天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高二數(shù)學(xué)教案

高二數(shù)學(xué)教案

時(shí)間:2024-04-23 07:05:09 數(shù)學(xué)教案 我要投稿

高二數(shù)學(xué)教案范文合集(6篇)

  作為一位優(yōu)秀的人民教師,總歸要編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教案要怎么寫呢?以下是小編為大家整理的高二數(shù)學(xué)教案范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

高二數(shù)學(xué)教案范文合集(6篇)

高二數(shù)學(xué)教案范文1

  一、教學(xué)目標(biāo)

  1、知識(shí)與技能

  (1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。

  (2)能用文字語言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡(jiǎn)單的流程圖

  2、過程與方法

  學(xué)生通過模仿、操作、探索、經(jīng)歷設(shè)計(jì)流程圖表達(dá)解決問題的過程,理解流程圖的結(jié)構(gòu)。

  3情感、態(tài)度與價(jià)值觀

  學(xué)生通過動(dòng)手作圖,、用自然語言表示算法,用圖表示算法。進(jìn)一步體會(huì)算法的基本思想程序化思想,在歸納概括中培養(yǎng)學(xué)生的邏輯思維能力。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

  難點(diǎn):用含有選擇結(jié)構(gòu)的流程圖表示算法。

  三、學(xué)法與教學(xué)用具

  學(xué)法:學(xué)生通過動(dòng)手作圖,、用自然語言表示算法,用圖表示算法,體會(huì)到用流程圖表示算法,簡(jiǎn)潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計(jì)流程圖表達(dá)解決問題的過程。進(jìn)而學(xué)習(xí)順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡(jiǎn)單的流程圖。

  教學(xué)用具:尺規(guī)作圖工具,多媒體。

  四、教學(xué)思路

  (一)問題引入揭示課題

  例1尺規(guī)作圖,確定線段的一個(gè)5等分點(diǎn)。

  要求:同桌一人作圖,一人寫算法,并請(qǐng)學(xué)生說出答案。

  提問:用文字語言寫出算法有何感受?

  引導(dǎo)學(xué)生體驗(yàn)到:顯得冗長(zhǎng),不方便、不簡(jiǎn)潔。

  教師說明:為了使算法的表述簡(jiǎn)潔、清晰、直觀、便于檢查,我們今天學(xué)習(xí)用一些通用圖型符號(hào)構(gòu)成一張圖即流程圖表示算法。

  本節(jié)要學(xué)習(xí)的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

  右圖即是同流程圖表示的算法。

 。ǘ┯^察類比理解課題

  1、投影介紹流程圖的符號(hào)、名稱及功能說明。

  符號(hào)符號(hào)名稱功能說明終端框算法開始與結(jié)束處理框算法的各種處理操作判斷框算法的各種轉(zhuǎn)移

  輸入輸出框輸入輸出操作指向線指向另一操作

  2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖

 。1)順序結(jié)構(gòu)

  依照步驟依次執(zhí)行的一個(gè)算法

  流程圖:

 。2)選擇結(jié)構(gòu)

  對(duì)條件進(jìn)行判斷來決定后面的步驟的結(jié)構(gòu)

  流程圖:

  3、用自然語言表示算法與用流程圖表示算法的比較

 。1)半徑為r的圓的面積公式當(dāng)r=10時(shí)寫出計(jì)算圓的'面積的算法,并畫出流程圖。

  解:

  算法(自然語言)

 、侔10賦與r

  ②用公式求s

 、圯敵鰏

  流程圖

 。2)已知函數(shù)對(duì)于每輸入一個(gè)x值都得到相應(yīng)的函數(shù)值,寫出算法并畫流程圖。

  算法:(語言表示)

 、佥斎離值

  ②判斷x的范圍,若,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2—x求函數(shù)值

 、圯敵鯵的值

  流程圖

  小結(jié):含有數(shù)學(xué)中需要分類討論的或與分段函數(shù)有關(guān)的問題,均要用到選擇結(jié)構(gòu)。

  學(xué)生觀察、類比、說出流程圖與自然語言對(duì)比有何特點(diǎn)?(直觀、清楚、便于檢查和交流)

  (三)模仿操作經(jīng)歷課題

  1、用流程圖表示確定線段A、B的一個(gè)16等分點(diǎn)

  2、分析講解例2;

  分析:

  思考:有多少個(gè)選擇結(jié)構(gòu)?相應(yīng)的流程圖應(yīng)如何表示?

  流程圖:

 。ㄋ模w納小結(jié)鞏固課題

  1、順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?

  2、怎樣用流程圖表示算法。

 。ㄎ澹┚毩(xí)P992

 。┳鳂I(yè)P991

  只要功夫深,鐵杵磨成針。

高二數(shù)學(xué)教案范文2

  教學(xué)目標(biāo)

  一、知識(shí)與技能

  (1)理解并掌握弧度制的定義;(2)領(lǐng)會(huì)弧度制定義的合理性;(3)掌握并運(yùn)用弧度制表示的弧長(zhǎng)公式、扇形面積公式;(4)熟練地進(jìn)行角度制與弧度制的換算;(5)角的集合與實(shí)數(shù)集之間建立的一一對(duì)應(yīng)關(guān)系。(6)使學(xué)生通過弧度制的學(xué)習(xí),理解并認(rèn)識(shí)到角度制與弧度制都是對(duì)角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。

  二、過程與方法

  創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會(huì)定義的合理性。根據(jù)弧度制的定義推導(dǎo)并運(yùn)用弧長(zhǎng)公式和扇形面積公式。以具體的實(shí)例學(xué)習(xí)角度制與弧度制的互化,能正確使用計(jì)算器。

  三、情態(tài)與價(jià)值

  通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識(shí)到角度制與弧度制都是對(duì)角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集之間建立了一一對(duì)應(yīng)關(guān)系:即每一個(gè)角都有的一個(gè)實(shí)數(shù)(即這個(gè)角的弧度數(shù))與它對(duì)應(yīng);反過來,每一個(gè)實(shí)數(shù)也都有的一個(gè)角(即弧度數(shù)等于這個(gè)實(shí)數(shù)的角)與它對(duì)應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備

  教學(xué)重難點(diǎn)

  重點(diǎn):理解并掌握弧度制定義;熟練地進(jìn)行角度制與弧度制地互化換算;弧度制的運(yùn)用。

  難點(diǎn):理解弧度制定義,弧度制的運(yùn)用。

  教學(xué)工具

  投影儀等

  教學(xué)過程

  一、創(chuàng)設(shè)情境,引入新課

  師:有人問:?诘饺齺営卸噙h(yuǎn)時(shí),有人回答約250公里,但也有人回答約160英里,請(qǐng)問那一種回答是正確的?(已知1英里=1.6公里)

  顯然,兩種回答都是正確的,但為什么會(huì)有不同的數(shù)值呢?那是因?yàn)樗捎玫亩攘恐撇煌,一個(gè)是公里制,一個(gè)是英里制。他們的長(zhǎng)度單位是不同的,但是,他們之間可以換算:1英里=1.6公里。

  在角度的度量里面,也有類似的情況,一個(gè)是角度制,我們已經(jīng)不再陌生,另外一個(gè)就是我們這節(jié)課要研究的角的另外一種度量制---弧度制。

  二、講解新課

  1.角度制規(guī)定:將一個(gè)圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等。

  弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請(qǐng)看課本,自行解決上述問題。

  2.弧度制的定義

  長(zhǎng)度等于半徑長(zhǎng)的圓弧所對(duì)的.圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).

  (師生共同活動(dòng))探究:如圖,半徑為的圓的圓心與原點(diǎn)重合,角的終邊與軸的正半軸重合,交圓于點(diǎn),終邊與圓交于點(diǎn)。請(qǐng)完成表格。

  我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個(gè)正數(shù),負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定。

  角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集R之間建立了一一對(duì)應(yīng)關(guān)系:即每一個(gè)角都有的一個(gè)實(shí)數(shù)(即這個(gè)角的弧度數(shù))與它對(duì)應(yīng);反過來,每一個(gè)實(shí)數(shù)也都有的一個(gè)角(即弧度數(shù)等于這個(gè)實(shí)數(shù)的角)與它對(duì)應(yīng)。

  四、課堂小結(jié)

  度數(shù)與弧度數(shù)的換算也可借助“計(jì)算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時(shí),“弧度”二字和單位符號(hào)“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對(duì)應(yīng)的關(guān)系。

  五、作業(yè)布置

  作業(yè):習(xí)題1.1A組第7,8,9題。

  課后小結(jié)

  度數(shù)與弧度數(shù)的換算也可借助“計(jì)算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時(shí),“弧度”二字和單位符號(hào)“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對(duì)應(yīng)的關(guān)系。

  課后習(xí)題

  作業(yè):習(xí)題1.1A組第7,8,9題。

  板書

高二數(shù)學(xué)教案范文3

  教學(xué)目標(biāo):

  1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。

  2.掌握坐標(biāo)法解決幾何問題的步驟;體會(huì)坐標(biāo)系的作用。

  教學(xué)重點(diǎn):

  體會(huì)直角坐標(biāo)系的作用。

  教學(xué)難點(diǎn)

  能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。

  授課類型:

  新授課

  教學(xué)模式:

  啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。

  教 具:

  多媒體、實(shí)物投影儀

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。

  情境2:運(yùn)動(dòng)會(huì)的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。

  問題1:如何刻畫一個(gè)幾何圖形的位置?

  問題2:如何創(chuàng)建坐標(biāo)系?

  二、學(xué)生活動(dòng)

  學(xué)生回顧

  刻畫一個(gè)幾何圖形的`位置,需要設(shè)定一個(gè)參照系

  1、數(shù)軸 它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定

  2、平面直角坐標(biāo)系

  在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。

  3、空間直角坐標(biāo)系

  在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。

  三、講解新課:

  1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:

  任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置

  2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)

  四、數(shù)學(xué)運(yùn)用

  例1 選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。

  變式訓(xùn)練

  如何通過它們到點(diǎn)O的距離以及它們相對(duì)于點(diǎn)O的方位來刻畫,即用”距離和方向”確定點(diǎn)的位置

  例2 已知B村位于A村的正西方1公里處,原計(jì)劃經(jīng)過B村沿著北偏東60的方向設(shè)一條地下管線m.但在A村的西北方向400米出,發(fā)現(xiàn)一古代文物遺址W.根據(jù)初步勘探的結(jié)果,文物管理部門將遺址W周圍100米范圍劃為禁區(qū)。試問:埋設(shè)地下管線m的計(jì)劃需要修改嗎?

  變式訓(xùn)練

  1一炮彈在某處爆炸,在A處聽到爆炸的時(shí)間比在B處晚2s,已知A、B兩地相距800米,并且此時(shí)的聲速為340m/s,求曲線的方程

  2在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求以M,N為焦點(diǎn)并過點(diǎn)P的橢圓方程

  例3 已知Q(a,b),分別按下列條件求出P 的坐標(biāo)

 。1)P是點(diǎn)Q 關(guān)于點(diǎn)M(m,n)的對(duì)稱點(diǎn)

  (2)P是點(diǎn)Q 關(guān)于直線l:x-y+4=0的對(duì)稱點(diǎn)(Q不在直線1上)

  變式訓(xùn)練

  用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。

  思考

  通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?

  五、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.平面直角坐標(biāo)系的意義。

  2. 利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。

  六、課后作業(yè):

高二數(shù)學(xué)教案范文4

  一、課前預(yù)習(xí)目標(biāo)

  理解并掌握雙曲線的幾何性質(zhì),并能從雙曲線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)出這些性質(zhì),并能具體估計(jì)雙曲線的形狀特征。

  二、預(yù)習(xí)內(nèi)容

  1、雙曲線的幾何性質(zhì)及初步運(yùn)用。

  類比橢圓的幾何性質(zhì)。

  2。雙曲線的漸近線方程的導(dǎo)出和論證。

  觀察以原點(diǎn)為中心,2a、2b長(zhǎng)為鄰邊的矩形的兩條對(duì)角線,再論證這兩條對(duì)角線即為雙曲線的漸近線。

  三、提出疑惑

  同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中

  課內(nèi)探究

  1、橢圓與雙曲線的.幾何性質(zhì)異同點(diǎn)分析

  2、描述雙曲線的漸進(jìn)線的作用及特征

  3、描述雙曲線的離心率的作用及特征

  4、例、練習(xí)嘗試訓(xùn)練:

  例1。求雙曲線9y2—16x2=144的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。

  解:

  解:

  5、雙曲線的第二定義

  1)。定義(由學(xué)生歸納給出)

  2)。說明

  (七)小結(jié)(由學(xué)生課后完成)

  將雙曲線的幾何性質(zhì)按兩種標(biāo)準(zhǔn)方程形式列表小結(jié)。

  作業(yè):

  1。已知雙曲線方程如下,求它們的兩個(gè)焦點(diǎn)、離心率e和漸近線方程。

 。1)16x2—9y2=144;

  (2)16x2—9y2=—144。

  2。求雙曲線的標(biāo)準(zhǔn)方程:

  (1)實(shí)軸的長(zhǎng)是10,虛軸長(zhǎng)是8,焦點(diǎn)在x軸上;

 。2)焦距是10,虛軸長(zhǎng)是8,焦點(diǎn)在y軸上;

  曲線的方程。

  點(diǎn)到兩準(zhǔn)線及右焦點(diǎn)的距離。

高二數(shù)學(xué)教案范文5

  目的要求:

  1.復(fù)習(xí)鞏固求曲線的方程的基本步驟;

  2.通過教學(xué),逐步提高學(xué)生求貢線的方程的能力,靈活掌握解法步驟;

  3.滲透“等價(jià)轉(zhuǎn)化”、“數(shù)形結(jié)合”、“整體”思想,培養(yǎng)學(xué)生全面分析問題的能力,訓(xùn)練思維的深刻性、廣闊性及嚴(yán)密性。

  教學(xué)重點(diǎn)、難點(diǎn):

  方程的求法教學(xué)方法:講練結(jié)合、討論法

  教學(xué)過程:

  一、學(xué)點(diǎn)聚集:

  1.曲線C的方程是f(x,y)=0(或方程f(x,y)=0的曲線是C)實(shí)質(zhì)是

  ①曲線C上任一點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解

 、谝苑匠蘤(x,y)=0的解為坐標(biāo)的點(diǎn)都是曲線C上的點(diǎn)

  2.求曲線方程的基本步驟

 、俳ㄏ翟O(shè)點(diǎn);

 、趯さ攘惺;

 、鄞鷵Q(坐標(biāo)化);

 、芑(jiǎn);

 、葑C明(若第四步為恒等變形,則這一步驟可省略)

  二、基礎(chǔ)訓(xùn)練題:

  221.方程x-y=0的曲線是()

  A.一條直線和一條雙曲線B.兩個(gè)點(diǎn)C.兩條直線D.以上都不對(duì)

  2.如圖,曲線的方程是()

  A.x?y?0 B.x?y?0 C.

  xy?1 D.

  x?1 y3.到原點(diǎn)距離為6的點(diǎn)的軌跡方程是。

  4.到x軸的距離與其到y(tǒng)軸的距離之比為2的點(diǎn)的軌跡方程是。

  三、例題講解:

  例1:已知一條曲線在y軸右方,它上面的每一點(diǎn)到A?2,0?的距離減去它到y(tǒng)軸的距離的差都是2,求這條曲線的方程。

  例2:已知P(1,3)過P作兩條互相垂直的直線l

  1、l2,它們分別和x軸、y軸交于B、C兩點(diǎn),求線段BC的中點(diǎn)的.軌跡方程。

  2例3:已知曲線y=x+1和定點(diǎn)A(3,1),B為曲線上任一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)點(diǎn)B在曲線上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡方程。

  鞏固練習(xí):

  1.長(zhǎng)為4的線段AB的兩個(gè)端點(diǎn)分別在x軸和y軸上滑動(dòng),求AB中點(diǎn)M的軌跡方程。

  22.已知△ABC中,B(-2,0),C(2,0)頂點(diǎn)A在拋物線y=x+1移動(dòng),求△ABC的重心G的軌跡方程。

  思考題:

  已知B(-3,0),C(3,0)且三角形ABC中BC邊上的高為3,求三角形ABC的垂心H的軌跡方程。

  小結(jié):

  1.用直接法求軌跡方程時(shí),所求點(diǎn)滿足的條件并不一定直接給出,需要仔細(xì)分析才能找到。

  2.用坐標(biāo)轉(zhuǎn)移法求軌跡方程時(shí)要注意所求點(diǎn)和動(dòng)點(diǎn)之間的聯(lián)系。

  作業(yè):

  蘇大練習(xí)第57頁例3,教材第72頁第3題、第7題。

高二數(shù)學(xué)教案范文6

  教學(xué)目標(biāo)

 。1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程。

 。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程。

 。3)掌握直線方程各種形式之間的互化。

  (4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力。

  (5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn)。

 。6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。

  教學(xué)建議

  1、教材分析

 。1)知識(shí)結(jié)構(gòu)

  由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式。

  (2)重點(diǎn)、難點(diǎn)分析

  ①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程。

  解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線。本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用。

  直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭。學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí)。

 、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明。

  2、教法建議

 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無任何限制,但幾何特征不明顯。教學(xué)中各部分知識(shí)之間過渡要自然流暢,不生硬。

  (2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ)。

  直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證。教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)

 。3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解。

  (4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件。兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要。教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮。

  求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程。根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程。

 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù))。

 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力。

  (7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用。教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力。

  (8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上。

  教學(xué)設(shè)計(jì)示例

  直線方程的一般形式

  教學(xué)目標(biāo):

 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。

 。2)理解直線與二元一次方程的關(guān)系及其證明

 。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn)。

  教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式。直線與二元一次方程(不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明。

  教學(xué)用具:計(jì)算機(jī)

  教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

  教學(xué)過程:

  下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡(jiǎn)要思路:

  教學(xué)設(shè)計(jì)思路:

  (一)引入的設(shè)計(jì)

  前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

  問:說出過點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次。

  肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述。再看一個(gè)問題:

  問:求出過點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的`次數(shù)為一次。

  肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次”。

  啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)劊扛餍〗M可以討論討論。

  學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

 。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

  這是本節(jié)課要解決的第一個(gè)問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。

  學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo)。

  經(jīng)過一定時(shí)間的研究,教師組織開展集體討論。首先讓學(xué)生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評(píng)價(jià),確定方案(其它待課下研究)如下:

  按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。

  當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。

  當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?

  學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

  平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

  綜合兩種情況,我們得出如下結(jié)論:

  在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于直線的二元一次方程。

  至此,我們的問題1就解決了。簡(jiǎn)單點(diǎn)說就是:直線方程都是二元一次方程。而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是“要么形如這樣,要么形如這樣的方程”。

  同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

  學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。

  這樣上邊的結(jié)論可以表述如下:

  在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。

  啟發(fā):任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關(guān)的問題呢?

  【問題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問題是它的另一方面。這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論。那么如何研究呢?

  師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

  回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時(shí)為0)系數(shù)是否為0恰好對(duì)應(yīng)斜率是否存在,即

 。1)當(dāng)時(shí),方程可化為

  這是表示斜率為、在軸上的截距為的直線。

 。2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為

  這表示一條與軸垂直的直線。

  因此,得到結(jié)論:

  在平面直角坐標(biāo)系中,任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線。

  為方便,我們把(其中、不同時(shí)為0)稱作直線方程的一般式是合理的。

  【動(dòng)畫演示】

  演示“直線各參數(shù)。gsp”文件,體會(huì)任何二元一次方程都表示一條直線。

  至此,我們的第二個(gè)問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問題其實(shí)是一個(gè)大問題的兩個(gè)方面,這個(gè)大問題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系。

 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略

【高二數(shù)學(xué)教案】相關(guān)文章:

高二數(shù)學(xué)教案12-04

高二數(shù)學(xué)教案01-26

高二數(shù)學(xué)教案優(yōu)秀10-12

高二數(shù)學(xué)教案(合集)03-26

高二優(yōu)秀數(shù)學(xué)教案11-14

關(guān)于高二數(shù)學(xué)教案12-01

高二數(shù)學(xué)教案精品01-24

高二數(shù)學(xué)教案范文01-06

關(guān)于高二數(shù)學(xué)教案12-16

中職高二數(shù)學(xué)教案11-07