)。
[練習(xí)一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項(xiàng)a1和公差d,如果不是,說(shuō)明理由。
1.3,5,7,…… √ d=2
2.9,6,3,0,-3,…… √ d=-3
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
在這個(gè)過(guò)程中我將采用邊引導(dǎo)邊提問(wèn)的方法,以充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
2.等差數(shù)列通項(xiàng)公式
如果等差數(shù)列{an}首項(xiàng)是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d
此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:
n=a1+(n-1)d
a2-a1=d
a3-a2=d
a4-a3 =d
……
an –a(n-1) =d
將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到
an-a1=(n-1)d
即an=a1+(n-1)d (Ⅰ)
當(dāng)n=1時(shí),(Ⅰ)也成立,所以對(duì)一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項(xiàng)公式。
三.應(yīng)用舉例
例1求等差數(shù)列,12,8,4,0,…的第10項(xiàng);20項(xiàng);第30項(xiàng);
例2 -401是不是等差數(shù)列-5,-9,-13,…的項(xiàng)?如果是,是第幾項(xiàng)?
四.反饋練習(xí)
1.P293練習(xí)A組第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)做完上述題目,教師提問(wèn))。目的:使學(xué)生熟悉通項(xiàng)公式對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。
五.歸納小結(jié)提煉精華
(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.
強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)
2.等差數(shù)列的通項(xiàng)公式an= a1+(n-1) d會(huì)知三求一
六.課后作業(yè)運(yùn)用鞏固
必做題:課本P284習(xí)題A組第3,4,5題
數(shù)學(xué)等差數(shù)列教案7
一、教學(xué)內(nèi)容分析
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。
二、學(xué)生學(xué)習(xí)情況分析
教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過(guò)高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。
三、設(shè)計(jì)思想
1.教法
、耪T導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。
、品纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性。
、侵v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。 2.學(xué)法
引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。
用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo)。
在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。
四、教學(xué)目標(biāo)
通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握等差數(shù)列的'通項(xiàng)公式與前 n 項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問(wèn)題;并在此過(guò)程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):
、俚炔顢(shù)列的概念。
、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。
難點(diǎn):
、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。
、诶斫獾炔顢(shù)列是一種函數(shù)模型。
關(guān)鍵:
等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。
六、教學(xué)過(guò)程(略)
數(shù)學(xué)等差數(shù)列教案8
一、等差數(shù)列
1、定義
注:“從第二項(xiàng)起”及
“同一常數(shù)”用紅色粉筆標(biāo)注
二、等差數(shù)列的通項(xiàng)公式
(一)例題與練習(xí)
通過(guò)練習(xí)2和3 引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問(wèn)題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。
(二)新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):
① “從第二項(xiàng)起”滿足條件; f
②公差d一定是由后項(xiàng)減前項(xiàng)所得;
、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:
an+1—an=d (n≥1) ;h4z+0"6vG
同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1。 9 ,8,7,6,5,4,……;√ d=—1
2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01
3。 0,0,0,0,0,0,……。; √ d=0
4。 1,2,3,2,3,4,……;×
5。 1,0,1,0,1,……×
其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0
由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0
2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式
在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng) ,公差d,由學(xué)生研究分組討論a4 的通項(xiàng)公式。通過(guò)總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過(guò)程由學(xué)生完成,通過(guò)互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。
若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,
則據(jù)其定義可得:
a2 — a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:
an=a1+(n—1)d
此時(shí)指出: 這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法——————迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
將這(n—1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1) 當(dāng)n=1時(shí),(1)也成立, 所以對(duì)一切n∈N﹡,上面的公式都成立 因此它就是等差數(shù)列{an}的通項(xiàng)公式。 在迭加法的證明過(guò)程中,我采用啟發(fā)式教學(xué)方法。 利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個(gè)等式。 對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n—1個(gè)等式相加。證出通項(xiàng)公式。 在這里通過(guò)該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求 接著舉例說(shuō)明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n—1)×2 , 即an=2n—1 以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用 同時(shí)要求畫出該數(shù)列圖象,由此說(shuō)明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無(wú)窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來(lái)研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。 (三)應(yīng)用舉例 這一環(huán)節(jié)是使學(xué)生通過(guò)例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。 例1 (1)求等差數(shù)列8,5,2,…的第20項(xiàng);第30項(xiàng);第40項(xiàng) 。2)—401是不是等差數(shù)列—5,—9,—13,…的項(xiàng)?如果是,是第幾項(xiàng)? 在第一問(wèn)中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問(wèn)實(shí)際上是求正整數(shù)解的問(wèn)題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an 例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。 在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固 例3 是一個(gè)實(shí)際建模問(wèn)題 建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設(shè)計(jì)為等高的16級(jí)臺(tái)階,問(wèn)每級(jí)臺(tái)階高為多少米? 這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級(jí)臺(tái)階“等高”使學(xué)生想到每級(jí)臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型——————等差數(shù)列:(學(xué)生討論分析,分別演板,教師評(píng)析問(wèn)題。問(wèn)題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級(jí)臺(tái)階離地面的高度而第16級(jí)臺(tái)階離地面高度為a17,可用展示實(shí)際樓梯圖以化解難點(diǎn)) 設(shè)置此題的目的`: 1。加強(qiáng)同學(xué)們對(duì)應(yīng)用題的綜合分析能力, 2。通過(guò)數(shù)學(xué)實(shí)際問(wèn)題引出等差數(shù)列問(wèn)題,激發(fā)了學(xué)生的興趣; 3。再者通過(guò)數(shù)學(xué)實(shí)例展示了“從實(shí)際問(wèn)題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說(shuō)明實(shí)際問(wèn)題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法 (四)反饋練習(xí) 1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。 2、書上例3)梯子的最高一級(jí)寬33c,最低一級(jí)寬110c,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。 目的:對(duì)學(xué)生加強(qiáng)建模思想訓(xùn)練。 3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列 此題是對(duì)學(xué)生進(jìn)行數(shù)列問(wèn)題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問(wèn)題同時(shí)強(qiáng)化了等差數(shù)列的概念。 (五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲) 1。等差數(shù)列的概念及數(shù)學(xué)表達(dá)式. 強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù) 2。等差數(shù)列的通項(xiàng)公式 an= a1+(n—1) d會(huì)知三求一 3.用“數(shù)學(xué)建模”思想方法解決實(shí)際問(wèn)題 (六)布置作業(yè) 必做題:課本P114 習(xí)題3。2第2,6 題 選做題:已知等差數(shù)列{an}的首項(xiàng)a1= —24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。(目的:通過(guò)分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求) 五、板書設(shè)計(jì) 在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。 教學(xué)目的: 1.明確等差數(shù)列的定義,掌握等差數(shù)列的通項(xiàng)公式。 2.會(huì)解決知道中的三個(gè),求另外一個(gè)的問(wèn)題。 教學(xué)重點(diǎn):等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式。 教學(xué)難點(diǎn):等差數(shù)列的性質(zhì) 教學(xué)過(guò)程: 一、復(fù)習(xí)引入:(課件第一頁(yè)) 二、講解新課: 1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的 差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。 。ㄕn件第二頁(yè)) ⑴.公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來(lái)求; ⑵.對(duì)于數(shù)列{ },若 - =d (與n無(wú)關(guān)的數(shù)或字母),n≥2,n∈n ,則此數(shù)列是等差數(shù)列,d 為公差。 2.等差數(shù)列的通項(xiàng)公式: 【或 】等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列 的首項(xiàng)是 ,公差是d,則據(jù)其定義可得: 即: 即: 即: …… 由此歸納等差數(shù)列的通項(xiàng)公式可得: (課件第二頁(yè)) 第二通項(xiàng)公式 (課件第二頁(yè)) 三、例題講解 例1 ⑴求等差數(shù)列8,5,2…的第20項(xiàng)(課本p111) ⑵ -401是不是等差數(shù)列-5,-9,-13…的'項(xiàng)?如果是,是第幾項(xiàng)? 例2 在等差數(shù)列 中,已知 , ,求 , , 例3將一個(gè)等差數(shù)列的通項(xiàng)公式輸入計(jì)算器數(shù)列 中,設(shè)數(shù)列的第s項(xiàng)和第t項(xiàng)分別為 和 ,計(jì)算 的值,你能發(fā)現(xiàn)什么結(jié)論?并證明你的結(jié)論。 小結(jié):①這就是第二通項(xiàng)公式的變形,②幾何特征,直線的斜率 例4 梯子最高一級(jí)寬33cm,最低一級(jí)寬為110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列,計(jì)算中間各級(jí)的寬度。(課本p112例3) 例5 已知數(shù)列{ }的通項(xiàng)公式 ,其中 、 是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?(課本p113例4) 分析:由等差數(shù)列的定義,要判定 是不是等差數(shù)列,只要看 (n≥2)是不是一個(gè)與n無(wú)關(guān)的常數(shù)。 注:①若p=0,則{ }是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,… ②若p≠0, 則{ }是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差,直線在y軸上的截距為q. ③數(shù)列{ }為等差數(shù)列的充要條件是其通項(xiàng) =pn+q (p、q是常數(shù))。稱其為第3通項(xiàng)公式④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個(gè)通項(xiàng)公式中的一個(gè)。 例6.成等差數(shù)列的四個(gè)數(shù)的和為26,第二項(xiàng)與第三項(xiàng)之積為40,求這四個(gè)數(shù). 四、練習(xí): 1.(1)求等差數(shù)列3,7,11,……的第4項(xiàng)與第10項(xiàng). (2)求等差數(shù)列10,8,6,……的第20項(xiàng). 。3)100是不是等差數(shù)列2,9,16,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說(shuō)明理由. (4)-20是不是等差數(shù)列0,-3 ,-7,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說(shuō)明理由. 2.在等差數(shù)列{ }中, 。1)已知 =10, =19,求 與d; 五、課后作業(yè): 習(xí)題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9. 《等差數(shù)列》教案設(shè)計(jì) 授課教師授課班級(jí)課題3.2.1等差數(shù)列(一)課型新授課教學(xué)目標(biāo)知識(shí)目標(biāo)等差數(shù)列的定義。 等差數(shù)列的通項(xiàng)公式。能力目標(biāo)明確等差數(shù)列的定義。 掌握等差數(shù)列的通項(xiàng)公式,并能運(yùn)用其解決問(wèn)題。情感目標(biāo)培養(yǎng)學(xué)生的觀察能力。 進(jìn)一步提高學(xué)生的推理、歸納能力。 培養(yǎng)學(xué)生的應(yīng)用意識(shí)。教學(xué)重點(diǎn)等差數(shù)列的定義的理解和掌握。 等差數(shù)列的通項(xiàng)公式的推導(dǎo)和應(yīng)用。教學(xué)難點(diǎn)等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用。教學(xué)過(guò)程教學(xué)環(huán)節(jié)和教學(xué)內(nèi)容設(shè)計(jì)意圖【復(fù)習(xí)回顧】(2分鐘) 數(shù)列的定義以及數(shù)列的通項(xiàng)公式和遞推公式。 【引入】(3分鐘) 某人要用彩燈裝飾圣誕樹,這個(gè)人做事喜歡按一定的規(guī)律去做,他在圣誕樹的頂尖裝上1個(gè)彩燈,在第一層裝上4個(gè),第二層裝上7個(gè),第三層裝上10個(gè),第四層裝上13個(gè)。如果有第五層,你能猜得出他要裝上多少個(gè)彩燈嗎?他的規(guī)律是怎樣的? 你能根據(jù)規(guī)律在( )內(nèi)填上合適的數(shù)嗎? 。1)1,4,7,10,13,() 。2)21,21.5,22,(),23,23.5,… 。3)8,(),2,-1,-4,… 。4)-7,-11,-15,(),-23 共同特點(diǎn):從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。這樣的數(shù)列叫做等差數(shù)列。 【講授新課】(16分鐘) 一、等差數(shù)列的`定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。 用符號(hào)表示: 教師活動(dòng):分析定義,強(qiáng)調(diào)關(guān)鍵的地方,幫助學(xué)生理解和掌握。 問(wèn)題:1.數(shù)列(1)(2)(3)(4)的公差分別是多少? 2、(5)1,3,5,7,9,2,4,6,8,10 (6)5,5,5,5,5,5 ……是等差數(shù)列嗎? 3、求等差數(shù)列1,4,7,10,13,16,…的第100項(xiàng)。 師生一起討論回答。 二、等差數(shù)列的通項(xiàng)公式 如果等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得: 即: 即: 即: 由此歸納等差數(shù)列的通項(xiàng)公式可得: ∴已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng) 思考:已知等差數(shù)列的第m項(xiàng)和公差d,這個(gè)等差數(shù)列的通項(xiàng)公式是?答: 【例題講解】(8分鐘) 一、知識(shí)與技能 1.了解公差的概念,明確一個(gè)數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等差數(shù)列; 2.正確認(rèn)識(shí)使用等差數(shù)列的各種表示法,能靈活運(yùn)用通項(xiàng)公式求等差數(shù)列的首項(xiàng)、公差、項(xiàng)數(shù)、指定的項(xiàng). 二、過(guò)程與方法 1.通過(guò)對(duì)等差數(shù)列通項(xiàng)公式的推導(dǎo)培養(yǎng)學(xué)生:的觀察力及歸納推理能力; 2.通過(guò)等差數(shù)列變形公式的教學(xué)培養(yǎng)學(xué)生:思維的深刻性和靈活性. 三、情感態(tài)度與價(jià)值觀 通過(guò)等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識(shí). 教學(xué)過(guò)程 導(dǎo)入新課 師:上兩節(jié)課我們學(xué)習(xí)了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項(xiàng)公式、遞推公式、圖象法.這些方法從不同的角度反映數(shù)列的特點(diǎn).下面我們看這樣一些數(shù)列的例子:(課本P41頁(yè)的4個(gè)例子) (1)0,5,10,15,20,25,…; (2)48,53,58,63,…; (3)18,15.5,13,10.5,8,5.5…; (4)10 072,10 144,10 216,10 288,10 366,…. 請(qǐng)你們來(lái)寫出上述四個(gè)數(shù)列的第7項(xiàng). 生:第一個(gè)數(shù)列的第7項(xiàng)為30,第二個(gè)數(shù)列的第7項(xiàng)為78,第三個(gè)數(shù)列的第7項(xiàng)為3,第四個(gè)數(shù)列的第7項(xiàng)為10 510. 師:我來(lái)問(wèn)一下,你依據(jù)什么寫出了這四個(gè)數(shù)列的第7項(xiàng)呢?以第二個(gè)數(shù)列為例來(lái)說(shuō)一說(shuō). 生:這是由第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律性我得到了這個(gè)數(shù)列的第7項(xiàng)為78. 師:說(shuō)得很有道理!我再請(qǐng)同學(xué)們仔細(xì)觀察一下,看看以上四個(gè)數(shù)列有什么共同特征?我說(shuō)的是共同特征. 生:1每相鄰兩項(xiàng)的差相等,都等于同一個(gè)常數(shù). 師:作差是否有順序,誰(shuí)與誰(shuí)相減? 生:1作差的順序是后項(xiàng)減前項(xiàng),不能顛倒. 師:以上四個(gè)數(shù)列的共同特征:從第二項(xiàng)起,每一項(xiàng)與它前面一項(xiàng)的差等于同一個(gè)常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個(gè)名字叫——等差數(shù)列. 這就是我們這節(jié)課要研究的內(nèi)容. 推進(jìn)新課 等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示). (1)公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來(lái)求; 。2)對(duì)于數(shù)列{an},若an-a n-1=d(與n無(wú)關(guān)的數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差. 師:定義中的關(guān)鍵字是什么?(學(xué)生:在學(xué)習(xí)中經(jīng)常遇到一些概念,能否抓住定義中的關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他學(xué)科的重要一環(huán).因此教師:應(yīng)該教會(huì)學(xué)生:如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生:分析問(wèn)題、認(rèn)識(shí)問(wèn)題的能力) 生:從“第二項(xiàng)起”和“同一個(gè)常數(shù)”. 師::很好! 師:請(qǐng)同學(xué)們思考:數(shù)列(1)、(2)、(3)、(4)的通項(xiàng)公式存在嗎?如果存在,分別是什么? 生:數(shù)列(1)通項(xiàng)公式為5n-5,數(shù)列(2)通項(xiàng)公式為5n+43,數(shù)列(3)通項(xiàng)公式為2.5n-15.5,…. 師:好,這位同學(xué)用上節(jié)課學(xué)到的知識(shí)求出了這幾個(gè)數(shù)列的通項(xiàng)公式,實(shí)質(zhì)上這幾個(gè)通項(xiàng)公式有共同的特點(diǎn),無(wú)論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來(lái)共同思考. 。酆献魈骄浚 等差數(shù)列的通項(xiàng)公式 師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得到的,若一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則據(jù)其定義可得什么? 生:a2-a1=d,即a2=a1+d. 師:對(duì),繼續(xù)說(shuō)下去! 生:a3-a2=d,即a3=a2+d=a1+2d; a4-a3=d,即a4=a3+d=a1+3d; …… 師:好!規(guī)律性的東西讓你找出來(lái)了,你能由此歸納出等差數(shù)列的通項(xiàng)公式嗎? 生:由上述各式可以歸納出等差數(shù)列的通項(xiàng)公式是an=a1+(n-1)d. 師:很好!這樣說(shuō)來(lái),若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)a1和公差d,便可求得其通項(xiàng)an了.需要說(shuō)明的是:此公式只是等差數(shù)列通項(xiàng)公式的猜想,你能證明它嗎? 生:前面已學(xué)過(guò)一種方法叫迭加法,我認(rèn)為可以用.證明過(guò)程是這樣的: 因?yàn)閍2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d. 師:太好了!真是活學(xué)活用啊!這樣一來(lái)我們通過(guò)證明就可以放心使用這個(gè)通項(xiàng)公式了. 。劢處煟壕v] 由上述關(guān)系還可得:am=a1+(m-1)d, 即a1=am-(m-1)d. 則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d, 即等差數(shù)列的第二通項(xiàng)公式an=am+(n-m)d.(這是變通的通項(xiàng)公式) 由此我們還可以得到. [例題剖析] 【例1】(1)求等差數(shù)列8,5,2,…的第20項(xiàng); 。2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)? 師:這個(gè)等差數(shù)列的首項(xiàng)和公差分別是什么?你能求出它的第20項(xiàng)嗎? 生:1這題太簡(jiǎn)單了!首項(xiàng)和公差分別是a1=8,d=5-8=2-5=-3.又因?yàn)閚=20,所以由等差數(shù)列的通項(xiàng)公式,得a20=8+(20-1)×(-3)=-49. 師:好!下面我們來(lái)看看第(2)小題怎么做. 生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項(xiàng)公式為an=-5-4(n-1). 由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng). 師:剛才兩個(gè)同學(xué)將問(wèn)題解決得很好,我們做本例的目的是為了熟悉公式,實(shí)質(zhì)上通項(xiàng)公式就是an,a1,d,n組成的方程(獨(dú)立的量有三個(gè)). 說(shuō)明:(1)強(qiáng)調(diào)當(dāng)數(shù)列{an}的項(xiàng)數(shù)n已知時(shí),下標(biāo)應(yīng)是確切的數(shù)字;(2)實(shí)際上是求一個(gè)方程的正整數(shù)解的問(wèn)題.這類問(wèn)題學(xué)生:以前見(jiàn)得較少,可向?qū)W生:著重點(diǎn)出本問(wèn)題的實(shí)質(zhì):要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出數(shù)列的通項(xiàng)公式an,判斷是否存在正整數(shù)n,使得an=-401成立. 【例2】已知數(shù)列{an}的.通項(xiàng)公式an=pn+q,其中p、q是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么? 例題分析: 師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么? 生:只要看差an-an-1(n≥2)是不是一個(gè)與n無(wú)關(guān)的常數(shù). 師:說(shuō)得對(duì),請(qǐng)你來(lái)求解. 生:當(dāng)n≥2時(shí),〔取數(shù)列{an}中的任意相鄰兩項(xiàng)an-1與an(n≥2)〕 an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù), 所以我們說(shuō){an}是等差數(shù)列,首項(xiàng)a1=p+q,公差為p. 師:這里要重點(diǎn)說(shuō)明的是: (1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…. (2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)(n,an)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差p,直線在y軸上的截距為q. (3)數(shù)列{an}為等差數(shù)列的充要條件是其通項(xiàng)an=pn+q(p、q是常數(shù)),稱其為第3通項(xiàng)公式.課堂練習(xí) (1)求等差數(shù)列3,7,11,…的第4項(xiàng)與第10項(xiàng). 分析:根據(jù)所給數(shù)列的前3項(xiàng)求得首項(xiàng)和公差,寫出該數(shù)列的通項(xiàng)公式,從而求出所┣笙. 解:根據(jù)題意可知a1=3,d=7-3=4.∴該數(shù)列的通項(xiàng)公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39. 評(píng)述:關(guān)鍵是求出通項(xiàng)公式. (2)求等差數(shù)列10,8,6,…的第20項(xiàng). 解:根據(jù)題意可知a1=10,d=8-10=-2. 所以該數(shù)列的通項(xiàng)公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28. 評(píng)述:要求學(xué)生:注意解題步驟的規(guī)范性與準(zhǔn)確性. (3)100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說(shuō)明理由. 分析:要想判斷一個(gè)數(shù)是否為某一個(gè)數(shù)列的其中一項(xiàng),其關(guān)鍵是要看是否存在一個(gè)正整數(shù)n值,使得an等于這個(gè)數(shù). 解:根據(jù)題意可得a1=2,d=9-2=7.因而此數(shù)列通項(xiàng)公式為an=2+(n-1)×7=7n-5. 令7n-5=100,解得n=15.所以100是這個(gè)數(shù)列的第15項(xiàng). (4)-20是不是等差數(shù)列0,,-7,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說(shuō)明理由. 解:由題意可知a1=0,,因而此數(shù)列的通項(xiàng)公式為. 令,解得.因?yàn)闆](méi)有正整數(shù)解,所以-20不是這個(gè)數(shù)列的項(xiàng). 課堂小結(jié) 師:(1)本節(jié)課你們學(xué)了什么?(2)要注意什么?(3)在生:活中能否運(yùn)用?(讓學(xué)生:反思、歸納、總結(jié),這樣來(lái)培養(yǎng)學(xué)生:的概括能力、表達(dá)能力) 生:通過(guò)本課時(shí)的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式a n-a n-1=d(n≥2);其次要會(huì)推導(dǎo)等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d(n≥1). 教學(xué)理念:數(shù)學(xué)教學(xué)是思維過(guò)程的教學(xué),如何引導(dǎo)學(xué)生參與到教學(xué)過(guò)程中來(lái),尤其是在思維上深層次的參與,是促進(jìn)學(xué)生良好的認(rèn)知結(jié)構(gòu),培養(yǎng)能力,全面提高素質(zhì)的關(guān)鍵。數(shù)學(xué)教學(xué)中的探究式對(duì)培養(yǎng)和提高學(xué)生的自主性、能動(dòng)性和創(chuàng)造性有著非常重要的意義。 設(shè)計(jì)思想:本節(jié)借助多媒體輔助手段,創(chuàng)設(shè)問(wèn)題的情境,讓探究式教學(xué)走進(jìn)課堂,保障學(xué)生的主體地位,喚醒學(xué)生的主體意識(shí),發(fā)展學(xué)生的主體能力,塑造學(xué)生的主體人格,讓學(xué)生在參與中學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)合作、學(xué)會(huì)創(chuàng)新。 一、教材分析: 教學(xué)內(nèi)容: 高中數(shù)學(xué)必修第五模塊第二章第二節(jié),等差數(shù)列,兩課時(shí)內(nèi)容,本節(jié)是第一課時(shí),研究等差數(shù)列的定義、通項(xiàng)公式的推導(dǎo),借助生活中豐富的典型實(shí)例,讓學(xué)生通過(guò)分析、推理、歸納等活動(dòng)過(guò)程,從中了解和體驗(yàn)等差數(shù)列的定義和通項(xiàng)公式。 教學(xué)地位: 本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點(diǎn)內(nèi)容。在高考中也是重點(diǎn)考察內(nèi)容之一,并且在實(shí)際生活中有著廣泛的應(yīng)用,它起著承前啟后的作用。同時(shí)也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列是學(xué)生探究特殊數(shù)列的開始,它對(duì)后續(xù)內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上,還是在方法上都具有積極的意義。 教學(xué)重點(diǎn): 理解等差數(shù)列概念,探索并掌握等差數(shù)列的通項(xiàng)公式,會(huì)用公式解決一些簡(jiǎn)單的問(wèn)題,體會(huì)等差數(shù)列與一次函數(shù)之間的關(guān)系。 教學(xué)難點(diǎn): 對(duì)等差數(shù)列概念的理解及從函數(shù)、方程角度理解通項(xiàng)公式,概括通項(xiàng)公式推導(dǎo)過(guò)程中體現(xiàn)出的數(shù)學(xué)思想方法。 二、學(xué)習(xí)者分析: 高二學(xué)生已經(jīng)具有一定的理性分析能力和概括能力,且對(duì)數(shù)列的知識(shí)有了初步的接觸和認(rèn)識(shí),對(duì)數(shù)學(xué)公式的運(yùn)用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動(dòng)過(guò)程,對(duì)函數(shù)、方程思想體會(huì)逐漸深刻。他們的思維正從屬于經(jīng)驗(yàn)性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗(yàn)材料來(lái)理解抽象的邏輯關(guān)系。 三、教學(xué)目標(biāo): 知識(shí)目標(biāo): 理解等差數(shù)列定義,掌握等差數(shù)列的通項(xiàng)公式。 能力目標(biāo): 培養(yǎng)學(xué)生觀察、歸納能力,在學(xué)習(xí)過(guò)程中,體會(huì)數(shù)形結(jié)合思想、歸納思想和化歸思想并加深認(rèn)識(shí);通過(guò)概念的引入與通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用公式解決實(shí)際問(wèn)題的能力。 情感目標(biāo): 、偻ㄟ^(guò)個(gè)性化的學(xué)習(xí)增強(qiáng)學(xué)生的自信心和意志力。 ②通過(guò)師生、生生的合作學(xué)習(xí),增強(qiáng)學(xué)生團(tuán)隊(duì)協(xié)作能力的培養(yǎng),增強(qiáng)主動(dòng)與他人合作交流的意識(shí)。 、垠w驗(yàn)從特殊到一般,又到特殊的認(rèn)知規(guī)律,培養(yǎng)學(xué)生勇于創(chuàng)新的科學(xué)精神。 四、教法和學(xué)法的分析: 通過(guò)探究式教學(xué)方法充分利用現(xiàn)實(shí)情景,盡可能的增加教學(xué)過(guò)程的趣味性、實(shí)踐性。利用多媒體課件和實(shí)例等豐富學(xué)生的學(xué)習(xí)資源,強(qiáng)調(diào)學(xué)生動(dòng)手操作試驗(yàn)和主動(dòng)參與,在教師的啟發(fā)指導(dǎo)下,讓學(xué)生自己去分析、探索,在探索過(guò)程中研究和領(lǐng)悟得出的結(jié)論,從而使學(xué)生即獲得知識(shí)又發(fā)展智能的目的。 2、在學(xué)法上,引導(dǎo)學(xué)生多角度,多層面認(rèn)識(shí)事物,學(xué)會(huì)探究。教師是學(xué)生的學(xué)習(xí)的組織者、促進(jìn)著、合作者,在本節(jié)課的備課和教學(xué)過(guò)程中,為學(xué)生的動(dòng)手實(shí)踐,自主探索與合作交流的機(jī)會(huì)搭建平臺(tái),鼓勵(lì)學(xué)生提出自己的見(jiàn)解,學(xué)會(huì)提出問(wèn)題解決問(wèn)題,通過(guò)恰當(dāng)?shù)慕虒W(xué)方式讓學(xué)生學(xué)會(huì)自我調(diào)適,自我選擇。 五、教學(xué)媒體和教學(xué)技術(shù)的選用 多媒體計(jì)算機(jī)和幾何畫板 通過(guò)計(jì)算機(jī)模擬演示,使學(xué)生獲得感性知識(shí)的同時(shí),為掌握理性知識(shí)創(chuàng)造條件,這樣做,可以使學(xué)生有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性原則和可接受性原則。本節(jié)課打破傳統(tǒng)的一言堂的格局代之以人為本、民主、開放、特色和建立在信息網(wǎng)絡(luò)平臺(tái)上的現(xiàn)代教學(xué)格局。 六、教學(xué)程序: (一)設(shè)置問(wèn)題,引導(dǎo)發(fā)現(xiàn)形成概念w。 師:看大屏幕。 情景1(播放奧運(yùn)會(huì)女子舉重場(chǎng)面) 2008年北京奧運(yùn)會(huì),女子舉重共設(shè)置7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成數(shù)列(單位:kg): 48,53,58,63 情景2水庫(kù)的管理員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,定期放水清庫(kù)的'辦法清理水庫(kù)中的雜魚。如果一個(gè)水庫(kù)的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位組成數(shù)列(單位:m) 18,15.5,13,10.5,8,5.5 情景3我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計(jì)算下一期的利息。按照單利計(jì)算本利和的公式是: 本利和=本金(1+利率存期) 時(shí)間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅) 各年末本利和(單位:元) 10072,10144,10216,10288,10360 師:思考上述各組數(shù)據(jù)反映了什么樣的信息? 每行數(shù)有何共同特點(diǎn)?請(qǐng)同學(xué)們互相討論。 (學(xué)生紛紛議論,有的幾個(gè)人在一起商量) (從宏觀上:情景1讓學(xué)生體驗(yàn)成功申辦奧運(yùn)會(huì)的喜悅心情,激發(fā)勇于拼搏的堅(jiān)強(qiáng)意志;情景2讓學(xué)生認(rèn)識(shí)到保護(hù)水資源,保護(hù)生態(tài)平衡的意識(shí);情景3倡導(dǎo)節(jié)約意識(shí),納稅意識(shí)。) 從微觀上,數(shù)學(xué)研究的對(duì)象是數(shù),我們拋開具體的背景,從表格中抽象出一般數(shù)列。 48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 師:(啟發(fā)學(xué)生)你能用數(shù)學(xué)語(yǔ)言來(lái)描述上述數(shù)列的共同特征嗎? 學(xué)生1:后一項(xiàng)與它的前一項(xiàng)的差等于常數(shù)。 師:反例:1,3,5,6,12,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎? 學(xué)生1:不一樣,要加上同一個(gè)常數(shù)。 學(xué)生2:每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。 師:反例:1,3,4,5,6,7,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎? 學(xué)生2:不一樣,必須從第二項(xiàng)開始。 學(xué)生3:從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。 (教師把學(xué)生的回答寫在黑板上,通過(guò)反例,使學(xué)生深刻理解幾組數(shù)列的共同特征: = 1 GB3 ①同一個(gè)常數(shù);= 2 GB3 ②從第二項(xiàng)起) 師:能不能用數(shù)學(xué)語(yǔ)言表示? 學(xué)生4: 師:等價(jià)嗎? 學(xué)生4:應(yīng)加上(d是常數(shù)),. (讓學(xué)生充分討論,注意文字語(yǔ)言與數(shù)學(xué)符號(hào)語(yǔ)言的轉(zhuǎn)化的嚴(yán)謹(jǐn)性) 師:對(duì)式子進(jìn)行變形可得。 這樣的數(shù)列在生活中的例子,誰(shuí)能再舉幾個(gè)? 學(xué)生5:某劇場(chǎng)前8排的座位數(shù)分別是 52,50,48,46,44,42,40,38. 學(xué)生6:全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼分別是 21,21.5,22,22.5,23,23.5,24,24.5,25 學(xué)生7:馬路邊的路燈,相鄰兩盞之間的距離構(gòu)成的數(shù)列。 師:如何用數(shù)列表示? 學(xué)生8:設(shè)相鄰兩盞之間的距離為a,該數(shù)列為 a,a,a,a,……,為常數(shù)列,即常數(shù)列都具有這種特征。 (讓學(xué)生舉例,加深感性認(rèn)識(shí)) 師:滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個(gè)名字? 學(xué)生(共同):等差數(shù)列。 師:(學(xué)生敘述,板書定義) 一般的,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首相。 提出課題《等差數(shù)列》 對(duì)定義進(jìn)行分析,強(qiáng)調(diào):= 1 GB3 ①同一個(gè)常數(shù);= 2 GB3 ②從第二項(xiàng)起。注意對(duì)概念嚴(yán)謹(jǐn)性的分析。 師:回到表格中,分別說(shuō)出它們的公差。 學(xué)生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72. 師:在計(jì)算年末本利和的問(wèn)題中求時(shí),能不能不按本利和=本金(1+利率存期) 求而按數(shù)列的特征求呢? 學(xué)生:若能求得通項(xiàng)公式,問(wèn)題就很好解決。 (再提出問(wèn)題,引導(dǎo)發(fā)現(xiàn)求通項(xiàng)公式的必要性) (二)啟發(fā)、引導(dǎo)推出等差數(shù)列的通項(xiàng)公式 師:把問(wèn)題推廣到一般情況。若一個(gè)數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項(xiàng)公式是什么? 啟發(fā)學(xué)生:(歸納、猜想)可用首相與公差表示數(shù)列中任意一項(xiàng)。 學(xué)生10:即: 即: 即: 由此可得: 師:從第幾項(xiàng)開始?xì)w納的? 學(xué)生10:第二項(xiàng),所以n≥2。 師:n=1時(shí)呢? 【數(shù)學(xué)等差數(shù)列教案】相關(guān)文章: 數(shù)學(xué)等差數(shù)列教案9篇02-25 等差數(shù)列數(shù)學(xué)教學(xué)教案優(yōu)秀02-12 數(shù)學(xué)教案-§3.2.1 等差數(shù)列08-17 高一數(shù)學(xué)等差數(shù)列教案11-03 高中數(shù)學(xué)等差數(shù)列教案09-25數(shù)學(xué)等差數(shù)列教案9
數(shù)學(xué)等差數(shù)列教案10
數(shù)學(xué)等差數(shù)列教案11
數(shù)學(xué)等差數(shù)列教案12