- 相關(guān)推薦
九年級數(shù)學(xué)優(yōu)質(zhì)課教案例文
在教學(xué)工作者實際的教學(xué)活動中,通常會被要求編寫教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點。教案要怎么寫呢?以下是小編為大家整理的九年級數(shù)學(xué)優(yōu)質(zhì)課教案例文,僅供參考,希望能夠幫助到大家。
教學(xué)目標
【知識與技能】
理解反比例函數(shù)的概念,根據(jù)實際問題能列出反比例函數(shù)關(guān)系式.
【過程與方法】
經(jīng)歷從實際問題抽象出反比例函數(shù)的探索過程,發(fā)展學(xué)生的抽象思維能力.
【情感態(tài)度】
培養(yǎng)觀察、推理、分析能力,體會由實際問題轉(zhuǎn)化為數(shù)學(xué)模型,認識反比例函數(shù)的應(yīng)用價值.
【教學(xué)重點】
理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式.
【教學(xué)難點】
能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想.
教學(xué)過程
一、情景導(dǎo)入,初步認知
1.復(fù)習(xí)小學(xué)已學(xué)過的反比例關(guān)系,例如:
(1)當(dāng)路程s一定,時間t與速度v成反比例,即vt=s(s是常數(shù))
(2)當(dāng)矩形面積一定時,長a和寬b成反比例,即ab=S(S是常數(shù))
2、電流I、電阻R、電壓U之間滿足關(guān)系式U=IR,當(dāng)U=220V時,請你用含R的代數(shù)式表示I嗎?
【教學(xué)說明】對相關(guān)知識的復(fù)習(xí),為本節(jié)課的學(xué)習(xí)打下基礎(chǔ).
二、思考探究,獲取新知
探究1:反比例函數(shù)的概念
(1)一群選手在進行全程為3000米的_比賽時,各選手的平均速度v(m/s)與所用時間t(s)之間有怎樣的關(guān)系?并寫出它們之間的關(guān)系式.
(2)利用(1)的關(guān)系式完成下表:
(3)隨著時間t的變化,平均速度v發(fā)生了怎樣的變化?
(4)平均速度v是所用時間t的函數(shù)嗎?為什么?
(5)觀察上述函數(shù)解析式,與前面學(xué)的一次函數(shù)有什么不同?這種函數(shù)有什么特點?
【歸納結(jié)論】一般地,如果兩個變量x,y之間可以表示成y=(k為常數(shù)且k≠0)的形式,那么稱y是x的反比例函數(shù).其中x是自變量,常數(shù)k稱為反比例函數(shù)的比例系數(shù).
【教學(xué)說明】先讓學(xué)生進行小組合作交流,再進行全班性的問答或交流.學(xué)生用自己的語言說明兩個變量間的關(guān)系為什么可以看作函數(shù),了解所討論的函數(shù)的表達形式.探究2:反比例函數(shù)的自變量的取值范圍思考:在上面的問題中,對于反比例函數(shù)v=3000/t,其中自變量t可以取哪些值呢?分析:反比例函數(shù)的自變量的取值范圍是所有非零實數(shù),但是在實際問題中,應(yīng)該根據(jù)具體情況來確定該反比例函數(shù)的自變量取值范圍.由于t代表的是時間,且時間不能為負數(shù),所有t的取值范圍為t>0.
【教學(xué)說明】教師組織學(xué)生討論,提問學(xué)生,師生互動.
三、運用新知,深化理解
1.見教材P3例題.
2.下列函數(shù)關(guān)系中,哪些是反比例函數(shù)?
(1)已知平行四邊形的面積是12cm2,它的一邊是acm,這邊上的高是hcm,則a與h的函數(shù)關(guān)系;
(2)壓強p一定時,壓力F與受力面積S的關(guān)系;
(3)功是常數(shù)W時,力F與物體在力的方向上通過的距離s的函數(shù)關(guān)系.
(4)某鄉(xiāng)糧食總產(chǎn)量為m噸,那么該鄉(xiāng)每人平均擁有糧食y(噸)與該鄉(xiāng)人口數(shù)x的函數(shù)關(guān)系式.
分析:確定函數(shù)是否為反比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=(k是常數(shù),k≠0).所以此題必須先寫出函數(shù)解析式,后解答.
解:
(1)a=12/h,是反比例函數(shù);
(2)F=pS,是正比例函數(shù);
(3)F=W/s,是反比例函數(shù);
(4)y=m/x,是反比例函數(shù).
3.當(dāng)m為何值時,函數(shù)y=是反比例函數(shù),并求出其函數(shù)解析式.分析:由反比例函數(shù)的定義易求出m的值.解:由反比例函數(shù)的定義可知:2m-2=1,m=3/2.所以反比例函數(shù)的解析式為y=.
4.當(dāng)質(zhì)量一定時,二氧化碳的體積V與密度ρ成反比例.且V=5m3時,ρ=1.98kg/m3
(1)求p與V的函數(shù)關(guān)系式,并指出自變量的取值范圍.
(2)求V=9m3時,二氧化碳的密度.
解:略
5.已知y=y1+y2,y1與x成正比例,y2與x2成反比例,且x=2與x=3時,y的值都等于19.求y與x間的函數(shù)關(guān)系式.
分析:y1與x成正比例,則y1=k1x,y2與x2成反比例,則y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y與x間的函數(shù)關(guān)系式.
解:因為y1與x成正比例,所以y1=k1x;因為y2與x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,當(dāng)x=2與x=3時,y的值都等于19.
【教學(xué)說明】加深對反比例函數(shù)概念的理解,及掌握如何求反比例函數(shù)的解析式.
四、師生互動、課堂小結(jié)
先小組內(nèi)交流收獲和感想,而后以小組為單位派代表進行總結(jié).教師作以補充.
課后作業(yè)
布置作業(yè):教材“習(xí)題1.1”中第1、3、5題.
教學(xué)反思
學(xué)生對于反比例函數(shù)的概念理解的都很好,但在求函數(shù)解析式時,解題不夠靈活,如解答第5題時,不知如何設(shè)未知數(shù).在這方面應(yīng)多加練習(xí).
【九年級數(shù)學(xué)優(yōu)質(zhì)課教案】相關(guān)文章:
數(shù)學(xué)優(yōu)質(zhì)課教案02-23
小班數(shù)學(xué)優(yōu)質(zhì)課教案01-29
大班數(shù)學(xué)優(yōu)質(zhì)課教案03-29
中班數(shù)學(xué)優(yōu)質(zhì)課教案02-22
幼兒園數(shù)學(xué)優(yōu)質(zhì)課教案01-28
《鋪路》小班數(shù)學(xué)優(yōu)質(zhì)課教案08-07
《圣誕舞會》小班數(shù)學(xué)優(yōu)質(zhì)課數(shù)學(xué)教案08-22
小班數(shù)學(xué)優(yōu)質(zhì)課種花教案及反思05-15