- 相關(guān)推薦
線段的垂直平分線高二數(shù)學教案
作為一位無私奉獻的人民教師,可能需要進行教案編寫工作,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。我們該怎么去寫教案呢?下面是小編精心整理的線段的垂直平分線高二數(shù)學教案,希望對大家有所幫助。
教學目的:
1、使理解線段的垂直平分線的性質(zhì)定理及逆定理,掌握這兩個定理的關(guān)系并會用這兩個定理解決有關(guān)幾何問題。
2、了解線段垂直平分線的軌跡問題。
3、結(jié)合教學內(nèi)容培養(yǎng)學生的動作、形象和抽象。
教學重點:
線段的垂直平分線性質(zhì)定理及逆定理的引入證明及運用。
教學難點:
線段的垂直平分線性質(zhì)定理及逆定理的關(guān)系。
教學關(guān)鍵:
1、垂直平分線上所有的點和線段兩端點的距離相等。
2、到線段兩端點的距離相等的所有點都在這條線段的垂直平分線上。
教 具:投影儀及投影膠片。
教學過程:
一、提問
1、角平分線的性質(zhì)定理及逆定理是什么?
2、怎樣做一條線段的垂直平分線?
二、新課
1、請同學們在練習本上做線段AB的垂直平分線EF(請一名同學在黑板上做)。
2、在EF上任取一點P,連結(jié)PA、PB量出PA=?,PB=?引導學生觀察這兩個值有什么關(guān)系?
通過學生的觀察、分析得出結(jié)果 PA=PB,再取一點P'試一試仍然有P'A=P'B,引導學生猜想EF上的所有點和點A、點B的距離都相等,再請同學把這一結(jié)論敘述成命題(用幻燈展示)。
定理:線段的垂直平分線上的點和這條線段的兩個端點的距離相等。
這個命題,是我們通過作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。
已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點P在EF上
求證:PA=PB
如何證明PA=PB學生分析得出只要證RTΔPCA≌RTΔPCB
證明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定義)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的對應邊相等)。
反過來,如果PA=PB,P1A=P1B,點P,P1在什么線上?
過P,P1做直線EF交AB于C,可證明ΔPA P1≌PB P1(SSS)
∴EF是等腰三角型ΔPAB的頂角平分線
∴EF是AB的垂直平分線(等腰三角形三線合一性質(zhì))
∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發(fā)學生敘述)(用幻燈展示)。
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
根據(jù)上述定理和逆定理可以知道:直線MN可以看作和兩點A、B的距離相等的所有點的集合。
線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。
三、舉例(用幻燈展示)
例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點P,求證:PA=PB=PC。
證明:∵點P在線段AB的垂直平分線上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例題PA=PC知點P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點P,這點到三個頂點的距離相等。
四、小結(jié)
正確的運用這兩個定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點在線段的垂直平分線上。
【線段的垂直平分線高二數(shù)學教案】相關(guān)文章:
線段的垂直平分線教學反思01-18
線段,直線,射線數(shù)學教案06-04
數(shù)學教案線段直線射線12-29
高二數(shù)學教案04-27
高二數(shù)學教案12-04
線段教學反思08-25
關(guān)于高二數(shù)學教案12-01
高二優(yōu)秀數(shù)學教案11-14
高二數(shù)學教案優(yōu)秀10-12