- 相關(guān)推薦
職業(yè)中學(xué)高二數(shù)學(xué)教案
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,時(shí)常要開(kāi)展教案準(zhǔn)備工作,借助教案可以讓教學(xué)工作更科學(xué)化。我們?cè)撛趺慈?xiě)教案呢?以下是小編整理的職業(yè)中學(xué)高二數(shù)學(xué)教案,歡迎閱讀與收藏。
職業(yè)中學(xué)高二數(shù)學(xué)教案1
教學(xué)建議
知識(shí)結(jié)構(gòu)
重難點(diǎn)分析
本節(jié)的重點(diǎn)是菱形的性質(zhì)和判定定理。菱形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。菱形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點(diǎn)是菱形性質(zhì)的靈活應(yīng)用。由于菱形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時(shí)還具有自己獨(dú)特的性質(zhì)。如果得到一個(gè)平行四邊形是菱形,就可以得到許多關(guān)于邊、角、對(duì)角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無(wú)措,教師在教學(xué)過(guò)程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的.關(guān)系,建議教師在教學(xué)過(guò)程中注意以下問(wèn)題:
1、菱形的知識(shí),學(xué)生在小學(xué)時(shí)接觸過(guò)一些,可由小學(xué)學(xué)過(guò)的知識(shí)作為引入。
2、菱形在現(xiàn)實(shí)中的實(shí)例較多,在講解菱形的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來(lái)進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識(shí)。
3、如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材148頁(yè)圖4—33所示,制作一個(gè)平行四邊形作為教學(xué)過(guò)程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對(duì)知識(shí)的掌握更輕松些。
4、在對(duì)性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對(duì)事先準(zhǔn)備后的圖形進(jìn)行邊、角、對(duì)角線的測(cè)量,然后在組內(nèi)進(jìn)行整理、歸納。
5、由于菱形和菱形的性質(zhì)定理證明比較簡(jiǎn)單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來(lái)進(jìn)行具體的證明。
6、在菱形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學(xué)目標(biāo)
1、掌握菱形概念,知道菱形與平行四邊形的關(guān)系。
2、掌握菱形的性質(zhì)。
3、通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力。
4、通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
5、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫(huà)圖向?qū)W生滲透集合思想。
6、通過(guò)菱形性質(zhì)的學(xué)習(xí),體會(huì)菱形的圖形美。
二、教法設(shè)計(jì)
觀察分析討論相結(jié)合的方法
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1、教學(xué)重點(diǎn):菱形的性質(zhì)定理。
2、教學(xué)難點(diǎn):把菱形的性質(zhì)和直角三角形的知識(shí)綜合應(yīng)用。
3、疑點(diǎn):菱形與矩形的性質(zhì)的區(qū)別。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥
七、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1、什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
2、矩形中對(duì)角線與大邊的夾角為,求小邊所對(duì)的兩條對(duì)角線的夾角。
3、矩形的一個(gè)角的平分線把較長(zhǎng)的邊分成、,求矩形的周長(zhǎng)。
【引入新課】
我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,這時(shí)可將事先按課本中圖4—38做成的一個(gè)短邊也可以活動(dòng)的教具進(jìn)行演示,如圖,改變平行四邊形的邊,使之一組鄰進(jìn)相等,引出菱形概念。
【講解新課】
1、菱形定義:有一組鄰邊相等的平行四邊形叫做菱形。
講解這個(gè)定義時(shí),要抓住概念的本質(zhì),應(yīng)突出兩條:
(1)強(qiáng)調(diào)菱形是平行四邊形。
(2)一組鄰邊相等。
2、菱形的性質(zhì):
教師強(qiáng)調(diào),菱形既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類(lèi)似,也比平行四邊形增加了一些特殊性質(zhì)。
下面研究菱形的性質(zhì):
師:同學(xué)們根據(jù)菱形的定義結(jié)合圖形猜一下菱形有什么性質(zhì)(讓學(xué)生們討論,并引導(dǎo)學(xué)生分別從邊、角、對(duì)角線三個(gè)方面分析)。
生:因?yàn)榱庑问怯幸唤M鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對(duì)邊相等的性質(zhì)可以得到。
菱形性質(zhì)定理1:菱形的四條邊都相等。
由菱形的四條邊都相等,根據(jù)平行四邊形對(duì)角線互相平分,可以得到
菱形性質(zhì)定理2:菱形的對(duì)角線互相垂直并且每一條對(duì)角線平分一組對(duì)角。
引導(dǎo)學(xué)生完成定理的規(guī)范證明。
師:觀察右圖,菱形被對(duì)角線分成的四個(gè)直角三角形有什么關(guān)系?
生:全等。
師:它們的底和高和兩條對(duì)角線有什么關(guān)系?
生:分別是兩條對(duì)角線的一半。
師:如果設(shè)菱形的兩條對(duì)角線分別為、,則菱形的面積是什么?
生:
教師指出當(dāng)不易求出對(duì)角線長(zhǎng)時(shí),就用平行四邊形面積的一般計(jì)算方法計(jì)算菱形面積。
例2已知:如右圖,是△的角平分線,交于,交于。
求證:四邊形是菱形。
。ㄒ龑(dǎo)學(xué)生用菱形定義來(lái)判定。)
例3已知菱形的邊長(zhǎng)為,對(duì)角線,相交于點(diǎn),如右圖,求這個(gè)菱形的對(duì)角線長(zhǎng)和面積。
。1)按教材的方法求面積。
(2)還可以引導(dǎo)學(xué)生求出△一邊上的高,即菱形的高,然后用平行四邊形的面積公式計(jì)算菱形的面積。
【總結(jié)、擴(kuò)展】
1、小結(jié):(打出投影)(圖4)
。1)菱形、平行四邊形、四邊形的從屬關(guān)系:
。2)菱形性質(zhì):圖5
、倬哂衅叫兴倪呅蔚乃行再|(zhì)。
、谔赜行再|(zhì):四條邊相等;對(duì)角線互相垂直,且平分每一組對(duì)角。
八、布置作業(yè)
教材P158中6、7、8,P196中10
職業(yè)中學(xué)高二數(shù)學(xué)教案2
教學(xué)目的:
1、掌握掌握平面與平面間距離的概念,并能求出它們的距離
2、弄清平行平面之間的距離的定義;
教學(xué)重點(diǎn):平行平面的距離的求法教學(xué)難點(diǎn):平行平面的距離的求法
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1、點(diǎn)到平面的距離:已知點(diǎn)是平面外的任意一點(diǎn),過(guò)點(diǎn)作,垂足為,則唯一,則是點(diǎn)到平面的距離即:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做這一點(diǎn)到這個(gè)平面的距離(轉(zhuǎn)化為點(diǎn)到點(diǎn)的距離)結(jié)論:連結(jié)平面外一點(diǎn)與內(nèi)一點(diǎn)所得的線段中,垂線段最短
2、直線到與它平行平面的距離:一條直線上的任一點(diǎn)到與它平行的平面的距離,叫做這條直線到平面的距離(轉(zhuǎn)化為點(diǎn)面距離)
二、講解新課:
1、兩個(gè)平行平面的公垂線、公垂線段:
。1)兩個(gè)平面的公垂線:和兩個(gè)平行平面同時(shí)垂直的直線,叫做兩個(gè)平面的公垂線
。2)兩個(gè)平面的公垂線段:公垂線夾在平行平面間的部分,叫做兩個(gè)平面的公垂線段
。3)兩個(gè)平行平面的公垂線段都相等
(4)公垂線段小于或等于任一條夾在這兩個(gè)平行平面間的線段長(zhǎng)2、兩個(gè)平行平面的'距離:兩個(gè)平行平面的公垂線段的長(zhǎng)度叫做兩個(gè)平行平面的距離
三、講解范例:
例1如圖,已知正三角形的邊形為,點(diǎn)D到各頂點(diǎn)的距離都是,求點(diǎn)D到這個(gè)三角形所在平面的距離解:設(shè)為點(diǎn)D在平面內(nèi)的射影,延長(zhǎng),交于,∴,∴即是的中心,是邊上的垂直平分線,在中,即點(diǎn)D到這個(gè)三角形所在平面的距離是。
四、課堂練習(xí):
五、課后作業(yè):
職業(yè)中學(xué)高二數(shù)學(xué)教案3
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì);
2、數(shù)學(xué)能力:通過(guò)等差數(shù)列和等比數(shù)列的類(lèi)比學(xué)習(xí),培養(yǎng)學(xué)生類(lèi)比歸納的能力;
歸納——猜想——證明的數(shù)學(xué)研究方法;
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類(lèi)討論,函數(shù)的數(shù)學(xué)思想。
教學(xué)重難點(diǎn)
重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過(guò)類(lèi)比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;
難點(diǎn):等比數(shù)列的性質(zhì)的探索過(guò)程。
教學(xué)過(guò)程
教學(xué)過(guò)程:
1、問(wèn)題引入:
前面我們已經(jīng)研究了一類(lèi)特殊的數(shù)列——等差數(shù)列。
問(wèn)題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列?
(學(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。
已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書(shū))an=a1+(n—1)d。
師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
。ǖ谝淮晤(lèi)比)類(lèi)似的,我們提出這樣一個(gè)問(wèn)題。
問(wèn)題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對(duì)于“和”與“積”的情況,可以利用具體的例子予以說(shuō)明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話,這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。)
2、新課:
1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。
師:這就牽涉到等比數(shù)列的通項(xiàng)公式問(wèn)題,回憶一下等差數(shù)列的通項(xiàng)公式是怎樣得到的?類(lèi)似于等差數(shù)列,要想確定一個(gè)等比數(shù)列的通項(xiàng)公式,要知道什么?
師生共同簡(jiǎn)要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)
若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有:
方法一:(累乘法)
3)等比數(shù)列的.性質(zhì):
下面我們一起來(lái)研究一下等比數(shù)列的性質(zhì)
通過(guò)上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過(guò)類(lèi)比得到等比數(shù)列的性質(zhì)。
問(wèn)題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)?
。ǜ鶕(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過(guò)具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。
答案:1458或128。
例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3 …a20 =_ 10 ____。
例3、已知一個(gè)等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個(gè)數(shù)列中取出一些項(xiàng)組成一個(gè)新的數(shù)列{cn},使得{cn}是一個(gè)公比為2的等比數(shù)列,若能請(qǐng)指出{cn}中的第k項(xiàng)是等差數(shù)列中的第幾項(xiàng)?
(本題為開(kāi)放題,沒(méi)有唯一的答案,如對(duì)于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k—1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k—1項(xiàng)。關(guān)鍵是對(duì)通項(xiàng)公式的理解)
1、 小結(jié):
今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過(guò)今天的學(xué)習(xí)
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類(lèi)比——猜想——證明的科學(xué)思維的過(guò)程。
2、作業(yè):
P129:1,2,3
思考題:在等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項(xiàng):6,12,24,48,……,組成一個(gè)新的數(shù)列{cn},{cn}是一個(gè)公比為2的等比數(shù)列,請(qǐng)指出{cn}中的第k項(xiàng)是等差數(shù)列中的第幾項(xiàng)?
教學(xué)設(shè)計(jì)說(shuō)明:
1、教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對(duì)于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來(lái)學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對(duì)等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來(lái),通過(guò)等比數(shù)列和等差數(shù)列的類(lèi)比學(xué)習(xí),對(duì)培養(yǎng)學(xué)生類(lèi)比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。
2、 教學(xué)設(shè)計(jì)過(guò)程:本節(jié)課主要從以下幾個(gè)方面展開(kāi):
1)通過(guò)復(fù)習(xí)等差數(shù)列的定義,類(lèi)比得出等比數(shù)列的定義;
2)等比數(shù)列的通項(xiàng)公式的推導(dǎo);
3)等比數(shù)列的性質(zhì);
有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊
知識(shí),另一方面使學(xué)生通過(guò)聯(lián)想,為類(lèi)比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。
在類(lèi)比得到等比數(shù)列的定義之后,再對(duì)幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類(lèi)比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過(guò)問(wèn)題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對(duì)知識(shí)的接受。
通過(guò)等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類(lèi)比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過(guò)類(lèi)比
關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開(kāi)放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。
職業(yè)中學(xué)高二數(shù)學(xué)教案4
1、1、1命題及其關(guān)系
一、課前小練:閱讀下列語(yǔ)句,你能判斷它們的真假嗎?
。1)矩形的對(duì)角線相等;
。2)3;
。3)3嗎?
。4)8是24的約數(shù);
。5)兩條直線相交,有且只有一個(gè)交點(diǎn);
。6)他是個(gè)高個(gè)子。
二、新課內(nèi)容:
1、命題的概念:
、倜}:可以判斷真假的陳述句叫做命題(proposition)。
上述6個(gè)語(yǔ)句中,哪些是命題。
②真命題:判斷為真的語(yǔ)句叫做真命題(true proposition);
假命題:判斷為假的語(yǔ)句叫做假命題(false proposition)。
上述5個(gè)命題中,哪些為真命題?哪些為假命題?
③例1:判斷下列語(yǔ)句中哪些是命題?是真命題還是假命題?
。1)空集是任何集合的子集;
。2)若整數(shù)是素?cái)?shù),則是奇數(shù);
。3)2小于或等于2;
(4)對(duì)數(shù)函數(shù)是增函數(shù)嗎?
(5);
。6)平面內(nèi)不相交的兩條直線一定平行;
。7)明天下雨。
。▽W(xué)生自練個(gè)別回答教師點(diǎn)評(píng))
、芴骄浚簩W(xué)生自我舉出一些命題,并判斷它們的真假。
2、將一個(gè)命題改寫(xiě)成“若,則”的形式:
三、練習(xí):教材P4 1、2、3
四、作業(yè):
1、教材P8第1題
2、作業(yè)本1—10
五、課后反思
命題教案
課題1、1、1命題及其關(guān)系(一)課型新授課
目標(biāo)
1)知識(shí)方法目標(biāo)
了解命題的概念,2)能力目標(biāo)
會(huì)判斷一個(gè)命題的真假,并會(huì)將一個(gè)命題改寫(xiě)成“若,則”的形式。
重點(diǎn)
難點(diǎn)
1)重點(diǎn):命題的改寫(xiě)
2)難點(diǎn):命題概念的理解,命題的條件與結(jié)論區(qū)分
教法與學(xué)法
教法:
教學(xué)過(guò)程備注
1、課題引入
。▌(chuàng)設(shè)情景)
閱讀下列語(yǔ)句,你能判斷它們的真假嗎?
(1)矩形的對(duì)角線相等;
。2)3;
。3)3嗎?
。4)8是24的約數(shù);
。5)兩條直線相交,有且只有一個(gè)交點(diǎn);
。6)他是個(gè)高個(gè)子。
2、問(wèn)題探究
1)難點(diǎn)突破
2)探究方式
3)探究步驟
4)高潮設(shè)計(jì)
1、命題的概念:
、倜}:可以判斷真假的陳述句叫做命題(proposition)。
上述6個(gè)語(yǔ)句中,(1)(2)(4)(5)(6)是命題。
②真命題:判斷為真的語(yǔ)句叫做真命題(true proposition);
假命題:判斷為假的語(yǔ)句叫做假命題(false proposition)。
上述5個(gè)命題中,(2)是假命題,其它4個(gè)都是真命題。
、劾1:判斷下列語(yǔ)句中哪些是命題?是真命題還是假命題?
。1)空集是任何集合的子集;
。2)若整數(shù)是素?cái)?shù),則是奇數(shù);
。3)2小于或等于2;
。4)對(duì)數(shù)函數(shù)是增函數(shù)嗎?
。5);
(6)平面內(nèi)不相交的兩條直線一定平行;
。7)明天下雨。
。▽W(xué)生自練個(gè)別回答教師點(diǎn)評(píng))
、芴骄浚簩W(xué)生自我舉出一些命題,并判斷它們的'真假。
2、將一個(gè)命題改寫(xiě)成“若,則”的形式:
①例1中的(2)就是一個(gè)“若,則”的命題形式,我們把其中的叫做命題的'條件,叫做命題的結(jié)論。
②試將例1中的命題(6)改寫(xiě)成“若,則”的形式。
③例2:將下列命題改寫(xiě)成“若,則”的形式。
(1)兩條直線相交有且只有一個(gè)交點(diǎn);
(2)對(duì)頂角相等;
(3)全等的兩個(gè)三角形面積也相等。
(學(xué)生自練個(gè)別回答教師點(diǎn)評(píng))
3、 小結(jié):命題概念的理解,會(huì)判斷一個(gè)命題的真假,并會(huì)將命題改寫(xiě)“若,則”的形式。
引導(dǎo)學(xué)生歸納出命題的概念,強(qiáng)調(diào)判斷一個(gè)語(yǔ)句是不是命題的兩個(gè)關(guān)鍵點(diǎn):是否符合“是陳述句”和“可以判斷真假”。
通過(guò)例子引導(dǎo)學(xué)生辨別命題,區(qū)分命題的條件和結(jié)論。改寫(xiě)為“若,則”的形式,為后續(xù)的學(xué)習(xí)打好基礎(chǔ)。
3、練習(xí)提高1、練習(xí):教材P4 1、2、3
師生互動(dòng)
4、作業(yè)設(shè)計(jì)
作業(yè):
1、教材P8第1題
2、作業(yè)本1—10
5、課后反思
本節(jié)課是一堂概念課,比較枯燥,在教學(xué)時(shí)應(yīng)充分調(diào)動(dòng)學(xué)生的積極性,比如引例中的“他是個(gè)高個(gè)子!崩1中的“(7)明天下雨!钡缺容^有趣的生活問(wèn)題,和學(xué)生有充分的語(yǔ)言交流,在一問(wèn)一答中,引導(dǎo)學(xué)生完成本節(jié)課的學(xué)習(xí)。
職業(yè)中學(xué)高二數(shù)學(xué)教案5
一、教學(xué)過(guò)程
1、復(fù)習(xí)。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2、新課。
先讓學(xué)生用幾何畫(huà)板畫(huà)出y=x3的圖象,學(xué)生紛紛動(dòng)手,很快畫(huà)出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象(圖1):
教師在畫(huà)出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過(guò)教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對(duì),但是怎么會(huì)得到這個(gè)圖象,請(qǐng)大家討論。
。▽W(xué)生展開(kāi)討論,但找不出原因。)
師:我們請(qǐng)生1再給大家演示一下,大家?guī)退艺以颉?/p>
(生1將他的制作過(guò)程重新重復(fù)了一次。)
生3:?jiǎn)栴}出在他選擇的次序不對(duì)。
師:哪個(gè)次序?
生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時(shí),他先選擇xA3,后選擇xA,作出來(lái)的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請(qǐng)生1再做一次。
(這次生1在做的過(guò)程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來(lái)問(wèn)題確實(shí)是出在這個(gè)地方,那么請(qǐng)同學(xué)再想想,為什么他采用了錯(cuò)誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
。▽W(xué)生再次陷入思考,一會(huì)兒有學(xué)生舉手。)
師:我們請(qǐng)生4來(lái)告訴大家。
生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學(xué)們能不能看出這兩個(gè)函數(shù)的圖象有什么樣的關(guān)系?
。ǘ鄶(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問(wèn)。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。
師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?
(學(xué)生一時(shí)未能明白教師的意思,場(chǎng)面一下子冷了下來(lái),教師不得不將問(wèn)題進(jìn)一步明確。)
師:我其實(shí)是想問(wèn)大家這兩個(gè)函數(shù)的圖象有沒(méi)有對(duì)稱(chēng)關(guān)系,有的話,是什么樣的對(duì)稱(chēng)關(guān)系?
。▽W(xué)生重新開(kāi)始觀察這兩個(gè)函數(shù)的圖象,一會(huì)兒有學(xué)生舉手。)
生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對(duì)稱(chēng)。
師:能說(shuō)說(shuō)是關(guān)于哪條直線對(duì)稱(chēng)嗎?
生6:我還沒(méi)找出來(lái)。
。ń酉聛(lái),教師引導(dǎo)學(xué)生利用幾何畫(huà)板找出兩函數(shù)圖象的對(duì)稱(chēng)軸,畫(huà)出如下圖形,如圖2所示:)
學(xué)生通過(guò)移動(dòng)點(diǎn)A(點(diǎn)B、C隨之移動(dòng))后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對(duì)稱(chēng)軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對(duì)稱(chēng)。
師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對(duì)稱(chēng)關(guān)系嗎?請(qǐng)同學(xué)們用其他函數(shù)來(lái)試一試。
。▽W(xué)生紛紛畫(huà)出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng)。)
還是有部分學(xué)生舉手,因?yàn)樗麄儺?huà)出了如下圖象(圖3):
教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問(wèn)題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問(wèn)題所在:圖中函數(shù)y=x2(x∈R)沒(méi)有反函數(shù),②也不是函數(shù)的圖象。
最后教師與學(xué)生一起總結(jié):
點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱(chēng);
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng)。
二、反思與點(diǎn)評(píng)
1、在開(kāi)學(xué)初,我就教學(xué)幾何畫(huà)板4、0的用法,在教函數(shù)圖象畫(huà)法的過(guò)程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫(huà)板4、04中,能直接根據(jù)函數(shù)解析式畫(huà)出圖象,但這樣反而不能揭示圖象對(duì)稱(chēng)的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫(huà)板4、0進(jìn)行教學(xué)。
2、荷蘭數(shù)學(xué)教育家弗賴(lài)登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過(guò)程當(dāng)中,可借助于生動(dòng)直觀的形象來(lái)引導(dǎo)人們的思想過(guò)程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過(guò)于直觀的例子常常會(huì)影響學(xué)生正確理解比較抽象的概念。
計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的`表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。
在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對(duì)稱(chēng)關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對(duì)反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過(guò)計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來(lái)做數(shù)學(xué),在此過(guò)程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。
3、在引出兩個(gè)函數(shù)圖象對(duì)稱(chēng)關(guān)系的時(shí)候,問(wèn)題設(shè)計(jì)不甚妥當(dāng),本來(lái)是想要學(xué)生回答兩個(gè)函數(shù)圖象對(duì)稱(chēng)的關(guān)系,但學(xué)生誤以為是問(wèn)如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問(wèn)題在今后的教學(xué)中是必須力求避免的。
【職業(yè)中學(xué)高二數(shù)學(xué)教案】相關(guān)文章:
×職業(yè)中學(xué)辦學(xué)情況匯報(bào)08-12
談職業(yè)中學(xué)就業(yè)鞏固率的提高08-13
職業(yè)中學(xué)學(xué)生的興趣愛(ài)好初探08-13
職業(yè)中學(xué)英語(yǔ)閱讀能力的培養(yǎng)|論文08-13
職業(yè)中學(xué)美術(shù)教育與中國(guó)傳統(tǒng)文化08-13
淺談職業(yè)中學(xué)主題班會(huì)的方案設(shè)計(jì)和組織技巧08-13
體育教學(xué)論文|淺談如何培養(yǎng)職業(yè)中學(xué)學(xué)生的體育興趣08-13