- 相關(guān)推薦
數(shù)學(xué)教案:圓柱的體積
作為一位兢兢業(yè)業(yè)的人民教師,總歸要編寫教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。我們?cè)撛趺慈懡贪改?下面是小編為大家收集的?shù)學(xué)教案:圓柱的體積,僅供參考,希望能夠幫助到大家。
數(shù)學(xué)教案:圓柱的體積1
教學(xué)目標(biāo)
圓柱的體積(1)
圓柱的體積(教材第25頁例5)。
探索并掌握?qǐng)A柱的體積計(jì)算公式,會(huì)運(yùn)用公式計(jì)算圓柱的體積,體會(huì)轉(zhuǎn)化的思想方法。
教學(xué)重難點(diǎn)
1.掌握?qǐng)A柱的體積公式,并能運(yùn)用其解決簡單實(shí)際問題。
2.理解圓柱體積公式的推導(dǎo)過程。
教學(xué)工具
推導(dǎo)圓柱體積公式的圓柱教具一套。
教學(xué)過程
復(fù)習(xí)導(dǎo)入
1、口頭回答。
(1)什么叫體積?怎樣求長方體的體積?
(2)怎樣求圓的面積?圓的面積公式是什么?
(3)圓的面積公式是怎樣推導(dǎo)的?在學(xué)生回憶的基礎(chǔ)上,概括出“轉(zhuǎn)化圖形——建立聯(lián)系——推導(dǎo)公式”的方法。
2、引入新課。
我們?cè)谕茖?dǎo)圓的面積公式時(shí),是把它轉(zhuǎn)化成近似的長方形,找到這個(gè)長方形與圓各部分之間的聯(lián)系,由長方形的面積公式推導(dǎo)出了圓的面積公式。今天,我們能不能也用這個(gè)思路研究圓柱體積的計(jì)算問題呢?
教師板書:圓柱的體積(1)。
新課講授
1、教學(xué)圓柱體積公式的推導(dǎo)。
(1)教師演示。
把圓柱的底面分成16個(gè)相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。
(2)學(xué)生利用學(xué)具操作。
(3)啟發(fā)學(xué)生思考、討論:
①圓柱切開后可以拼成一個(gè)什么立體圖形?
學(xué)生:近似的長方體。
、谕ㄟ^剛才的實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
教師:拼成的近似長方體和圓柱相比,體積大小變了沒有?形狀呢?
學(xué)生:拼成的近似長方體和圓柱相比,底面的形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方體的高就是圓柱的高,沒有變化。故體積不變。
(4)學(xué)生根據(jù)圓的'面積公式推導(dǎo)過程,進(jìn)行猜想:
、偃绻褕A柱的底面平均分成32份,拼成的形狀是怎樣的?
②如果把圓柱的底面平均分成64份,拼成的形狀是怎樣的?
③如果把圓柱的底面平均分成128份,拼成的形狀是怎樣的?
(5)啟發(fā)學(xué)生說出:通過以上的觀察,發(fā)現(xiàn)了什么?
①平均分的份數(shù)越多,拼起來的形狀越接近長方體。
②平均分的份數(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個(gè)立體形狀就越接近長方體。
(6)推導(dǎo)圓柱的體積公式。
、賹W(xué)生分組討論:圓柱的體積怎樣計(jì)算?
、趯W(xué)生匯報(bào)討論結(jié)果,并說明理由。
教師:因?yàn)殚L方體的體積等于底面積乘高,而近似長方體的體積等于圓柱的體積,近似長方體的底面積等于圓柱的底面積,近似長方體的高等于圓柱的高,所以圓柱的體積=底面積×高。
2、教學(xué)補(bǔ)充例題。
(1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是1250px2,高是2.1m。它的體積是多少?
(2)指名學(xué)生分別回答下面的問題:
①這道題已知什么?求什么?
、谀懿荒芨鶕(jù)公式直接計(jì)算?
、塾(jì)算之前要注意什么?
學(xué)生:計(jì)算時(shí)既要分析已知條件和問題,還要注意先統(tǒng)一計(jì)量單位。
(3)出示下面幾種解答方案,讓學(xué)生判斷哪個(gè)是正確的。
、50×2.1=105(cm3)答:它的體積是2625px3。
、2.1m=5250px 50×210=10500(cm3)
答:它的體積是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的體積是1.05m3。
、1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的體積是0.0105m3。
先讓學(xué)生思考,然后指名學(xué)生回答哪個(gè)是正確的解答,并比較一下哪一種解答更簡單。對(duì)不正確的第①、③種解答要說說錯(cuò)在什么地方。
(4)引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計(jì)算公式是怎樣的?
教師板書:V=πr2h。
課堂作業(yè)
教材第25頁“做一做”和教材第28頁練習(xí)五的第1題。學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
課堂小結(jié)
通過這節(jié)課的學(xué)習(xí),你有什么收獲?你有什么感受?
課后作業(yè)
完成練習(xí)冊(cè)中本課時(shí)的練習(xí)。
第4課時(shí)圓柱的體積(1)
課后小結(jié)
1.“圓柱的體積”是學(xué)生在掌握了圓柱的基本特征以及長方體、正方體體積計(jì)算方法等基礎(chǔ)上學(xué)習(xí)的。它是今后學(xué)習(xí)圓錐體積計(jì)算的基礎(chǔ)。
2.采用小組合作學(xué)習(xí),從而引發(fā)自主探究,最后獲取知識(shí)的新方式來代替教師講授的老模式,能取得事半功倍的效果。
3.推導(dǎo)公式時(shí)間過長,可能導(dǎo)致練習(xí)時(shí)間少,練習(xí)量少,要注意把控。
課后習(xí)題
教材第25頁“做一做”和教材第28頁練習(xí)五的第1題。學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
數(shù)學(xué)教案:圓柱的體積2
圓柱的體積
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計(jì)算公式的推導(dǎo),利用公式直接計(jì)算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識(shí)作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個(gè)圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計(jì)算公式。
教學(xué)目的:
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,并理解這個(gè)過程。
2。會(huì)用圓柱的體積計(jì)算圓柱形物體的體積和容積,運(yùn)用公式解決一些簡單的問題。
3。引導(dǎo)學(xué)生逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力
4。借助實(shí)物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
教 具:圓柱的體積公式演示教具,多媒體課件
教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計(jì)算出這些水的體積嗎?
。3)討論后匯報(bào):把水倒入長方體容器中,量出數(shù)據(jù)后再計(jì)算。(4)說一說長方體體積的計(jì)算公式。
2、創(chuàng)設(shè)問題情景。(課件顯示)
如果要求壓路機(jī)圓柱形前輪的.體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時(shí)候,有沒有像求長方體或正方體體積那樣的計(jì)算公式呢?
今天,我們就來一起研究圓柱體積的計(jì)算方法。(出示課題:圓柱的體積)(設(shè)計(jì)意圖:問題是思維的動(dòng)力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,積極思考,去探索和解決實(shí)際問題,并能制造認(rèn)知沖突,形成"任務(wù)驅(qū)動(dòng)"的探究氛圍。)
二、新課教學(xué):
設(shè)疑揭題:我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個(gè)問題。板書課題:圓柱的體積。
1。探究推導(dǎo)圓柱的體積計(jì)算公式。
課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個(gè)問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
討論并得出結(jié)果。你能根據(jù)這個(gè)實(shí)驗(yàn)得出圓柱的體積計(jì)算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個(gè)長方體的底面積與圓柱體的底面積 ,這個(gè)長方體的高與圓柱體的高 。因?yàn)殚L方體的體積等于底面積乘以高,所以,圓柱體的體積計(jì)算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計(jì)意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識(shí),在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實(shí)經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程當(dāng)中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)
要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
填表:請(qǐng)同學(xué)看屏幕回答下面問題,
底面積(㎡)高(m)圓柱體積(m3)
63
0.5 8
52
(設(shè)計(jì)意圖:設(shè)計(jì)練習(xí)能使學(xué)生達(dá)到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點(diǎn),夯實(shí)基礎(chǔ)知)
例:一個(gè)圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米。它的容積約是多少立方分米?(得數(shù)保留整立方分米)
解: d=6dm,h=7dm。r=3dm
S底 =πr2=3。14×32 =3。14×9 =28。26(dm2)
V =S底h =28。26×7 =197。82198dm3 答:油桶的容積約是198立方分
。ㄔO(shè)計(jì)意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)
三.鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題,教師歸納學(xué)生所用的解題方法,強(qiáng)調(diào)在解題的過程當(dāng)中格式。(設(shè)計(jì)意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會(huì)靈活運(yùn)用公式的訓(xùn)練題。通過對(duì)公式的拓展性理解,可以進(jìn)一步加深學(xué)生對(duì)圓柱體積公式的理解和掌握,同時(shí)也能培養(yǎng)學(xué)生的邏輯思維能力。)
練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm。已知水杯中水的體積是整個(gè)水杯體積的 2/3 計(jì)算水杯中水的體積?
。ㄔO(shè)計(jì)意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實(shí)際的習(xí)題,讓學(xué)生運(yùn)用公式解決引入環(huán)節(jié)中的兩個(gè)問題,切實(shí)體驗(yàn)到數(shù)學(xué)就存在于自己的身邊。)
四.拓展練習(xí)
1.一個(gè)長方形的紙片長是6分米,寬4分米。用它分別圍成兩個(gè)圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請(qǐng)你計(jì)算說明理由。(結(jié)果保留π)
2.一個(gè)底面直徑是20cm的圓柱形容體里,放進(jìn)一個(gè)不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
(設(shè)計(jì)意圖:安排了密切聯(lián)系生活實(shí)際的習(xí)題,讓學(xué)生運(yùn)用公式解決引入環(huán)節(jié)中的兩個(gè)問題,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)的價(jià)值體驗(yàn)到數(shù)學(xué)對(duì)于了解周圍世界和解決實(shí)際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)
五.課堂小結(jié):
1.談?wù)勥@節(jié)課你有哪些收獲。
2.解題時(shí)需要注意那些方面。
。ㄔO(shè)計(jì)意圖:收獲包括知識(shí)、能力、方法、情感等全方位的體會(huì),在這里采用提問式小結(jié),使學(xué)生暢談收獲、發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生的語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力;同時(shí)通過對(duì)本節(jié)所學(xué)知識(shí)的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識(shí)系統(tǒng)化、完整化。)
六.布置作業(yè)
1。A冊(cè)習(xí)題2。7
2。拓展練習(xí)2題
教學(xué)反思: 本節(jié)課的教學(xué)體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;二、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動(dòng)多種感觀參與學(xué)習(xí);三、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識(shí)的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果,不足處學(xué)生討論時(shí)間控制太少,課后作業(yè)個(gè)別學(xué)生還是對(duì)公式不會(huì)靈活應(yīng)用。
數(shù)學(xué)教案:圓柱的體積3
教學(xué)內(nèi)容:P19-20頁例5、例6及補(bǔ)充例題,完成“做一做”及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個(gè)近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的'面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個(gè)近似長方體的立體圖形。
數(shù)學(xué)教案:圓柱的體積4
教學(xué)目標(biāo):
1.結(jié)合實(shí)際讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,能正確運(yùn)用公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
教學(xué)重點(diǎn):
理解并掌握?qǐng)A柱體積計(jì)算公式,并能應(yīng)用公式計(jì)算圓柱的體積。
教學(xué)準(zhǔn)點(diǎn):
掌握?qǐng)A柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱的體積演示教具、多媒體課件、圓柱實(shí)物2個(gè)(一個(gè)為橡皮泥)、水槽、水。
教學(xué)過程:
一、情境激趣導(dǎo)入新課
1、課始師首先出示一個(gè)長方體和一個(gè)正方體,說說怎樣求它們的體積,接著師往正方體容器中倒入一定量的水,然后拿出一個(gè)圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:有什么現(xiàn)象發(fā)生?由這個(gè)發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?” (板書課題)
二、自主探究, 學(xué)習(xí)新知
(一)設(shè)疑
1、從剛才的實(shí)驗(yàn)中你有辦法得到這個(gè)圓柱學(xué)具的體積嗎?
2、再出示一個(gè)用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
3、如果要求大廳內(nèi)圓柱的體積,或壓路機(jī)前輪的體積,還能用剛才的方法嗎?(生搖頭)
師:看來,我們剛才的方法有一定的局限性,要是能像求長方體或正方體那樣,有一個(gè)通用的公式
(二)猜想
1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
2、大家再來大膽猜測(cè)一個(gè),圓柱的體積公式可能是什么?說說你的理由?
。ㄈ(yàn)證
1、為了證實(shí)剛才的猜想,我們可以通過實(shí)驗(yàn)來驗(yàn)證。怎樣進(jìn)行這個(gè)實(shí)驗(yàn)?zāi)?結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)
2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報(bào)交流)
3、指名兩位學(xué)生上臺(tái)用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長方體。
4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時(shí),拼成的圖形越接近長方體。
5、通過上面的觀察小組討論:
(1) 圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?
(2) 長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(3) 長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(4) 你認(rèn)為圓柱的體積可以怎樣計(jì)算?
。ㄉ鷧R報(bào)交流,師根據(jù)學(xué)生講述適時(shí)板書。)
小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因?yàn)殚L方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是V=Sh。
6、同桌相互說說圓柱體積的推導(dǎo)過程。
7、完成“做一做 ”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評(píng)價(jià))
8、求圓柱體積要具備什么條件?
9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)
小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個(gè)圓柱的體積?(測(cè)不同數(shù)據(jù)計(jì)算)
11、練一練:列式計(jì)算求下列各圓柱體的體積。
。1)底面半徑2cm,高5cm。
(2)底面直徑6dm,高1m。
。3)底面周長6.28m,高4m。
三、練習(xí)鞏固拓展提升
1、判斷正誤:
(1)等底等高的圓柱體和長方體體積相等。………………()
。2)一個(gè)圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....()
。3)圓柱的底面積越大,它的體積就越大。............( )
(4)一個(gè)圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。......( )
2、這是我們學(xué)校種榕樹的一個(gè)花壇,測(cè)得花壇內(nèi)直徑是4m,花壇內(nèi)填土高度是0.5m,算一算這個(gè)花壇內(nèi)一共填土多少立方米?
3、學(xué)習(xí)很愉快,我們來慶祝一下:在一個(gè)棱長為20厘米正方體紙盒中,放一個(gè)最大的圓柱體蛋糕,系上180厘米長的絲帶(打結(jié)部分忽略不計(jì)),那么這個(gè)蛋糕的體積到底是多少呢?
四、全課總結(jié)自我評(píng)價(jià)
通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
教學(xué)反思:
圓柱的體積是幾何知識(shí)的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識(shí)和計(jì)算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握?qǐng)A柱體積的.計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:
一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。
《新課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個(gè)裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時(shí)意識(shí)到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時(shí),學(xué)生意識(shí)到前面所說求體積計(jì)算方法的局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計(jì)算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個(gè)十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計(jì)上,為避免純數(shù)學(xué)的計(jì)算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會(huì)靈活應(yīng)用知識(shí)解決簡單的實(shí)際問題,在鞏固體積計(jì)算方法的同時(shí),進(jìn)一步感受到數(shù)學(xué)知識(shí)的使用價(jià)值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。
二、引導(dǎo)學(xué)生經(jīng)歷知識(shí)探究的全過程。
動(dòng)手實(shí)踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動(dòng)手操作的機(jī)會(huì),為了彌補(bǔ)這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺(tái),通過觀察、設(shè)疑、猜想、驗(yàn)證,經(jīng)歷圓柱體積的轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計(jì)算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),回顧圓的面積推導(dǎo)過程,實(shí)現(xiàn)知識(shí)遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實(shí)物模型和多媒體課件演示,把二者有機(jī)結(jié)合,先讓兩個(gè)學(xué)生上臺(tái)操作演示,然后再課件動(dòng)態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個(gè)探究過程以學(xué)生自主學(xué)習(xí)為主,知識(shí)的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。
三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。
“學(xué)會(huì)學(xué)習(xí)”是對(duì)學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識(shí),更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個(gè)學(xué)習(xí)過程,使學(xué)生學(xué)得主動(dòng)有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會(huì)到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。
數(shù)學(xué)教案:圓柱的體積5
教學(xué)內(nèi)容:
北師大版小學(xué)數(shù)學(xué)教材六年級(jí)下冊(cè)第8—10頁。
教學(xué)目標(biāo):
1、結(jié)合具體情境和實(shí)踐活動(dòng),了解圓柱體積(包括容積)的含義,能夠運(yùn)用公式正確的計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的思想和方法,提高解決實(shí)際問題的能力。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):掌握?qǐng)A柱體積的計(jì)算公式。
難點(diǎn):圓柱體積計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、情境導(dǎo)入
1、出示教學(xué)情境:怎樣用學(xué)過的知識(shí)測(cè)量出老師的水杯里裝了多少毫升的水?
想一想:杯子里的水是什么形狀?準(zhǔn)備用什么方法來計(jì)算水的體積?
讓學(xué)生討論得出:把杯子里的'水倒入長方體或正方體容器,只要量出長方體的長、寬和水的高,就能求出水的體積。
2、出示第二情境:圓柱形的木柱子、壓路機(jī)的車輪這樣的圓柱用這種方法還行嗎?怎么辦?
怎樣計(jì)算圓柱的體積?這就是我們本節(jié)課要研究的問題。(板書課題:計(jì)算圓柱的體積)
二、探究新知:
1、大膽猜想:你覺得圓柱體積的大小和什么有關(guān)?
學(xué)生猜想,教師出示相應(yīng)的課件演示,讓學(xué)生觀察,體會(huì)圓柱的體積和它的底面積和高,有關(guān)系,有怎樣的關(guān)系。
2、圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
。ㄓ谜n件展示切拼過程,讓學(xué)生觀察等分的份數(shù)越多越接近長方體,彌補(bǔ)直觀操作等分的份數(shù)太多不易操作的缺陷。)
學(xué)生討論交流:
。1)把圓柱拼成長方體后,什么變了,什么沒變?
。2)拼成的長方體與圓柱之間有什么聯(lián)系?
。3)通過觀察得到什么結(jié)論?
得到:圓柱的體積=底面積×高 V=Sh
三、拓展交流
要求圓柱的體積只要找到它的底面積和高就可以,分別討論知道半徑、直徑、地面周長,該怎么求出圓柱的體積,總結(jié)出公式。
四、練習(xí)設(shè)計(jì):
1、想一想,填一填:
把圓柱體切割拼成近似(),它們的()相等。長方體的高就是圓柱體的( ),長方體的底面積就是圓柱體的( ),因?yàn)殚L方體的體積=(),所以圓柱體的體積=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圓柱體體積用字母表示為( )
2、判斷正誤,對(duì)的畫“√”,錯(cuò)誤的畫“×”。
(1)圓柱體的底面積越大,它的體積越大!
(2)圓柱體的高越長,它的體積越大。×
(3)圓柱體的體積與長方體的體積相等。×
(4)圓柱體的底面直徑和高可以相等。√
3、分別計(jì)算下列各圖形的體積,再說說這幾個(gè)圖形體積計(jì)算方法之間的聯(lián)系。
4×3×8
6×6×6
3.14×(5÷2)2×8
。96(cm3)
。216(cm3)
=157(cm3)
4、計(jì)算下面各圓柱的體積。
60×4
3.14×12×5
3.14×(6÷2)2×10
=240(cm3)
。15.7(cm3)
。282.6(dm3)
5、這個(gè)杯子能否裝下3000mL的牛奶?
3.14×(14÷2)2×20
。3077.2(cm3)
=3077.2(mL)
3077.2mL>3000mL
答:這個(gè)杯子能裝下3000mL的牛奶。
五、課堂小結(jié):談?wù)勥@節(jié)課你有哪些收獲?
數(shù)學(xué)教案:圓柱的體積6
探究目標(biāo):
1、組織學(xué)生開展測(cè)量、計(jì)算、估測(cè)等數(shù)學(xué)實(shí)踐活動(dòng),使學(xué)生進(jìn)一步掌握?qǐng)A柱體積計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓柱的體積。
2、在探索空間與圖形的過程中,培養(yǎng)學(xué)生初步的空間觀念及實(shí)踐能力,同時(shí)結(jié)合具體的情境培養(yǎng)其估測(cè)意識(shí)。
3、使學(xué)生學(xué)會(huì)與他人合作,并能比較清楚地表達(dá)和交流解決問題的過程和結(jié)果。
4、讓學(xué)生體驗(yàn)解決策略的多樣性,不斷激發(fā)其對(duì)數(shù)學(xué)的`好奇心和求知欲,使其積極地參與數(shù)學(xué)學(xué)習(xí)活動(dòng)。
教學(xué)重難點(diǎn):
學(xué)生會(huì)應(yīng)用圓柱體積公式解決實(shí)際問題。
探究過程:
一、遷移引入
提問:一個(gè)圓柱的底面積是80平方厘米,高是20厘米,求它的體積。
提問:如果已知的是底面半徑和高,該怎么求呢?
二、自主探究
1、出示長方體魚缸。
要計(jì)算這個(gè)長方體魚缸能裝多少水,就是求什么?
怎樣求這個(gè)長方體的容積呢?
2、出示圓柱形魚缸。
、殴罍y(cè)。這個(gè)圓柱形魚缸的容積大約是多少?
⑵操作、匯報(bào)。如果忽略容器的壁厚,這個(gè)圓柱形魚缸的容積到底是多少呢?學(xué)生分小組進(jìn)行操作計(jì)算,各小組派代表演示操作過程,并展示計(jì)算過程。
學(xué)生可能的回答有:
生1:這個(gè)圓柱的底面周長是94.5厘米,它的高是12厘米,計(jì)算過程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)
生2:我們小組測(cè)量的是底面直徑和高。底面直徑長30厘米,高是12厘米,計(jì)算過程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我們測(cè)量的是底面半徑和高。3.14×152×12=8478(立方厘米)
⑷評(píng)價(jià)。
組織學(xué)生間進(jìn)行評(píng)價(jià)。你最喜歡哪個(gè)小組的操作方案?為什么?每一步列式的意義是什么?使學(xué)生進(jìn)一步掌握?qǐng)A柱體積的計(jì)算方法。
、煞此。引導(dǎo)學(xué)生將實(shí)際計(jì)算結(jié)果與自己的估測(cè)結(jié)果進(jìn)行對(duì)比。自己矯正偏差。
、恃由臁H绻苛⒎椒置姿1千克,這個(gè)魚缸大約能裝水多少千克?
3、自學(xué)例題。
組織學(xué)生自學(xué)課本例5。同桌的兩名同學(xué)結(jié)合例5的解答過程提出相關(guān)的數(shù)學(xué)問題,進(jìn)行互問互答。
三、鞏固練習(xí)
做教科書第80頁“做一做”中的第2題、練習(xí)二十一的第5題。
學(xué)生獨(dú)立完成,指名板演,集體評(píng)講。
四、創(chuàng)意作業(yè)
學(xué)生綜合運(yùn)用所學(xué)的知識(shí),進(jìn)行計(jì)算、繪圖、裁剪、粘貼等多項(xiàng)操作活動(dòng)。
在一張長30厘米,寬20厘米的長方形紙上進(jìn)行合理的裁剪,做一個(gè)無蓋的圓柱形筆筒。比一比,誰做的筆筒容積最大?
數(shù)學(xué)教案:圓柱的體積7
教學(xué)內(nèi)容:
P19-20頁例5、例6及補(bǔ)充例題,完成做一做及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個(gè)近似的長方形,找出圓和所拼成的.長方形之間的關(guān)系,再利用求長方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個(gè)曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會(huì)轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個(gè)近似長方體的立體圖形課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長方體)
反復(fù)播放這個(gè)過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
數(shù)學(xué)教案:圓柱的體積8
教學(xué)目標(biāo)
1.理解圓柱體體積公式的推導(dǎo)過程,掌握計(jì)算公式.
2.會(huì)運(yùn)用公式計(jì)算圓柱的體積.
教學(xué)重點(diǎn)
圓柱體體積的計(jì)算.
教學(xué)難點(diǎn)
理解圓柱體體積公式的推導(dǎo)過程.
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備
(一)教師提問
1.什么叫體積?怎樣求長方體的體積?
2.圓的面積公式是什么?
3.圓的面積公式是怎樣推導(dǎo)的?
(二)談話導(dǎo)入
同學(xué)們,我們?cè)谘芯繄A面積公式的推導(dǎo)時(shí),是把它轉(zhuǎn)化成我們學(xué)過的長方形知識(shí)的來解決的.那圓柱的體積怎樣計(jì)算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算呢?這節(jié)課我們就來研究這個(gè)問題.(板書:圓柱的體積)
二、新授教學(xué)
(一)教學(xué)圓柱體的體積公式.(演示動(dòng)畫“圓柱體的`體積1”)
1.教師演示
把圓柱的底面分成了16個(gè)相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體.
2.學(xué)生利用學(xué)具操作.
3.啟發(fā)學(xué)生思考、討論:
(1)圓柱體切開后可以拼成一個(gè)什么形體?(近似的長方體)
(2)通過剛才的實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了.
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化.
③近似長方體的高就是圓柱的高,沒有變化.
4.學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想.
。1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
(2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5.啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?
(1)平均分的份數(shù)越多,拼起來的形體越近似于長方體.
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個(gè)形體就越近似于長方體.
6.推導(dǎo)圓柱的體積公式
。1)學(xué)生分組討論:圓柱體的體積怎樣計(jì)算?
。2)學(xué)生匯報(bào)討論結(jié)果,并說明理由.
因?yàn)殚L方體的體積等于底面積乘高.(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積×高)
。3)用字母表示圓柱的體積公式.(板書:V=Sh)
(二)教學(xué)例4.
1.出示例4
例4.一根圓柱形鋼材,底面積是50平方厘米,高是2。1米,它的體積是多少?
2。1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米.
2.反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
。2)一個(gè)圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
(三)教學(xué)例5.
1.出示例5
例5.一個(gè)圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個(gè)水桶的容積是多少立方分米?
水桶的底面積:
。3。14×
=3。14×100
=314(平方厘米)
水桶的容積:
314×25
。7850(立方厘米)
。7。8(立方分米)
答:這個(gè)水桶的容積大約是7。8立方分米.
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1.圓柱體體積公式的推導(dǎo)方法.
2.公式的應(yīng)用.
四、課堂練習(xí)
(一)填表
底面積S(平方米)15
高h(yuǎn)(米)3
圓柱的體積V(立方米)6.4
。ǘ┣笙旅娓鲌A柱的體積.
(三)一個(gè)圓柱形水池,半徑是10米,深1。5米.這個(gè)水池占地面積是多少?水池的容積是多少立方米?
五、課后作業(yè)
。ㄒ唬┣笙铝袌D形的表面積和體積.(圖中單位:厘米)
(二)兩個(gè)底面積相等的圓柱,一個(gè)圓柱的高為4。5分米,體積為81立方分米.另一個(gè)圓柱的高為3分米,體積是多少?
六、板書設(shè)計(jì)
數(shù)學(xué)教案:圓柱的體積9
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與技能
用已學(xué)的圓柱體積知識(shí)解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。
。ǘ┻^程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測(cè)量和計(jì)算過程,讓學(xué)生在動(dòng)手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗(yàn)“等積變形”的轉(zhuǎn)化過程。
。ㄈ┣楦袘B(tài)度和價(jià)值觀
通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識(shí)。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):利用所學(xué)知識(shí)合理靈活地分析、解決不規(guī)則物體的體積的計(jì)算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
三、教學(xué)準(zhǔn)備
每組一個(gè)礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)舊知,做好鋪墊
1、板書:圓柱的體積。
問:圓柱的體積怎么計(jì)算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識(shí)來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題)
【設(shè)計(jì)意圖】通過復(fù)習(xí)圓柱的體積計(jì)算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識(shí)上的準(zhǔn)備。
(二)探索實(shí)踐,體驗(yàn)轉(zhuǎn)化過程
1、創(chuàng)設(shè)情境,提出問題。
每個(gè)小組桌子上有一個(gè)沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個(gè)數(shù)學(xué)問題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個(gè)瓶子一共能裝多少水?(也就是這個(gè)瓶子的容積是多少?)
2、你覺得你能輕松解決什么問題?
(1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個(gè)圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個(gè)問題的確輕而易舉。請(qǐng)你準(zhǔn)備好直尺,或許等會(huì)兒有用哦!
。2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計(jì)算。
教師:當(dāng)物體形狀不規(guī)則時(shí),我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個(gè)規(guī)則的`立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個(gè)圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個(gè)方法不錯(cuò),我們利用水的流動(dòng)性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個(gè)圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個(gè)問題還難得到你嗎?
數(shù)學(xué)教案:圓柱的體積10
教學(xué)目標(biāo):
1、使學(xué)生能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
4、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):靈活應(yīng)用圓柱的體積公式解決實(shí)際問題。
教學(xué)過程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓柱體積的'推導(dǎo)過程
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積高,所以圓柱的體積=底面積高,即V=Sh。
2、復(fù)習(xí)長方體的體積公式后,讓學(xué)生獨(dú)立完成練習(xí)三第6題,并指名板演。
二、解決實(shí)際問題
1、練習(xí)三第7題。
學(xué)生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨(dú)立完成。
2、練習(xí)三第5題。
(1)指導(dǎo)學(xué)生變換公式:因?yàn)閂=Sh,所以h=VS。也可以列方程解答。
。2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)三第8題。
。1)學(xué)生讀題后,指名說說對(duì)題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個(gè)底面直徑為2米,高為0.25米的圓柱。
(2)在充分理解題意后學(xué)生獨(dú)立完成,集體訂正。
4、練習(xí)三第9、10題
(1)學(xué)生獨(dú)立審題,完成9、10兩題。
。2)評(píng)講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)
(3)指名說說解答第10題的思路:根據(jù)兩個(gè)圓柱的底面積相等這一條件,先求出其中一個(gè)圓柱的底面積。利用這個(gè)底面積再求出另一個(gè)圓柱的體積。
三、布置作業(yè)
完成一課三練的相關(guān)練習(xí)。
數(shù)學(xué)教案:圓柱的體積11
教學(xué)目標(biāo):
1、使學(xué)生掌握?qǐng)A柱體積公式,會(huì)用公式計(jì)算圓柱體積,能解決一些實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動(dòng)過程,理解圓柱體積公式的推導(dǎo)過程,引導(dǎo)學(xué)生探討問題,體驗(yàn)轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學(xué)重點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)過程并能正確應(yīng)用。
教學(xué)難點(diǎn):
借助教具演示,弄清圓柱與長方體的關(guān)系。
教具準(zhǔn)備:
多媒體課件、長方體、圓柱形容器若干個(gè);學(xué)生準(zhǔn)備推導(dǎo)圓柱體積計(jì)算公式用學(xué)具。
教學(xué)設(shè)想:
《 圓柱的體積 》是學(xué)生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)與技能上,通過對(duì)圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積,在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過想象、課件演示、實(shí)踐操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)從生活中來到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探索。
教學(xué)過程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個(gè)公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
(2)討論后匯報(bào)
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進(jìn)一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計(jì)算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學(xué)過了長方體的體積計(jì)算,只要量出長、寬、高就行
[設(shè)計(jì)意圖:通過本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個(gè)生活中的情境,提出問題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識(shí)聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準(zhǔn)備]
2、創(chuàng)設(shè)問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機(jī)圓柱形大前輪的體積,能用同學(xué)們想出來的辦法嗎?
[設(shè)計(jì)意圖:進(jìn)一步從實(shí)際需要提出問題,激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗(yàn),探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個(gè)底面是圓形
生2:側(cè)面展開是長方形
生3:說明圓柱和我們學(xué)過的圓和長方形有聯(lián)系
師:請(qǐng)同學(xué)們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計(jì)意圖:溫故而知新,既復(fù)習(xí)了舊知識(shí)又引出了新知識(shí),學(xué)生在不知不覺中就學(xué)到了新知。]
(2)請(qǐng)大家回憶一下:在學(xué)習(xí)圓的面積時(shí),我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的.圖形,來推導(dǎo)出圓面積公式的。
配合學(xué)生回答演示課件。
[設(shè)計(jì)意圖:通過想象,進(jìn)一步發(fā)展學(xué)生的空間觀念,由形到體;同時(shí)使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實(shí)現(xiàn)經(jīng)驗(yàn)和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導(dǎo)學(xué)生說出圓柱可能轉(zhuǎn)化成我們學(xué)過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長方體了。)
。2)學(xué)生以小組為單位操作體驗(yàn)。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學(xué)生進(jìn)一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計(jì)意圖:教師提出問題,學(xué)生帶著問題大膽猜測(cè)、動(dòng)手體驗(yàn)。這樣學(xué)生在自主探索、體驗(yàn)、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
。3)學(xué)生小組匯報(bào)交流
近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學(xué)生匯報(bào),用教具進(jìn)行演示。
。4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
[設(shè)計(jì)意圖:首先通過學(xué)生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實(shí)踐操作,動(dòng)畫演示,驗(yàn)證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認(rèn)識(shí)和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過程,學(xué)生從形象具體的知識(shí)形成過程(想象、操作、演示)中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí) 公式)]
三、實(shí)踐應(yīng)用,鞏固新知。
1、火眼金睛判對(duì)錯(cuò)。
。1)長方體、正方體、圓柱的體積都等于底面積乘高。( )
(2)圓柱的高越大,圓柱的體積就越大。( )
。3)如果兩個(gè)圓柱的體積相等,則它們一定等底等高。( )
[設(shè)計(jì)意圖:加深對(duì)剛學(xué)知識(shí)的分析和理解。]
2、計(jì)算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
。2)底面周長是12。56米,高是2米。
。3)底面半徑是2厘米,高10厘米。
[設(shè)計(jì)意圖:讓學(xué)生靈活運(yùn)用公式進(jìn)行計(jì)算。]
3、實(shí)踐練習(xí)。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個(gè)圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計(jì)意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個(gè)同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個(gè)花壇共需要填土多少立方米?
[設(shè)計(jì)意圖:使學(xué)生進(jìn)一步感受到生活中處處有數(shù)學(xué),同時(shí)培養(yǎng)學(xué)生的環(huán)保意識(shí)。]
四、反思回顧
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲嗎?
[設(shè)計(jì)意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個(gè)學(xué)生都體驗(yàn)到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識(shí),還包括能力、方法、情感等,學(xué)生體驗(yàn)到學(xué)習(xí)的樂趣,增強(qiáng)了學(xué)好數(shù)學(xué)的信心。]
板書設(shè)計(jì):
圓柱的體積
根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
教學(xué)反思:
本節(jié)的教學(xué)從生活的實(shí)際創(chuàng)設(shè)情境,提出問題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識(shí)的特點(diǎn)。運(yùn)用已有的知識(shí)(長方體體積的計(jì)算)經(jīng)驗(yàn)(圓面積公式的推導(dǎo))解決新的問題,在新舊知識(shí)的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機(jī)的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學(xué)生充分經(jīng)歷了知識(shí)的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強(qiáng)了實(shí)踐與知識(shí)的聯(lián)系,并創(chuàng)造性的補(bǔ)充了一些與學(xué)生身邊實(shí)際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。