- 相關(guān)推薦
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計(精選14篇)
作為一位優(yōu)秀的人民教師,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么問題來了,教案應(yīng)該怎么寫?以下是小編整理的數(shù)學(xué)有理數(shù)的乘法教案設(shè)計,僅供參考,希望能夠幫助到大家。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 1
教學(xué)目標(biāo)
1、知識目標(biāo):借助生活中的實例理解有理數(shù)的意義,體會負(fù)數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性,會判斷一個數(shù)是正數(shù)還是負(fù)數(shù)。
2、能力目標(biāo):能應(yīng)用正負(fù)數(shù)表示生活中具有相反意義的量。
3、情感態(tài)度:讓學(xué)生了解有關(guān)負(fù)數(shù)的歷史、體會負(fù)數(shù)與實際生活的聯(lián)系。
教學(xué)重難點
重點:理解有理數(shù)的意義。
難點:能用正負(fù)數(shù)表示生活中具有相反意義的量。
教學(xué)過程
一、創(chuàng)設(shè)情境、提出問題
某班舉行知識競賽,評分標(biāo)準(zhǔn)是:答對一題加1分,答錯一題扣1分,不回答得0分;每個隊的基礎(chǔ)分均為0分。兩個隊答題情況見書上第23頁。
二、分析探索、問題解決
分組討論扣的分怎樣表示?
用前面學(xué)的數(shù)能表示嗎?
數(shù)怎么不夠用了?
引出課題。
講授正數(shù)、負(fù)數(shù)、有理數(shù)的定義。
用負(fù)數(shù)表示比“0”低的數(shù),如:-10,讀作負(fù)10,表示比0低10分的數(shù)。啟發(fā)學(xué)生再從生活中例舉出用負(fù)數(shù)表示具有相反意義的數(shù)。
三、鞏固練習(xí)
1、用正數(shù)或負(fù)數(shù)表示下列各題中的.數(shù)量:
。1)如果火車向東開出400千米記作+400千米,那么火車向西開出4000千米,記作______;
。2)球賽時,如果勝2局記作+2,那么-2表示______;
(3)若-4萬表示虧損4萬元,那么盈余3萬元記作______;
(4)+150米表示高出海平面150米,低于海平面200米應(yīng)記作_____。
分析:用正、負(fù)數(shù)可分別表示具有相反意義的量,通常高于海平面的高度用正數(shù)表示,低于海平面的高度用負(fù)數(shù)表示;完全相反的兩個方向,一個方向定為用正數(shù)表示,則另一個方向用負(fù)數(shù)表示;如運(yùn)進(jìn)與運(yùn)出,收入與支出,盈利與虧損,買進(jìn)與賣出,勝與負(fù)等都是具有相反意義的量、
2、下面說法中正確的是()。
a、“向東5米”與“向西10米”不是相反意義的量;
b、如果汽球上升25米記作+25米,那么-15米的意義就是下降-15米;
c、如果氣溫下降6℃記作-6℃,那么+8℃的意義就是零上8℃;
d、若將高1米設(shè)為標(biāo)準(zhǔn)0,高1.20米記作+0.20米,那么-0.05米所表示的高是0.95米、
三、小結(jié)回顧、納入體系
學(xué)生交流回顧、討論總結(jié),教師補(bǔ)充如下:
概念:正數(shù)、負(fù)數(shù)、有理數(shù)。
分類:有理數(shù)的分類:兩種分法。
應(yīng)用:有理數(shù)可以用來表示具有相反意義的量。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 2
教學(xué)目標(biāo)
1、會把有理數(shù)的加減法混合運(yùn)算統(tǒng)一為加法運(yùn)算;
2、會把省略加號和括號的有理數(shù)加減混合運(yùn)算看成幾個有理數(shù)的加法運(yùn)算;
3、進(jìn)一步感悟“轉(zhuǎn)化”的'思想。
教學(xué)重點
把有理數(shù)的加減法混合運(yùn)算統(tǒng)一為加法運(yùn)算
教學(xué)難點
省略負(fù)數(shù)前面的加號的有理數(shù)加法,運(yùn)用運(yùn)算律交換加數(shù)位置時,符號不變
教學(xué)過程
根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運(yùn)算可以統(tǒng)一為加法運(yùn)算
1、完成下列計算:
。1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)
歸納:根據(jù)有理數(shù)的減法法則,有理數(shù)的加減混合運(yùn)算可以統(tǒng)一為運(yùn)算;
(2)式統(tǒng)一成加法是________________________________;
省略負(fù)數(shù)前面的加號和()后的形式是______________________;
讀作____________________或_______________________
展示交流
1、把下列運(yùn)算統(tǒng)一成加法運(yùn)算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3)2+5-8=_________________________________;
(4)14-(-12)+(-25)-17=_____________________________________
2、將下列有理數(shù)加法運(yùn)算中,加號省略:
。1)12+(-8)=________________;
。2)(-12)+(-8)=_________________________________;
。3)(-9)+(-5)+(+15)+(-20)=____________________________
3、將下列運(yùn)算先統(tǒng)一成加法,再省略加號:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________
4、仿照本P37例6,完成下列計算:
(1)-4-5+6;
(2)-23+41-24+12-46
5、仿照本P38例7,巡道員沿東西方向的鐵路巡視維護(hù),從住地出發(fā),他先向東巡視了6km,休息之后,繼續(xù)向東維護(hù)了4km;然后折返向西巡視了12.5km,此時他在住地的什么方向?與駐地的距離是多少?
盤點收獲
個案補(bǔ)充
課堂反饋
1、計算:
2、早晨6:00的氣溫為℃,到中午2:00氣溫上升了8℃,到晚上10:00氣溫又下降了9℃、晚上10:00的氣溫是多少?
遷移創(chuàng)新
一架飛機(jī)做特技表演,它起飛后的高度變化情況為:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此時飛機(jī)比起飛點高了多少千米?
課堂作業(yè)
本P39習(xí)題2。5第6題(1)、(3)、(5),第7題。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 3
教學(xué)目標(biāo)
1、知識與技能
使學(xué)生經(jīng)歷探索有理數(shù)乘法的交換律、結(jié)合律和分配律,并能靈活運(yùn)用乘法運(yùn)算律進(jìn)行有理數(shù)的乘法運(yùn)算,使之計算簡便。
2、過程與方法
通過對問題的探索,培養(yǎng)觀察、分析和概括的能力。
3、情感、態(tài)度與價值觀
能面對數(shù)學(xué)活動中的困難,有學(xué)好數(shù)學(xué)的`自信心。
教學(xué)重點難點
重點:熟練運(yùn)用運(yùn)算律進(jìn)行計算。
難點:靈活運(yùn)用運(yùn)算律。
教與學(xué)互動設(shè)計
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
想一想上一節(jié)課大家一起學(xué)習(xí)了有理數(shù)的乘法運(yùn)算法則,掌握得較好。那在學(xué)習(xí)過程中,大家有沒有思考多個有理數(shù)相乘該如何來計算?
做一做(出示膠片)你能運(yùn)算嗎?
(1)234(-5)
(2)23(-4)(-5)
(3)2(-3)(-4)(-5)
(4)(-2)(-3)(-4)(-5)
(5)-1302(-20xx)0
由此我們可總結(jié)得到什么?
。ǘ┖献鹘涣鳎庾x探究
交流討論不難得到結(jié)論:幾個不為0的數(shù)乘,積的符號由負(fù)因數(shù)這個數(shù)決定。當(dāng)負(fù)因數(shù)的個數(shù)是偶數(shù)時,積為正;負(fù)因數(shù)的個數(shù)是奇數(shù)時,積為負(fù),并把絕對值相乘。
注意只要有一個因數(shù)為0,則積為0。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 4
一、教材分析
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運(yùn)算。它既是有理數(shù)運(yùn)算的深入,又是進(jìn)一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ)。對后續(xù)知識的學(xué)習(xí)也是至關(guān)重要的。
二、學(xué)情分析
對于初一學(xué)生來說,他們雖已通過學(xué)習(xí)有理數(shù)的加減法具備了初步探究問題的能力,對符號問題也有了一定的認(rèn)識,但是對知識的主動遷移能力還比較弱,因此,只要引導(dǎo)學(xué)生確定了“積”的符號,實質(zhì)上就是小學(xué)算術(shù)中數(shù)的乘法運(yùn)算了,突破了有理數(shù)乘法的符號法則這個難點,則對于有理數(shù)乘法的運(yùn)算學(xué)生就不難掌握了。
三、教學(xué)目標(biāo)(核心素養(yǎng)立意)
1、使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)的乘法運(yùn)算。
2、初步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、和解決問題的能力。
3、通過教學(xué),滲透化歸、分類討論等數(shù)學(xué)思想方法,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。
4、傳授知識的同時,注意培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和勇于探索的精神。
四、教學(xué)重、難點
重點:有理數(shù)的乘法法則。
難點:有理數(shù)乘法的符號法則
五、教學(xué)策略
我在本節(jié)課的教學(xué)中采用誘思探究式教學(xué)法,并應(yīng)用多媒體現(xiàn)代教學(xué)手段,以學(xué)生為主體,通過引導(dǎo)啟發(fā)、自主探究、點撥歸納完成教學(xué)任務(wù),實現(xiàn)教學(xué)目標(biāo)。
六、教學(xué)過程(設(shè)計為七個環(huán)節(jié))
1、復(fù)習(xí)導(dǎo)入創(chuàng)設(shè)情境
我首先出示幾個相同負(fù)數(shù)和的計算題,利用乘法的意義很自然地引出負(fù)數(shù)與正數(shù)相乘的新內(nèi)容,以形成知識的遷移。進(jìn)而引入本節(jié)課題,以問題引領(lǐng)來激發(fā)學(xué)生求知欲。
2、師生互動探究新知
要求學(xué)生自主學(xué)習(xí)課本內(nèi)容,完成課文中的填空。我給與學(xué)生充足的時間和空間。通過自主學(xué)習(xí),小組合作,教師點撥引導(dǎo)學(xué)生從有理數(shù)分為正數(shù)、零、負(fù)數(shù)三類的角度,區(qū)分出有理數(shù)乘法的情況有五種:(正×正、正×0、正×負(fù)、負(fù)×0、負(fù)×負(fù))引導(dǎo)學(xué)生根據(jù)以上實例的運(yùn)算結(jié)果,從積的符號和絕對值兩方面準(zhǔn)確地歸納出有理數(shù)的乘法的符號法則和有理數(shù)乘法的運(yùn)算法則。(板書:法則)(確定有理數(shù)乘法運(yùn)算的兩步模型:先定符號,在求絕對值)
這樣設(shè)計的目的是
1、構(gòu)造這組有規(guī)律的算式讓學(xué)生通過觀察,來發(fā)現(xiàn)算式和結(jié)果在符號、絕對值方面的關(guān)系,找到乘法結(jié)果的符號規(guī)律,突破本節(jié)課的難點。同時又突出了本節(jié)課的教學(xué)重點。
2、通過比較、分析、概括、討論、展示,滲透分類討論和從特殊歸納一般的數(shù)學(xué)思想和方法,提高學(xué)生整合知識的'能力。使學(xué)生知道”如何觀察”“如何發(fā)現(xiàn)規(guī)律”。
3、分析法則掌握實質(zhì)
。ㄓ辛艘陨系恼J(rèn)識)通過設(shè)置問題4,讓學(xué)生帶著以上的結(jié)論,認(rèn)真觀察(—5)×(—3)這個算式,首先確定積的符號(同號得正,先定號),再確定積的絕對值(5×3=15,再求值)。第二小題讓學(xué)生仿照第一小題填空、解答,理解法則的實質(zhì),真正掌握本節(jié)課的重點。這樣設(shè)計是為了再現(xiàn)知識的形成過程,避免單純的記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。
4、解決問題綜合運(yùn)用
通過習(xí)題(小試牛刀)的計算,既鞏固了有理數(shù)乘法的法則,又明確了倒數(shù)的定義,(板書:倒數(shù)-乘積是1的兩個數(shù)互為倒數(shù))。在有理數(shù)范圍內(nèi)仍有意義。本環(huán)節(jié)通過讓學(xué)生獨立思考、分組討論,完成填空,使學(xué)生有效的鞏固重點化解難點。
5、體驗成功享受快樂
利用摸牌游戲,抓住學(xué)生對競爭充滿興趣的心理特征,激發(fā)學(xué)生的學(xué)習(xí)興趣,用搶答題的形式,使學(xué)生的眼、耳、腦、口得到充分的調(diào)動,并讓學(xué)生在搶答中體驗成功,享受快樂。通過學(xué)生參與活動,調(diào)動學(xué)生學(xué)習(xí)的積極性。同時讓學(xué)生通過本環(huán)節(jié)進(jìn)一步理解有理數(shù)乘法法則,并在實際問題中進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,體現(xiàn)數(shù)學(xué)的應(yīng)用價值。這也是數(shù)學(xué)核心素養(yǎng)的要求。
6、總結(jié)收獲暢談體會
在課堂臨近尾聲時,我鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評價。讓學(xué)生充分發(fā)表自己的感受,并相互補(bǔ)充。及時有效的回顧小結(jié),進(jìn)一步明確本節(jié)課的主要內(nèi)容、思想和方法。這樣設(shè)計的目的是培養(yǎng)學(xué)生的歸納能力和語言表達(dá)能力,以及善于反思的好習(xí)慣。讓學(xué)生品嘗收獲的喜悅,堅定今后學(xué)習(xí)數(shù)學(xué)的信心。
7、布置作業(yè)鞏固深化
七、課后反思
在課堂教學(xué)過程中,我始終堅持以觀察為起點,以問題為主線,以能力培養(yǎng)為核心的宗旨;遵照教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原則;遵循由已知到未知、由淺入深、由易到難的認(rèn)知規(guī)律;采用誘思探究教學(xué)法,把課堂還給學(xué)生,讓他們主動去參與,去探究,去分析。通過創(chuàng)設(shè)、引導(dǎo)、滲透、歸納等活動讓學(xué)生在不知不覺中掌握重點,突破難點,發(fā)展能力,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。更好的促進(jìn)學(xué)生全面、持續(xù)、和諧的發(fā)展。本節(jié)課的設(shè)計一定還存在不少的紕漏和缺陷,敬請各位同仁批評指正。謝謝大家!
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 5
一、學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學(xué)生能在教師指導(dǎo)下探索問題。由于學(xué)生已了解利用數(shù)軸表示加法運(yùn)算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運(yùn)算過程。
二、課前準(zhǔn)備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學(xué)習(xí)、組間競爭學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。
三、教學(xué)目標(biāo)
1、知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、教學(xué)重點、難點
重點:運(yùn)用有理數(shù)乘法法則正確進(jìn)行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
五、教學(xué)過程
1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?
學(xué)生:
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問題(教師板書課題)
2、小組探索、歸納法則
教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。
3、運(yùn)用法則計算,鞏固法則。
(1)教師按課本P75例1板書,要求學(xué)生述說每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為。
(3)學(xué)生做P76練習(xí)1(1)(3),教師評析。
(4)教師引導(dǎo)學(xué)生做P75例2,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由決定,當(dāng)負(fù)因數(shù)個數(shù)有,積為;當(dāng)負(fù)因數(shù)個數(shù)有,積為;只要有一個因數(shù)為零,積就為。
4、討論對比,使學(xué)生知識系統(tǒng)化。
有理數(shù)乘法
有理數(shù)加法
同號
得正
取相同的符號
把絕對值相乘
(-2)(-3)=6
把絕對值相加
(-2)+(-3)=-5
異號
得負(fù)
取絕對值大的加數(shù)的符號
把絕對值相乘
(-2)3=-6
(-2)+3=1
用較大的絕對值減小的絕對值
任何數(shù)與零
得零
得任何數(shù)
5、分層作業(yè),鞏固提高。
六、教學(xué)反思:
本節(jié)課由情景引入,使學(xué)生迅速進(jìn)入角色,很快投入到探究有理數(shù)乘法法則上來,提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿意。如果是在法則運(yùn)用時,編制一些訓(xùn)練符號法則的口算題,把例2放在下一課時處理,效果可能更好。
【點評】:本節(jié)課張老師首先創(chuàng)設(shè)了一個密切社會生活的問題情景抗旱,由此引入新課,并利用學(xué)生熟悉的數(shù)軸去探究有理數(shù)的乘法法則,充分體現(xiàn)了課程源于生活,服務(wù)于生活,學(xué)生的學(xué)習(xí)是在原有知識上的自我建構(gòu)的過程等理念,教學(xué)要面向?qū)W生的生活世界和社會實踐,教學(xué)活動必須尊重學(xué)生已有的知識與經(jīng)驗,學(xué)生原有的知識和經(jīng)驗是學(xué)習(xí)的基礎(chǔ),學(xué)生的學(xué)習(xí)是在原有知識和經(jīng)驗基礎(chǔ)上的自我生成的'過程。
探索有理數(shù)乘法法則是本節(jié)課的重點,同時它又是一個具有探索性又有挑戰(zhàn)性的問題,因此張老師在這一教學(xué)環(huán)節(jié)花了大量的時間,精心設(shè)計了問題訓(xùn)練單,將學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)的原則分學(xué)習(xí)小組開展學(xué)習(xí)合作學(xué)習(xí),使學(xué)生經(jīng)歷了法則的探索過程,獲得了深層次的情感體驗,建構(gòu)知識,獲得了解決問題的方法,培養(yǎng)了學(xué)生的探索精神和創(chuàng)新能力。
為了讓學(xué)生將獲得的新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,便于記憶和提取,在教學(xué)的最后環(huán)節(jié),張老師組織學(xué)生對有理數(shù)的乘法和有理數(shù)的加法進(jìn)行對比,通過討論、比較使知識系統(tǒng)化、條理化,從而使自己的認(rèn)知結(jié)構(gòu)不斷地得以優(yōu)化。學(xué)生自己建構(gòu)知識,是建構(gòu)主義學(xué)習(xí)觀的基本觀點,當(dāng)新知識獲得之后,必須按一定方式加以組織,為新知識找到家,并為新知識安家落戶。
學(xué)生是一個活生生的人,是一個發(fā)展中的人,學(xué)生間的發(fā)展是極不平衡的,為了尊重學(xué)生的差異,以學(xué)生個體發(fā)展為本,張老師在教學(xué)中利用學(xué)生的個人性格不同,采用異質(zhì)分組,使不同性格的學(xué)生組對交流、互換角色,達(dá)到了性格互補(bǔ)的目的。采取分層作業(yè)的方式,讓不同的人在數(shù)學(xué)學(xué)習(xí)中得到了不同的發(fā)展,使每個人的認(rèn)識都得到完善,這正是新課程發(fā)展的核心理念──為了每一位學(xué)生的發(fā)展的具體體現(xiàn)。
本節(jié)課我們也同時看到在新課引入和法則探究兩個教學(xué)環(huán)節(jié)中,張老師的設(shè)計與教材完全不同,充分體現(xiàn)了教師是用教材,而不是教教材,這也是新課程所倡導(dǎo)的教學(xué)理念。教師教教科書是傳統(tǒng)的教書匠的表現(xiàn),用教科書教才是現(xiàn)代教師應(yīng)有的姿態(tài)。我們教師應(yīng)從學(xué)生實際出發(fā),因材施教,創(chuàng)造性地使用教材,大膽對教材內(nèi)容進(jìn)行取舍、深加工、再創(chuàng)造,設(shè)計出活生生的、豐富多彩的課來,充分有效地將教材的知識激活,形成有教師個性的教材知識。既要有能力把問題簡明地闡述清楚,同時也要有能力引導(dǎo)學(xué)生去探索、去自主學(xué)習(xí)。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 6
一、課題
2.4有理數(shù)的減法
二、教學(xué)目標(biāo)
1、使學(xué)生掌握有理數(shù)減法法則并熟練地進(jìn)行有理數(shù)減法運(yùn)算;
2、培養(yǎng)學(xué)生觀察、分析、歸納及運(yùn)算能力、
三、教學(xué)重點
有理數(shù)減法法則
四、教學(xué)難點
有理數(shù)減法法則
五、教學(xué)用具
三角尺、小黑板、小卡片
六、課時安排
1課時
七、教學(xué)過程
。ㄒ唬、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1、計算:
。1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0、
2、化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);
。4)+(+4);(5)-(-9);(6)-(+3)、
3、填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6、
在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學(xué)里就是減法運(yùn)算、如______+6=20,就是求20-6=14,所以14+6=20、那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運(yùn)算、
(二)、師生共同研究有理數(shù)減法法則
問題1(1)(+10)-(+3)=______;
。2)(+10)+(-3)=______、
教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,即(+10)-(+3)=(+10)+(-3)、
教師啟發(fā)學(xué)生思考:減法可以轉(zhuǎn)化成加法運(yùn)算、但是,這是否具有一般性?問題2(1)(+10)-(-3)=______;
(2)(+10)+(+3)=______、
對于(1),根據(jù)減法意義,這就是要求一個數(shù),使它與-3相加等于+10,這個數(shù)是多少?
(2)的結(jié)果是多少?
于是,(+10)-(-3)=(+10)+(+3)、
至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:
減去一個數(shù),等于加上這個數(shù)的相反數(shù)、
教師強(qiáng)調(diào)運(yùn)用此法則時注意“兩變”:一是減法變?yōu)榧臃;二是減數(shù)變?yōu)槠湎喾磾?shù)、減數(shù)變號(減法============加法)
。ㄈ、運(yùn)用舉例變式練習(xí)
例1計算:
。1)(-3)-(-5);(2)0-7、
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18)、
通過計算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):
在小學(xué)里學(xué)習(xí)的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負(fù)數(shù),其差就大于被減數(shù)、
例3世界上最高的山峰是珠穆朗瑪峰,其海拔高度大約為是8848米,吐魯番盆地的海拔高度大約是-155米,兩處高度相差多少米?
閱讀課本63頁例3
。ㄋ模、小結(jié)
1、教師指導(dǎo)學(xué)生閱讀教材后強(qiáng)調(diào)指出:
由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法、有理數(shù)的加法和減法,當(dāng)引進(jìn)負(fù)數(shù)后就可以統(tǒng)一用加法來解決、
2、不論減數(shù)是正數(shù)、負(fù)數(shù)或是零,都符合有理數(shù)減法法則、在使用法則時,注意被減數(shù)是永不變的.、
。ㄎ澹、課堂練習(xí)
1、計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2、計算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;
(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249、
3、計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
。4)(-5.9)-(-6.1);
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93)、
利用有理數(shù)減法解下列問題
4、世界最高峰是珠穆朗瑪峰,海拔高度是8848m,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是-392m、兩處高度相差多少?
八、布置課后作業(yè)
課本習(xí)題2.6知識技能的2、3、4和問題解決1
九、板書設(shè)計
2、5有理數(shù)的減法
。ㄒ唬┲R回顧(三)例題解析(五)課堂小結(jié)
例1、例2、例3
。ǘ┯^察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計
十、課后反思
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 7
教材分析
“數(shù)的運(yùn)算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容。有理數(shù)的乘法運(yùn)算是加法運(yùn)算的另一種運(yùn)算形式,它也是今后學(xué)習(xí)有理數(shù)的除法、乘方及混合運(yùn)算的基礎(chǔ)。因此本節(jié)內(nèi)容具有承前啟后的重要作用。
學(xué)情分析
1、讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)問題的過程,增加他們對問題的感性認(rèn)識。
2、通過觀察、歸納,提高學(xué)生的理性認(rèn)識。
3、培養(yǎng)學(xué)生學(xué)會表達(dá)、學(xué)會傾聽的良好品質(zhì)。
教學(xué)目標(biāo)
1、知識技能:
。1)經(jīng)歷探索有理數(shù)乘法運(yùn)算的過程,歸納有理數(shù)乘法運(yùn)算法則。
。2)掌握有理數(shù)乘法法則,能解決簡單的的實際問題。
2、數(shù)學(xué)思考:
通過自主合作探究經(jīng)歷探索有理數(shù)運(yùn)算的過程,發(fā)展學(xué)生觀察、歸納、猜想等能力。
3、問題解決:
通過自主探索和合作交流,發(fā)展學(xué)生逆向思維及化歸思想。
4、情感態(tài)度價值觀:
通過經(jīng)歷探索有理數(shù)乘法運(yùn)算的過程感受數(shù)學(xué)與生活的'緊密聯(lián)系,提高學(xué)生對知識的應(yīng)用能力以及勇于探索、敢于發(fā)言的個性品質(zhì)。
教學(xué)重點和難點
教學(xué)重點是:有理數(shù)的乘法法則的理解和運(yùn)用、
教學(xué)難點是:使學(xué)生體會有理數(shù)乘法法則規(guī)定的合理性;探究出確定兩個負(fù)數(shù)相乘和多個有理數(shù)相乘的符號符號規(guī)律。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 8
一、教學(xué)目標(biāo)
1、使學(xué)生在了解有理數(shù)乘法的意義的基礎(chǔ)上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;
2、培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力
3、使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
二、教學(xué)重點和難點
重點:有理數(shù)乘法的運(yùn)算。
難點:有理數(shù)乘法中的符號法則。
三、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
四、教學(xué)方法
啟發(fā)式教學(xué)
五、教學(xué)過程
(一)、研究有理數(shù)乘法法則
問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解①32=6
答:上升了6厘米。
問題2水庫的水位平均每小時上升-3厘米,2小時上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米)。
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3(-2)=?(-3)(-2)=?(學(xué)生答)
把3(-2)和①式對比,這里把一個因數(shù)2換成了它的`相反數(shù)-2,所得的積應(yīng)是原來的積6的相反數(shù)-6,即3(-2)=-6。
把(-3)(-2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的積-6的相反數(shù)6,即(-3)(-2)=6。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 9
教學(xué)目標(biāo)
1.知識與技能
、俳(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證的能力。
、跁M(jìn)行有理數(shù)的乘法運(yùn)算。
2.過程與方法
通過對問題的變式探索,培養(yǎng)觀察、分析、抽象的能力。
3.情感、態(tài)度與價值觀
通過觀察、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗數(shù)學(xué)活動中的探索性和創(chuàng)造性。
教學(xué)重點難點
重點:能按有理數(shù)乘法法則進(jìn)行有理數(shù)乘法運(yùn)算。
難點:含有負(fù)因數(shù)的乘法。
教與學(xué)互動設(shè)計
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
做一做出示一組算式,請同學(xué)們用計算器計算并找出它們的.規(guī)律。
例1(1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2(1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解讀探究
想一想你們發(fā)現(xiàn)積的符號與因數(shù)的符號之間的關(guān)系如何?
學(xué)生活動:計算、討論。
總結(jié)一正一負(fù)的兩個數(shù)的乘積為負(fù);兩正或兩負(fù)的乘積是正數(shù)。
兩數(shù)相乘,同號得正,異號得負(fù)。
想一想兩數(shù)相乘,積的絕對值是怎么得到的呢?
學(xué)生:是兩因數(shù)的絕對值的積。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 10
一、學(xué)情分析:
1、學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過非負(fù)有理數(shù)的四則運(yùn)算以及運(yùn)算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對值的有關(guān)概念,并掌握了有理數(shù)的加減運(yùn)算法則及其混和運(yùn)算的方法,學(xué)會了由運(yùn)算解決簡單的實際問題,具備了學(xué)習(xí)有理數(shù)乘法的知識技能基礎(chǔ)。
2、學(xué)生的活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)歷了探索加法運(yùn)算法則的活動,并且通過觀察"水位的變化",運(yùn)用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學(xué)活動經(jīng)驗,同時在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過程,具有了合作和探索的意識。
二、教材分析:
教科書基于學(xué)生已掌握了有理數(shù)加法、減法運(yùn)算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進(jìn)行有理數(shù)的運(yùn)算。
本節(jié)課的數(shù)學(xué)目標(biāo)是:
。薄⒔(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;
2、學(xué)會進(jìn)行有理數(shù)的乘法運(yùn)算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:
三、教學(xué)過程設(shè)計:
本節(jié)課設(shè)計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):問題情境,引入新課
問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。
。ǎ玻┤绻谜柋硎舅簧仙,用負(fù)號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。
設(shè)計意圖:培養(yǎng)學(xué)生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學(xué)知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式
。ǎ场粒矗剑保玻敲聪铝幸唤M算式的結(jié)果應(yīng)該如何計算?請同學(xué)們思考:
。ǎ常粒常剑撸撸撸撸;
。ǎ常粒玻剑撸撸撸撸;
。ǎ常粒保剑撸撸撸撸;
。ǎ常粒埃剑撸撸撸撸。
(2)當(dāng)同學(xué)們寫出結(jié)果并說明道理時,讓學(xué)生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
。ǎ常粒ǎ保剑撸撸撸撸撸
。ǎ常粒ǎ玻剑撸撸撸撸撸
。ǎ常粒ǎ常剑撸撸撸撸撸
。ǎ常粒ǎ矗剑撸撸撸撸。
教前設(shè)計意圖:以算式求解和探究問題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負(fù)數(shù)與非負(fù)數(shù)相乘的'一組算式中發(fā)現(xiàn)規(guī)律后,猜想負(fù)數(shù)與負(fù)數(shù)相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項:(1)本環(huán)節(jié)的設(shè)計理念是學(xué)生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補(bǔ)充,完善結(jié)論。但在實際過程中,學(xué)生對結(jié)論的表述有困難,或者表達(dá)不準(zhǔn)確,不全面,對于這些問題,不能求全責(zé)備,而應(yīng)循循善誘,順勢引導(dǎo),幫助學(xué)生盡可能簡練準(zhǔn)確的表述,也不要擔(dān)心時間不足而代替學(xué)生直接表述法則。
。ǎ玻┱故緝山M算式時,注意板書藝術(shù),把算式豎排,并對齊書寫,這樣易于學(xué)生觀察特點,發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗證明確結(jié)論
問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘,任何數(shù)與零相乘,積仍為零。進(jìn)行驗證活動,出示一組算式由學(xué)生完成。
4×(-4)=_____;
。础粒ǎ常剑撸撸撸撸;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
。ā矗粒玻剑撸撸撸撸撸
。ā矗粒ǎ保剑撸撸撸撸撸
。ā矗粒ǎ玻剑撸撸撸撸。
教前設(shè)計意圖:這個環(huán)節(jié)的設(shè)計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習(xí)和熟悉過程。
教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計這個環(huán)節(jié),確實讓學(xué)生體驗經(jīng)歷驗證過程。
。ǎ玻┍经h(huán)節(jié)的重點是驗證乘法法則的正確性而不是運(yùn)用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。
。ǎ常┰谟贸朔ǚ▌t計算時,要注意其運(yùn)算步驟與加法運(yùn)算一樣,都是先確定結(jié)果的符號,再進(jìn)行絕對值的運(yùn)算。另外還應(yīng)注意:法則中的“同號得正,異號得負(fù)”是專指“兩數(shù)相乘而言的,”不可以運(yùn)用到加法運(yùn)算中去。
第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高
活動內(nèi)容:
(1)1。計算:
⑴(-4)×5;⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。計算:
、牛ǎ矗粒怠粒ǎ啊#玻担;⑵(-3÷5)×(-5÷6)×(-2);
3。“議一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?
。ǎ矗┯嬎悖
、牛ǎ8)×21÷4;⑵4÷5×(-25÷6)×(-7÷10);
、2÷3×(-5÷4);⑷(-24÷13)×(-16÷7)×0×4÷3;
、5÷4×(-1.2)×(-1÷9);⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設(shè)計意圖:對有理數(shù)乘法法則的鞏固和運(yùn)用,練習(xí)和提高。
教后反思事項:(1)學(xué)生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運(yùn)算應(yīng)注明理由,運(yùn)算熟練后,可不要求書寫每一步的理由;
。2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵學(xué)生通過對例2的運(yùn)算結(jié)果觀察分析,用自己的語言表達(dá)所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時,教師可設(shè)置如下一組算式讓學(xué)生計算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個任務(wù)。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗剑撸撸撸撸;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗粒埃剑撸撸撸撸。
通過對以上算式的計算和觀察,學(xué)生不難得出結(jié)論:多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當(dāng)然這段語言,不需要讓學(xué)習(xí)背誦,只要理解會用即可。
第五環(huán)節(jié):感悟反思課堂
問題:
1、本節(jié)課大家學(xué)會了什么?
2、有理數(shù)乘法法則如何敘述?”
3、有理數(shù)乘法法則的探索采用了什么方法?
4、你的困惑是什么。
教前設(shè)計意圖:培養(yǎng)學(xué)生的口頭表達(dá)能力,提高學(xué)生的參與意識。激勵學(xué)生展示自我。
教后反思事項:學(xué)生時,可能會有語言表達(dá)障礙或表達(dá)不流暢,但只要不影響運(yùn)算的正確性,則不必強(qiáng)調(diào)準(zhǔn)確記憶,而應(yīng)鼓勵學(xué)生大膽發(fā)言,同時教師可用準(zhǔn)確的語言適時的加以點撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴(kuò)廣1
預(yù)習(xí)作業(yè);略
四、教學(xué)反思:
1、設(shè)計條理的問題串,使觀察、猜想、驗證水到渠成
2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
。、合理使用多媒體教學(xué)手段可以彌補(bǔ)課堂時間的不足,但絕不能代替必要的板書。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 11
一、教學(xué)目標(biāo)
1、知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、教學(xué)重點、難點
重點:運(yùn)用有理數(shù)乘法法則正確進(jìn)行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的`理解。
三、教學(xué)過程
1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問題
2、小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。
、2×3
2看作向東運(yùn)動2米,×3看作向原方向運(yùn)動3次。
結(jié)果:向運(yùn)動米
2×3=
②-2×3
-2看作向西運(yùn)動2米,×3看作向原方向運(yùn)動3次。
結(jié)果:向運(yùn)動米
-2×3=
、2×(-3)
2看作向東運(yùn)動2米,×(-3)看作向反方向運(yùn)動3次。
結(jié)果:向運(yùn)動米
2×(-3)=
④(-2)×(-3)
-2看作向西運(yùn)動2米,×(-3)看作向反方向運(yùn)動3次。
結(jié)果:向運(yùn)動米
(-2)×(-3)=
。2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=()同號得
。-)×(+)=()異號得
(+)×(-)=()異號得
。-)×(-)=()同號得
②積的絕對值等于。
③任何數(shù)與零相乘,積仍為。
。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、運(yùn)用法則計算,鞏固法則。
。1)教師按課本P75例1板書,要求學(xué)生述說每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為。
。3)學(xué)生做練習(xí),教師評析。
。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 12
教學(xué)目的:
1、知識與技能
體會有理數(shù)乘法的實際意義;
掌握有理數(shù)乘法的運(yùn)算法則和乘法法則,靈活地運(yùn)用運(yùn)算律簡化運(yùn)算。
2、過程與方法
經(jīng)歷有理數(shù)乘法的推導(dǎo)過程,用分類討論的思想歸納出兩數(shù)相乘的法則,感悟中、小學(xué)數(shù)學(xué)中的乘法運(yùn)算的重要區(qū)別。
通過體驗有理數(shù)的乘法運(yùn)算,感悟和歸納出進(jìn)行乘法運(yùn)算的一般步驟。
3、情感、態(tài)度與價值觀
通過類比和分類的思想歸納乘法法則,發(fā)展舉一反三的能力。
教學(xué)重點:
應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算。
教學(xué)難點:
兩負(fù)數(shù)相乘,積的符號為正。
教具準(zhǔn)備:
多媒體。
教學(xué)過程:
一、引入
前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加法運(yùn)算和減法運(yùn)算,今天,我們開始研究有理數(shù)的乘法運(yùn)算。
問題一:有理數(shù)包括哪些數(shù)?
回答:有理數(shù)包括正整數(shù)、正分?jǐn)?shù)、負(fù)整數(shù)、負(fù)分?jǐn)?shù)和零。
問題二:小學(xué)已經(jīng)學(xué)過的乘法運(yùn)算,屬于有理數(shù)中哪些數(shù)的運(yùn)算?
回答:屬于正有理數(shù)和零的乘法運(yùn)算。或答:屬于正整數(shù)、正分?jǐn)?shù)和零的`乘法運(yùn)算。
計算下列各題;
以上這些題,都是對正有理數(shù)與正有理數(shù)、正有理數(shù)與零、零與零的乘法,方法與小學(xué)學(xué)過的相同,今天我們要研究的有理數(shù)的乘法運(yùn)算,重點就是要解決引入負(fù)有理數(shù)之后,怎樣進(jìn)行乘法運(yùn)算的問題。
二、新課
我們以蝸牛爬行距離為例,為區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正,為區(qū)分時間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正。
如圖,一只蝸牛沿直線l爬行,它現(xiàn)在的位置恰在l上的點O。
1、正數(shù)與正數(shù)相乘
問題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點O右邊6cm處,這可表示為
(+2)×(+3)=+6
答:結(jié)果向東運(yùn)動了6米。
2、負(fù)數(shù)與正數(shù)相乘
問題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點O右邊6cm處,這可表示為
(-2)×(+3)=(-6)
3、正數(shù)與負(fù)數(shù)相乘
問題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
講解:3分后蝸牛應(yīng)為l上點O左邊6cm處,這可以表示為
(+2)×(-3)=-6
4、負(fù)數(shù)與負(fù)數(shù)相乘
問題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
講解:3分前蝸牛應(yīng)為l上點O右邊6cm處,這可以表示為
(-2)×(-3)=+6
5、零與任何數(shù)相乘或任何數(shù)與零相乘
問題五:原地不動或運(yùn)動了零次,結(jié)果是什么?
答:結(jié)果都是仍在原處,即結(jié)果都是零,若用式子表達(dá):
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0。
綜合上述五個問題得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6。
(5)任何數(shù)與零相乘都得零。
觀察上述(1)~(4)回答:
1、積的符號與因數(shù)的符號有什么關(guān)系?
2、積的絕對值與因數(shù)的絕對值有什么關(guān)系?
答:
1、若兩個因數(shù)的符號相同,則積的符號為正;若兩個因數(shù)的符號相反,則積的符號為負(fù)。
2、積的絕對值等于兩個因數(shù)的絕對值的積。
由此我們可以得到:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。
(1)~(5)包括了兩個有理數(shù)相乘的所有情況,綜合上述各種情況,得到有理數(shù)乘法的法則:
口答:確定下列兩數(shù)積的符號:
例題:計算下列各題:
解題步驟:
1、認(rèn)清題目類型。
2、根據(jù)法則確定積的符號。
3、絕對值相乘。
練習(xí):
1、口答下列各題:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一個數(shù)與1相乘得原數(shù),一個數(shù)與-1相乘,得原數(shù)的相反數(shù)。
2、在表中的各個小方格里,填寫所在的橫行的第一個數(shù)與所在直列的第一個數(shù)的積:
3、計算下列各題:
(1)(-36)×(-15);(2)-48×1.25;
4、填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____;-(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____;-1×|-5|=____;
-|-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____。
三、小結(jié)
(1)指導(dǎo)學(xué)生看書,精讀乘法法則。
(2)強(qiáng)調(diào)運(yùn)用法則進(jìn)行有理數(shù)乘法的步驟。
(3)比較有理數(shù)乘法的符號法則與有理數(shù)加法的符號法則的區(qū)別,以達(dá)到進(jìn)一步鞏固有理數(shù)乘法法則的目的。
四、作業(yè)
1、計算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16)。
2、計算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32)。
3、計算:
4、填空:(用“>”或“<”號連接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)當(dāng)a>0時,a____2a;
(4)當(dāng)a<0時,a____2a。
板書設(shè)計
1.4有理數(shù)的乘法
法則:練習(xí)
教學(xué)設(shè)計思路
本節(jié)課是在小學(xué)已接觸到的乘法、初中剛學(xué)習(xí)過的有理數(shù)的加減法基礎(chǔ)上進(jìn)行的。通過對實際問題的解決,引入有理數(shù)的乘法法則。在講解運(yùn)動的例子時運(yùn)用現(xiàn)代化教學(xué)手段,把圖形中的“靜”變“動”,增強(qiáng)了直觀性,初步培養(yǎng)想象能力。
教學(xué)反思
強(qiáng)調(diào)學(xué)生與教師一起共同參與教學(xué)活動,我們堅持把教學(xué)活動過程體現(xiàn)在教學(xué)中,又激發(fā)學(xué)生的思維積極性,讓學(xué)生學(xué)會分析問題和解決問題。
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 13
教學(xué)目的:
。ㄒ唬┲R點目標(biāo):有理數(shù)的乘法運(yùn)算律。
。ǘ┠芰τ(xùn)練目標(biāo):
1、經(jīng)歷探索有理數(shù)乘法的運(yùn)算律的過程,發(fā)展觀察、歸納的能力。
2、能運(yùn)用乘法運(yùn)算律簡化計算。
。ㄈ┣楦信c價值觀要求:
1、在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2、在討論的過程中,使學(xué)生感受集體的`力量,培養(yǎng)團(tuán)隊意識。
教學(xué)重點:
乘法運(yùn)算律的運(yùn)用。
教學(xué)難點:
乘法運(yùn)算律的運(yùn)用。
教學(xué)方法:
探究交流相結(jié)合。
創(chuàng)設(shè)問題情境,引入新課
[活動1]
問題1:有理數(shù)的加法具有交換律和結(jié)合律,在以前學(xué)過的范圍內(nèi)乘法交換律、結(jié)合律,以及乘法對加法的分配律都是成立的,那么在有理數(shù)的范圍內(nèi),乘法的這些運(yùn)算律成立嗎?
問題2:計算下列各題:
。1)(—7)×8;
。2)8×(—7);
。5)[3×(—4)]×(—5);
。6)3×[(—4)×(—5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(—7)]和5×3十5×(—7);(略)
[師](—5)×(3—7)和(—5)×3—5×7的結(jié)果相等嗎?
。ㄗ⒁猓海ā5)×(3—7)中的3—7應(yīng)看作3與(—7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達(dá)出來。
應(yīng)得出:
1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
2、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3、一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
用簡便方法計算。
[活動4]
練習(xí)(教科書第42頁)
課時小結(jié):
這節(jié)課我們學(xué)習(xí)乘法的運(yùn)算律及它們的運(yùn)用,使我們體驗到了掌握一般的正常運(yùn)算外,還要靈活運(yùn)用運(yùn)算律,能簡便的一定要簡便,這樣做既快又準(zhǔn)。
課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
活動與探究:
用簡便方法計算:
。1)6.868×(—5)+6.868×(一12)+6.868×(+17)
。2)[(4×8)×25一8]×125
數(shù)學(xué)有理數(shù)的乘法教案設(shè)計 14
學(xué)習(xí)目標(biāo):
1、知識目標(biāo):了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運(yùn)用有理數(shù)的法則進(jìn)行準(zhǔn)確運(yùn)算。
2、能力目標(biāo):通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
3、情感目標(biāo):培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。
學(xué)習(xí)重點、難點
重點:有理數(shù)乘法運(yùn)算法則的推導(dǎo)及熟練運(yùn)用。
難點:有理數(shù)乘法運(yùn)算中積的符號的確定。
學(xué)習(xí)過程
一、預(yù)習(xí)導(dǎo)航
1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?
求幾個的運(yùn)算,叫乘法。
一個數(shù)同0相乘,得0。
2、請你列舉幾道小學(xué)學(xué)過的`乘法算式。
二、合作探究、展示交流
1、問題1:森林里住著一只蝸牛,每天都要離開家去尋找食物,如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘后蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
可以列式為:(+2)(+3)=
問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
可以列式為:
問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
可以表示為:
問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
規(guī)定:向右為正,現(xiàn)在之后為正。
3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
可以表示為:
2、觀察這四個式子:
(+2)(+3)=+6(—2)(—3)=+6
。ā2)(+3)=—6(+2)(—3)=—6
根據(jù)你對有理數(shù)乘法的思考,總結(jié)填空:
正數(shù)乘正數(shù)積為__數(shù):負(fù)數(shù)乘負(fù)數(shù)積為__數(shù):
負(fù)數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負(fù)數(shù)積為__數(shù):
乘積的絕對值等于各乘數(shù)絕對值的_____。
思考:當(dāng)一個因數(shù)為0時,積是多少?
3、試著總結(jié)一下有理數(shù)乘法法則吧:
兩數(shù)相乘,同號得,異號得,并把絕對值。
任何數(shù)同0相乘,都得。
三、小試牛刀。
1、你能確定下列乘積的符號嗎?
37積的符號為;(—3)7積的符號為;
3(—7)積的符號為;(—3)(—7)積的符號為。
2先閱讀,再填空:
。ā5)x(—3)。同號兩數(shù)相乘
。ā5)x(—3)=+()得正
5x3=15把絕對值相乘
所以(—5)x(—3)=15
填空:(—7)x4____________________
(—7)x4=—()___________
7x4=28_____________
所以(—7)x4=____________
[例1]計算:
。1)(—5)(2)(—5)
。3)(—6)(—0.45)(4)(—7)0=
解:(1)(—5)(—6)=+(56)=+30=30
請同學(xué)們仿照上述步驟計算(2)(3)(4)。
。2)(—5)6==
。3)(—6)(—0.45)==
。4)(—7)0=
讓我們來總結(jié)求解步驟:
兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。
四、鞏固練習(xí)
1、小組口算比賽,看誰更棒
(1)3(—4)(2)2(—6)(3)(—6)2
。4)6(—2)(5)(—6)0(6)0(—6)
2、仔細(xì)計算。,注意積的符號和絕對值。
。1)(—4)0.25(2)(—0.5)(—2)(3)(—)
。4)(—2)(—)(5)(—)(—)(6)(—)5
3、用正負(fù)數(shù)表示氣溫的變化量,上升為正,下降為負(fù)。登山隊攀登一座山峰,每登高1千米,氣溫的變化量為—6℃,攀登3千米后,氣溫有什么變化?
五、一分鐘過關(guān)檢測
1、下列說法錯誤的是()
A、一個數(shù)同0相乘,仍得0
B、一個數(shù)同1相乘,仍得原數(shù)
C、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)
D、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)
2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()
A、10B、12C、—20D、不是以上的答案
3、計算下列各題:
。1)(—10)(—9)=(2)(—9)(—10)=;(3)9(—2)=;(4)(—2)9=;
。5)(—6)(—5)=;(6)(—5)(—6)=
六、體會聯(lián)想:
1、有理數(shù)的乘法的計算步驟分哪兩步?
2、有理數(shù)的乘法法則是什么?
【數(shù)學(xué)有理數(shù)的乘法教案設(shè)計】相關(guān)文章:
《有理數(shù)的乘法》數(shù)學(xué)教案09-19
有理數(shù)的乘法數(shù)學(xué)教案07-07
有理數(shù)的乘法數(shù)學(xué)教案優(yōu)秀03-26
有理數(shù)乘法說課稿11-21
有理數(shù)的乘法數(shù)學(xué)教案(通用8篇)07-11
有理數(shù)的乘法數(shù)學(xué)教案通用(6篇)07-07