- 相關推薦
七年級數(shù)學下冊教案【精】
作為一名教師,有必要進行細致的教案準備工作,借助教案可以提高教學質量,收到預期的教學效果。如何把教案做到重點突出呢?下面是小編為大家收集的七年級數(shù)學下冊教案,歡迎大家分享。
七年級數(shù)學下冊教案1
[教學目標]
1、通過動手、操作、推斷、交流等活動,進一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達能力
2、在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學重點與難點]
重點:鄰補角與對頂角的概念、對頂角性質與應用
難點:理解對頂角相等的性質的探索
[教學設計]
一、創(chuàng)設情境激發(fā)好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的.過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二、認識鄰補角和對頂角,探索對頂角性質
1、學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據(jù)不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用何語言準確表達;
有公共的頂點O,而且的兩邊分別是兩邊的反向延長線
2、學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂?shù)膬蓚角相等)
3、學生根據(jù)觀察和度量完成下表:
兩條直線相交所形成的角分類位置關系數(shù)量關系
教師提問:如果改變的大小,會改變它與其它角的位置關系和數(shù)量關系嗎?
4、概括形成鄰補角、對頂角概念和對頂角的性質
三、初步應用
練習:
下列說法對不對
。1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2)鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3)對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現(xiàn)象
四、鞏固運用例題:如圖,直線a,b相交,,求的度數(shù)。
。ń炭茣5頁練習)已知,如圖,求:的度數(shù)
[小結]
鄰補角、對頂角
七年級數(shù)學下冊教案2
【知識與技能】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示,能用科學計算器求平方根及其近似值。
【過程與方法】通過練習,進一步熟悉開平方的運算過程,能熟練的進行開平方的運算過程。
【情感、態(tài)度與價值觀】體會平方與開平方這一對互逆運算的辯證關系,感受平方根在現(xiàn)實世界中的客觀存在,增強數(shù)學知識的應用意識。
【教學重點】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數(shù)的平方根,并能用根號加以表示。
【教學難點】能熟練的進行開平方運算,并熟悉各種不同形式的開平方運算,為后續(xù)學習打下基礎。
【教具準備】小黑板 科學計算器
【教學過程】
一、復習導入
1、小剛家廚房的面積為10平方米的正方形,它的邊長是多少米?邊長的近似值是多少?(用四舍五入的'方法取到小數(shù)點后面第二位)(,)
2、用計算器分別求,得近似值。(用四舍五入的方法取到小數(shù)點后面第三位)
3、0.36的平方根是( )
4、(-5)2的算術平方根是( )
二、練習內容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若x=6,則=( )
5、若=0,則x=( ) 6、當x( )時,有意義。
(二)選擇
1、下列各數(shù)中沒有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4x2-49=0; 3、(25/81)x2=1;
4、求8+(-1/6)2的算術平方根;
5、求b2-2b+1的算術平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小數(shù)點后面第三位)
8、肖明家裝修用了大小相同的正方形瓷磚共66塊,鋪成了10.56平方米的房間,肖明想知道每塊瓷磚的規(guī)格,請你幫助算一算。
三、小結與鞏固
七年級數(shù)學下冊教案3
教學目標
知識技能
1.了解算術平方根的概念,會求正數(shù)的算術平方根并會用符號表示
2.會用計算器求算術平方根
3.了解無限不循環(huán)小數(shù)的特點
數(shù)學思考
1.通過學習算術平方根,建立初步的數(shù)感和符號感,發(fā)展抽象思維
2.通過探究的大小,培養(yǎng)學生估算意識,了解兩個方向無限逼近的數(shù)學思想
解決問題
1.通過拼大正方形的活動,體現(xiàn)解決問題方法的多樣性,發(fā)展形象思維
2.在探究活動中,學會與人合作,并能與他人交流思維的過程和探究的結果
情感態(tài)度
1.通過學習算術平方根,認識數(shù)學與人類生活的密切聯(lián)系
2.通過探究活動,鍛煉克服困難的意志,建立自信心,提高學習熱情
教學重點、難點
重點:算術平方根的概念,感受無理數(shù)
難點:探究的大小的過程
教學過程與流程設計
活動1創(chuàng)設情景,引入算術平方根
20xx年10月16日,我國進行首次載人航天飛行取得圓滿成功。中華民族探索太空的千年夢想實現(xiàn)了。宇宙在脫離地球軌道進入正常運行軌道的`速度要滿足一個條件,即介于第一宇宙速度與第二宇宙速度之間,第一宇宙速度和第二宇宙速度分別滿足:第一宇宙速度v1(米/秒):,第二宇宙速度v2(米/秒):
小歐同學準備參加學校舉行的美術作品比賽。他想裁出一塊面積為25dm2的正方形畫布,畫上自己的得意之作參加比賽,請你幫他計算一下這塊正方形畫布的邊長應取多少?
小歐還要準備一些面積如下的正方形畫布,請你幫他把這些正方形的邊長都算出來:
面積191636
邊長1346
上面的問題,實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題
一般地,如果一個正數(shù)x的平方等于a,即,那么這個正數(shù)x叫做a的算術平方根,a的算術平方根記為,讀作“根號a”,a叫做“被開方數(shù)”。
規(guī)定:0的算術平方根是0。
活動2通過一些簡單例題,進一步了解算術平方根
1、你能求出下列各數(shù)的算術平方根嗎?
2、請同學們同桌之間合作,一位同學說一個正數(shù),另一位同學說出這個正數(shù)的算術平方根。
3、16的算術平方根等于________
4、的值等于_________
5、的算術平方根等于_________
活動3動動腦,動動手,探究的大小
你能用兩個面積為單位1的小正方形拼成一個大正方形嗎?
回答下列問題
。1)你所得的新正方形的面積是多少?
(2)新正方形的邊長是多少?
討論:
你知道有多大嗎?
的估算:
如此進行下去,可以得到的近似值,還可以發(fā)現(xiàn)是一個無限不循環(huán)小數(shù)。
活動4財富大統(tǒng)計
1、你認為小歐要解決他參加美術作品比賽中遇到的問題 。
七年級數(shù)學下冊教案4
一、教材分析
同底數(shù)冪的乘法是北師大版初中數(shù)學七年級(下)第一章整式的乘除第一節(jié)的內容。在此之前,學生已經掌握了用字母表示數(shù)的技能,會判斷同類項、合并同類項,同時在學習了有理數(shù)乘方運算后,知道了求n個相同數(shù)a的積的運算叫做乘方,乘方的結果叫做冪,即,在中,a叫底數(shù),n叫指數(shù),這些基礎知識為本節(jié)課的學習奠定了基礎。學生已經學習了冪的概念,具備了冪的運算的方法,為本課打下了基礎,同底數(shù)冪的乘法運算法則的學習有助于培養(yǎng)訓練學生的數(shù)感與符號感,同時也發(fā)展了他們的推理能力和有條理的表達能力,而本課內容又是學習整式除法及整式的乘除的基礎。
二、教學目標
知識與技能:讓學生在現(xiàn)實背景中進行體會同底數(shù)冪的乘法運算,并能解決一些實際問題。
過程與方法:經歷在實際背景中探索同底數(shù)冪乘法運算性質的過程,進一步體會冪的意義,經歷觀察、歸納、猜想、解釋等數(shù)學活動,增強學生的數(shù)感符號感,體驗解決問題方法的多樣性,發(fā)展合作交流能力,發(fā)展學生的合情推理和演繹推理能力以及有條理的表達能力。
情感與態(tài)度:在解決問題的過程中了解數(shù)學的價值,滲透數(shù)學公式的簡潔美與和諧美。培養(yǎng)學生觀察、概括、抽象、歸納的能力。體會數(shù)學的抽象性、嚴謹性和廣泛性。
三、教學重難點
教學重點:同底數(shù)冪乘法運算法則及其應用。
教學難點:同底數(shù)冪乘法運算法則的探索及靈活運用。
突破方法:通過實例,讓學生感覺到學習同底數(shù)冪乘法運算法則的必要性,從而引起學生的興趣和注意力。然后引導學生利用冪的意義,將同底數(shù)冪相乘轉化為幾個相同因式相乘。讓學生通過思考、討論、交流、歸納,個人思考、小組合作探究等方式,進行知識遷移,總結出同底數(shù)冪乘法運算法則。讓學生在探究問題的過程中理解轉化的數(shù)學思想,初步理解“特殊—一般—特殊”的認知規(guī)律,養(yǎng)成用數(shù)學的思維和方法解決問題的習慣。
四、教學過程設計
本課時設計了七個教學環(huán)節(jié):舊知鏈接、情境引入、歸納法則、探索拓廣、反饋延伸、課堂小結、布置作業(yè)。
第一環(huán)節(jié)舊知鏈接
活動內容:1、前面我們學習了乘方,那么乘方的意義是什么?并用字母表示出來(學生課前將數(shù)學符號表述寫黑板上,上課只口答文字描述。)
2、指出下列各式的底數(shù)與指數(shù):54,x3 ,(-2)2,-22 。
設計意圖:通過此活動,讓學生回憶冪與乘法之間關系,即,從而為下一步探索得到同底數(shù)冪的乘法法則提供了依據(jù),培養(yǎng)學生知識遷移的能力,為探究新知做好知識準備。
第二環(huán)節(jié)情境引入
活動內容:1、光在真空中的速度大約是3×108m/s,太陽系以外距離地球最近的恒星是比鄰星,它發(fā)出的光到達地球大約需要4.22年。一年以3×107秒計算,比鄰星與地球的距離約為多少千米?
2、.計算下列各式:
。1)102×103;
(2)105×108;
。3)10m×10n(m,n都是正整數(shù)).你發(fā)現(xiàn)了什么?
3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整數(shù))
(學生獨立思考后,小組內交流,進行推導嘗試,力爭獨立得出結論。.教師鼓勵算法的多樣化。 )
設計意圖:從實際問題情境中建立數(shù)學模型,讓學生感受到數(shù)學來源于生活,自然地體會到學習同底數(shù)冪的乘法的必要性。鼓勵學生利用已學知識解決問題,善于將陌生問題轉化為熟悉的問題,培養(yǎng)學生數(shù)學轉化的思想及重視算理的習慣。
第三環(huán)節(jié)新知探究,歸納法則
活動內容一:你能用字母表示同底數(shù)冪的乘法運算法則并說明理由嗎?
。1)將引例中的各算式改寫成乘法的字母算式。
。2)觀察計算結果有什么規(guī)律?
。3)試猜想:am . an=( ) (自主完成改寫算式,觀察思考,并進行猜想,發(fā)表見解。)
(4)驗證你的猜想。
。5)小結歸納法則。
(小組討論,相互交流。鼓勵學生用進行驗證。對比同底數(shù)冪的乘法法則,引導學生用語言、數(shù)學符號兩種方式表述,便于理解和記憶,互相補充。)
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。
am· an=am+n(m,n是正整數(shù))
設計意圖:學生經歷觀察、猜想、驗證等探究活動,體會知識的生成過程,并感悟從特殊到一般的研究解決問題的方法。在驗證、小結歸納的活動中,進一步發(fā)展符號、化歸等推理能力和有條理的表達能力。
活動內容二:am · an · ap等于什么?你是怎樣做的?與同伴交流
am· an· ap = am+n+p
法則應用注意事項:(1)等號左邊是同底數(shù)冪相乘法。
。2)等號兩邊的同底相同。
。3)等號右邊的指數(shù)等于左邊的指數(shù)和。
。4)公式中的底數(shù)a可以表示數(shù)、字母、單項式、多項式等整式。
設計意圖:讓學生明白同底數(shù)是三個或三個以上時相乘,同底數(shù)冪的乘法法則也成立,培養(yǎng)學生的聯(lián)系拓廣能力。
第四環(huán)節(jié)活學活用
活動內容一:
例1、計算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2
(3)-x3.x5(4)b2m.b2m+1
(學生口述計算的每步過程和依據(jù),師板書(1)解題過程。強調運算方法;強調字母a的指數(shù);強調括號問題。其余自主完成計算,板演練習。集體講評糾錯。)
設計意圖:規(guī)范解題步驟的同時,進一步體會算理,并深刻地理解同底數(shù)冪的乘法運算法則,達到熟練、準確運用法則進行計算的目的。
活動內容二:
例2光在真空中的速度約為3×108m/s,太陽光照射到地球大約需要5×102s.地球距離太陽大約有多遠?
(獨立審題,認真計算,交流討論,發(fā)表見解。小組內交流方法。小結歸納,相互補充。)
設計意圖:應用同底數(shù)冪的乘法運算法則解決實際問題,靈活運用同底數(shù)冪的`乘法法則,同時培養(yǎng)學生用心審題的好習慣。
第五環(huán)節(jié)鞏固練習
活動內容:課本隨堂練習
1.計算:
(1)52×57;(2)7×73×72;
。3)-x2·x3;(4)(-c)3·(-c)m.
2.一種電子計算機每秒可做4×109次運算,它工作5×102s可做多少次運算?
3.解決本節(jié)課一開始比鄰星到地球的距離問題.
(小組討論、交流、展示。自主探究完成。)
設計意圖:以小組討論的方式突破難點,在交流過程中理解、尊重他人意見,從交流中獲得成功的體驗,培養(yǎng)學生勇于探索的精神。
第六環(huán)節(jié)課堂小結
活動內容:這節(jié)課你學到了哪些知識及哪些數(shù)學思想?
(鼓勵學生多角度地對本節(jié)課的學習進行小結、評價,大膽發(fā)表見解和疑問。)
設計意圖:在知識的整理中拓展學生的思維,養(yǎng)成良好的學習習慣,教師予以鼓勵,激發(fā)學生的學習興趣與自信心。
第七環(huán)節(jié)布置作業(yè)
習題7.1A組1.B組1、2、3
設計意圖:作業(yè)分層布置,因材施教,培養(yǎng)學生的自信心。
四、教學設計反思:
1.培養(yǎng)學生數(shù)學思想,讓學生掌握方法
在教學過程中讓學生多觀察,多思考,多討論,給他們時間空間,教師在教學中應當有意識、有計劃地設計教學活動,引導學生體會到數(shù)學知識之間的聯(lián)系,感受轉化的數(shù)學思想和整體的數(shù)學思想,不斷豐富解決問題的策略,提高解決問題的能力。
2.改進教學和評價方式,為學生提供自主探索的機會
數(shù)學教學活動,應激發(fā)學生興趣,調動學生積極性,引發(fā)學生的數(shù)學思考;學生學習應當是一個生動活潑的、主動地和富有個性的過程,因此我們的數(shù)學課堂應該努力改進教學和評價的方式,給學生提供更多自主探索的機會。課上通過學生自主講解展示學習效果,教師只根據(jù)學生自學的情況點撥部分難點即可。
七年級數(shù)學下冊教案5
教學目標
能確定多項式的公因式,熟練運用提公因式法分解因式.
經歷探索提公因式法的過程,培養(yǎng)逆向思維能力.
讓學生通過參與探索過程,培養(yǎng)合作意識和創(chuàng)新精神.
重點難點
重點
公因式的定義以及提公因式法分解因式.
難點
準確找出多項式中各項的公因式.
教學過程
一、復習回顧
1. 什么叫做因式分解?與整式乘法有什么聯(lián)系?
2. 計算:
3. 觀察上式運算的結果 ,各項所含的因式有什么特點?
學生觀察到各項含有相同的因式m后,教師給出公因式的概念:
幾個式子的公共的因式稱為它們的公因式.
一個多項式如果各項含有公因式,怎樣分解因式呢?
二、探究新知
根據(jù) 的計算結果,你能將 分解因式嗎?分解的根據(jù)是什么?你能說說分解的具體做法是什么嗎?
學生思考討論后,教師引導學生分析分解的.根據(jù)是乘法分配律,具體的做法是把各項的公因式提到括號外面. 隨后給出這種方法的名稱.
如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種把多項式因式分解的方法叫做提公因式法. 用提公因式法分解因式時要把所有的公因式都提出,使剩下的多項式因式里不含公因式.
三、典例剖析
例1 把 因式分解.
教師引導學生觀察各項的公因式,并板書分解過程.
解:
反思:分解得 對不對,為什么?
例2把 因式分解.
教師引導學生觀察各項的公因式,并總結出找公因式的方法:一看各項系數(shù),找出各系數(shù)的最大公因數(shù),二看各項的字母因式,找出相同的字母因式.
板書分解過程:
解:
例3 把 因式分解.
引導學生觀察各項的公因式,并總結出找公因式的方法:一看各項系數(shù),找出各系數(shù)的最大公因數(shù),二看各項的字母因式,找出相同的字母因式,相同的字母取指數(shù)最小的作為公因式.
板書分解過程:
解:
四、課堂練習
基礎訓練:
1.說出下列多項式中各項的公因式:
(1) ; (2) ;
(3) .
2. 在下列括號內填寫適當?shù)亩囗検剑?/p>
(1) ;(2) .
3. 把下列多項式因式分解:
(1) ; (2) ;
(3) .
學生解答各題,教師組織學生互相批改. 補充說明,當多項式首項系數(shù)是負數(shù)時,一般要把負號提出括號.
五、小結
請你總結一下如何確定多項式中各項的公因式.
六、布置作業(yè)
教材P62第1題,第2題的(1)(2)(3).
七年級數(shù)學下冊教案6
教學目標
1.經歷從性質公理推出性質的過程;
2.感受原命題與逆命題,從而了解平行線的性質公理與判定公理的區(qū)別,能在推理過程正確使用.
對話探索設計
〖探索1反過來也成立嗎
過去我們學過:如果兩個數(shù)的和為0,這兩個數(shù)互為相反數(shù).反過來,如果兩個數(shù)互為相反數(shù),那么這兩個數(shù)的'和為0.顯然,這兩個句子都是正確的.
現(xiàn)在換一個例子:如果一個整數(shù)個位上的數(shù)字是5,那么它一定能夠被5整除.對嗎?這句話反過來怎么說?對不對?
結論:如果一個句子是正確的,反過來說(因果對調),就未必正確.
〖探索2
上一節(jié)課,我們學過:同位角相等,兩直線平行.反過來怎么說?猜一猜:它還是對的嗎?
〖探索3
(1)用三角尺畫兩條平行線a、b.說一說:不利用第三條直線能畫出兩條平行線嗎?請畫出第三條直線(把它記為c),并說明判定這兩條直線平行的根據(jù)(公理或定理);
(2)在(1)中再畫一條直線d與直線a、b都相交,找出其中的一對同位角,用量角器量出它們的度數(shù)驗證你原來的猜測.
結論:兩條平行線被第三條直線所截,同位角相等.
與平行線的判定公理一樣,這個結論也是基本事實,即人們在長期實踐中出來的結論,我們把它叫做平行線的性質公理,它是平行線的第一條性質.
〖探索4
如圖,請畫直線c截兩條平行線a、b;再在圖中找出一對內錯角.同學們一定能從直覺判斷這對內錯角也是相等的.也就是說:
兩條平行線被第三條直線所截,內錯角相等.它是平行線的第二條性質.
現(xiàn)在我們來試一試:如何根據(jù)性質1說出性質2成立的道理.
如圖,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(對頂角相等),
∴∠1=∠2(___________).
以上過程說明了:由性質1可以得出性質2.
〖探索5
我們學過判定兩直線平行的第三種方法:
兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行.(簡單地說:同旁內角互補,兩直線平行.)
把這條定理反過來,可以簡單說成_____________________.
猜一猜:把這條定理反過來以后,還成立嗎?
〖練習
P22練習
說一說:求這三個角的度數(shù)分別根據(jù)平行線的哪一條性質?
〖作業(yè)
P25.1、2、3
〖補充作業(yè)
如圖:直線a、b被直線c所截,
(1)若a∥b,可以得到∠1=∠2.根據(jù)什么?
(2)若∠1=∠2,可以得到a∥b.根據(jù)什么?
(注意:(1)、(2)的根據(jù)一樣嗎?)
七年級數(shù)學下冊教案7
第一節(jié) 軸對稱現(xiàn)象
一、教學目的
1、知識與技能目標
使學生感知現(xiàn)實世界中普遍存在的軸對稱現(xiàn)象,通過觀察、操作等活動,自主探求軸對稱圖形的特征,理解對稱軸的含義,感受數(shù)學的美。
2、過程與方法
經歷觀察、分析現(xiàn)實生活實例和典型圖案的過程,認識軸對稱和軸對稱圖形培養(yǎng)學生探索知識的能力與分析問題、思考問題的習慣。
3、情感態(tài)度與價值觀
讓學生在實際操作活動中體驗學習數(shù)學的樂趣,鼓勵他們感受美、欣賞美、創(chuàng)造美,感悟數(shù)學知識的魅力,激發(fā)學生學習數(shù)學的興趣。
4、教學重點、難點
重點:認識“軸對稱圖形”和“兩個圖形成軸對稱”的概念,會找出簡單軸對稱圖形的對稱軸。難點:了解“軸對稱圖形”和“兩個圖形成軸對稱”的區(qū)別和聯(lián)系。
二、教學過程
。ㄒ唬﹦(chuàng)設情景,引入新課
投影或演示各類具有軸對稱特點的圖案(如課本上所繪的圖象或由學生課前收集的各類具有對稱特點的圖案)
同學們,在上課之前,我們先來欣賞一組圖片:風景秀麗的漓江山水,美輪美奐的建筑藝術,生動形象的京劇臉譜,惟妙惟肖的民間剪紙,方便快捷的交通工具。這些圖片美嗎?那么老師告訴你們一個秘密,這些圖片之所以這么美,是因為他們具有一個共同特征-軸對稱現(xiàn)象。
分析各類圖案的特點,讓學生經歷觀察和分析,感受到軸對稱的美和特征,初步認識軸對稱圖形。PPT出示學習目標(全班齊讀),讓學生明確學習目標。
(二)自學檢測
1.(1)如果把 個平面圖形沿著 對折后,直線兩旁的部分能夠互相 ,那么這個圖形叫做軸對稱圖形,這條直線叫做 。
。2)老師這里有一些圖片,哪位同學能夠結合這些圖形再加深一下我們對概念的理解呢?
2.(1)如果 個平面圖形沿 折疊后能夠完全重合,那么稱這兩個圖形成軸對稱,這條直線叫做這兩個圖形的 。
(2)同樣,哪位同學能夠結合這些圖形再加深一下我們對兩個圖形成軸對稱的理解呢?
3.試舉例說明現(xiàn)實生活中也具有軸對稱特征的物體,并找出它的對稱軸。發(fā)展學生想象能力,讓學生感到具有軸對稱特征的物體,它們都是關于一條直線形成對稱。
。ㄈ┗俞屢
1.請大家仔細觀察!說說兩組圖片的不同之處和相同之處。
第一組 第二組
請?zhí)骄?“軸對稱圖形”和“兩個圖形成軸對稱”的區(qū)別和聯(lián)系。
軸對稱圖形 兩個圖形成軸對稱
區(qū)別 個圖形 個圖形
聯(lián)系 1.沿一條直線折疊,直線兩旁的部分能夠 。2.都有 。3.如果把一個軸對稱圖形沿對稱軸分成兩個圖形,那么這兩個圖形關于這條直線 ;如果把兩個成軸對稱的圖形看成一個圖形,那么這個圖形就是 。
弄清楚軸對稱圖形與兩個圖形成軸對稱的區(qū)別,兩個圖形成軸對稱是指兩個圖形之間的形狀和位置關系,而軸對稱圖形是對一個圖形而言,軸對稱圖形是一個具有特殊形狀的圖形。它們都有沿某條直線對折使直線兩旁的圖形完全重合的特征。
2、請找出下面軸對稱圖形的對稱軸。
等腰三角形 長方形 等邊三角形 正方形 五角星 圓
歸納:①軸對稱圖形的'對稱軸可能不止一條。
、谝粋圖形有多條對稱軸時,它們相交于一點。
3.如圖有四個大小相等的正方形組成“L”型圖案.
。1)請你再添加一個正方形,使它變成軸對稱圖形,并畫出對稱軸;
。2)請你改變一個正方形的位置,使它變成軸對稱圖形,并畫出對稱軸。
實際教學效果:通過與其他小組同學進行討論學習,各小組都對軸對稱圖形有深刻認識和理解。
。ㄋ模╈柟烫嵘
活動內容:進行適當?shù)挠蓽\入深,由感性到理性的一些練習,老師進行了一些必要的講解,打好學生的知識技能的基礎。
1、下列哪些是屬于軸對稱圖形?并畫出軸對稱圖形的對稱軸。
2、下列四組圖片中有哪幾組圖形成軸對稱?
3、0-9十個數(shù)字中,哪些是軸對稱圖形?
4、下面的字母中,哪些是軸對稱圖形?
5、中國的漢字也十分注重對稱美。猜一猜,這是什么字的一半?
6、如圖:在3×3的正方形網格中,已有兩個小正方形被涂上顏色.若再將圖中其余小正方形任意涂一個,使整個圖案構成一個軸對稱圖形的方法共有( )種,請在下圖中畫出來。比一比,誰的速度快!
7、下圖是由一張紙對折后(兩部分完全重合)得到的,展開折紙,你能得到什么樣的圖形?先想一想,再拼一拼。
(五)課堂小結
今天我們經歷觀察和分析了現(xiàn)實生活實例和圖案,了解了現(xiàn)實生活中存在許多有關對稱的事例,認識了軸對稱與軸對稱圖形,并能找出一些簡單軸對稱圖形的對稱軸。
。┎贾米鳂I(yè)
(1)必做題:習題5.1第1、3題
(2)選做題:動腦筋想一想,再親手做一做,一張正方形紙片,如何只剪一刀,就得到一個十字形?
三、教學反思
1.以教材為本,但又不拘泥于教材,把握教材但又不被教材所束縛。
2.給學生充分的展示自己才華的機會。
3.注意改進方面:如給學生分組,把握教材的難度和重點,加強對學生的調控,備課要細致等,以利于后面的教學。
板書設計
5.1 軸對稱現(xiàn)象
一、軸對稱圖形
二、兩個圖形成軸對稱
三、軸對稱圖形和兩個圖形成軸對稱的區(qū)別與聯(lián)系
七年級數(shù)學下冊教案8
七年級數(shù)學教案
1.2 一元一次不等式組的解法
2.2二元一次方程組的解法
2.3二元一次方程組的應用(1)
第10教案
教學目標
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現(xiàn)實世界量之間相等關系的一種有效的數(shù)學模型。
3.引導學生關注身邊的數(shù)學,滲透將來未知轉達化為已知的辯證思想。
教學重點
1.列二元一次方程組解簡單問題。
2.徹底理解題意
教學難點
找等量關系列二元一次方程組。
教學過程
一、情境引入。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元;丶衣飞,他們遇上了好朋友小軍,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學們,小軍能猜出來嗎?
二、建立模型。
1.怎樣設未知數(shù)?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
三、練習。
1.根據(jù)問題建立二元一次方程組。
。1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。
。2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數(shù),女生人數(shù)。
。3)已知關于求x、的`方程,
是二元一次方程。求a、b的值。
2.P38練習第1題。
四、小結。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
五、作業(yè)。
P42。習題2.3A組第1題。
后記:
2.3二元一次方程組的應用(2)
第11教案
教學目標
1.會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。
2.提高分析問題、解決問題的能力。
3.體會數(shù)學的應用價值。
教學重點
根據(jù)實際問題列二元一次方程組。
教學難點
1.找實際問題中的相等關系。
2.徹底理解題意。
教學過程
一、引入。
本節(jié)課我們繼續(xù)學習用二元一次方程組解決簡單實際問題。
二、新課。
例1. 小琴去縣城,要經過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的速度嗎?還能算出她家與外祖母家相距多遠嗎?
探究: 1. 你能畫線段表示本題的數(shù)量關系嗎?
2.填空:(用含S、V的代數(shù)式表示)
設小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米。
3.列方程組。
4.解方程組。
5.檢驗寫出答案。
討論:本題是否還有其它解法?
三、練習。
1.建立方程模型。
。1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度。
。2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?
2.P38練習第2題。
3.小組合作編應用題:兩個寫一方程組,另兩人根據(jù)方程組編應用題。
四、小結。
本節(jié)課你有何收獲?
五、作業(yè)。
七年級數(shù)學下冊教案9
教學目標
以實際問題的需要出發(fā),引出平方根的概念,理解平方根的意義,會求某些數(shù)的平方根.
教學重、難點
重點:了解平方根的概念,求某些非負數(shù)的平方根.
難點:平方根的意義.
教學過程
一、提出問題,創(chuàng)設情境.
問題1、要剪出一塊面積為25cm2的正方形紙片,紙片的邊長應是多少?
問題2、已知圓的面積是16πcm2,求圓的半徑長.
要想解決這些問題,就來學習本節(jié)內容.
二、想一想:
1、你能解決上面兩個問題嗎?這兩個問題的實質是什么?
2、25的平方根只有5嗎?為什么?
3、-4有平方根嗎?為什么?
三、知識引入:
一個正數(shù)a的平方根有兩個,它們互為相反數(shù).我們用a表示a的正的平方根,讀作
“根號a”,其中a叫做被開方數(shù).這個根叫做a的'算術平方根,另一個負的平方根記為-a.0的平方根是0,0的算術平方根也是0,負數(shù)沒有平方根.
求一個數(shù)的平方根的運算叫做開平方.
四、能力、知識、提高
同學們展示自學結果,老師點拔
1、情境中的兩個問題的實質是已知某數(shù)的平方,要求這個數(shù).
2、概括:如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根.
如52=25,(-5)2=25∴25的平方根有兩個:5和-5.
3、任何數(shù)的平方都不等于-4,所以-4沒有平方根.
五、知識應用
1、求下列各數(shù)的平方根
、49②1.69③(-0.2)2
2、將下列各數(shù)開平方
、1②0.09
七年級數(shù)學下冊教案10
一、情景導入
見書問題
二、用坐標表示地理位置
探究:
我們知道,在平面內建立直角坐標系后,平面內的點都可以用坐標來表示,為此,要確定區(qū)域內一些地點的位置,就要建立直角坐標系.
思考:
以什么位置為原點?如何確定x軸、y軸?選取怎樣的比例尺?
小剛家、小強家、小敏家的位置均是以學校為參照物來描述的,故選學校位置為原點.
以正東方向為x軸,以正北方向為y軸建立直角坐標系.
取比例尺1:10000(即圖中1格相當于實際的100米).
點(150,200)就是小剛家的位置.
畫出小強家、小敏家的位置,并標明它們的坐標.
歸納:
注意:
。1)通常選擇比較有名的地點,或者較居中的位置為坐標原點;
。2)坐標軸的方向通常以正北為縱軸的正方向,正東為橫軸的'正方向;
。3)要標明比例尺或坐標軸上的單位長度.
三、課堂練習
下圖是小紅所在學校的平面示意圖,請你指出學校各地點的位置.
四、課堂小結
怎樣利用坐標表示地理位置
七年級數(shù)學下冊教案11
教學目標:1.能夠在實際情境中,抽象概括出所要研究的數(shù)學問題,增強學生的數(shù)感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數(shù)冪乘法運算性質
過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數(shù)冪乘法的運算性質,并能解決一些實際問題,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,
增強學生的數(shù)學應用意識,訓練他們養(yǎng)成學會分析問題、解決問題的良好習慣。
教學重點:同底數(shù)冪乘法的運算性質,并能解決一些實際問題。
教學過程:
一、復習回顧
活動內容:復習七年級上冊數(shù)學課本中介紹的有關乘方運算知識:
二、情境引入
活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數(shù)學模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學生進行獨立思考,也可采用小組合作交流的形式,結合學生現(xiàn)有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數(shù),則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關系?
(3)等號兩邊的.指數(shù)有什么關系?(4)公式中的底數(shù)a可以表示什么
(5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調冪的底數(shù)必須相同,相乘時指數(shù)才能相加.
三、應用提高
活動內容:1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
四、拓展延伸
活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
。5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、課堂小結
活動內容:師生互相交流總結本節(jié)課上應該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。
六、布置作業(yè)
1.請你根據(jù)本節(jié)課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
1.2冪的乘方與積的乘方(一)
七年級數(shù)學下冊教案12
一、教學目標
(一)教學目標
1.了解平方差公式的幾何背景.
2.會用面積法推導平方差公式,并能運用公式進行簡單的運算.
3.體會符號運算對證明猜想的作用.
(二)能力目標
1.用符號運算證明猜想,提高解決問題的能力.
2.培養(yǎng)學生觀察、歸納、概括等能力.
(三)情感目標
1.在拼圖游戲中對平方差公式有一個直觀的幾何解釋,體驗學習數(shù)學的樂趣.
2.體驗符號運算對猜想的作用,享受數(shù)學符號表示運算規(guī)律的簡捷美.
二、教學重難點
(一)教學重點
平方差公式的幾何解釋和廣泛的應用.
(二)教學難點
準確地運用平方差公式進行簡單運算,培養(yǎng)基本的運算技能.
三、教具準備
一塊大正方形紙板,剪刀.
投影片四張
第一張:想一想,記作(1.7.2 A)
第二張:例3,記作(1.7.2 B)
第三張:例4,記作(1.7.2 C)
第四張:補充練習,記作(1.7.2 D)
四、教學過程
、.創(chuàng)設問題情景,引入新課
[師]同學們,請把自己準備好的正方形紙板拿出來,設它的.邊長為a.
這個正方形的面積是多少?
[生]a2.
[師]請你用手中的剪刀從這個正方形紙板上,剪下一個邊長為b的小正方形(如圖1-23).現(xiàn)在我們就有了一個新的圖形(如上圖陰影部分),你能表示出陰影部分的面積嗎?
[生]剪去一個邊長為b的小正方形,余下圖形的面積,即陰影部分的面積為(a2-b2).
[師]你能用陰影部分的圖形拼成一個長方形嗎?同學們可在小組內交流討論.
(教師可巡視同學們拼圖的情況,了解同學們拼圖的想法)
七年級數(shù)學下冊教案13
教學目標
1.探索并了解三角形的外角的性質。
2.利用平行線性質來證明三角形外角的性質。
3.利用三角形內角和以及外角性質進行有關計算。
4、通過觀察、實驗、探索等數(shù)學生活,體驗數(shù)學的美。
教學重點:掌握三角形外角的三個性質
教學難點:利用平行線證明三角形外角性質
學情分析
通過前面幾節(jié)課的學習,學生已經掌握了三角形的基本概念,知道三角形的內角和為180°,三角形的外角與其相鄰的.內角是互補關系。這就為本節(jié)課的學習奠定了基礎。本節(jié)課應注重滲透數(shù)學說理過程,從簡單的問題中逐步培養(yǎng)學生運用幾何語言的能力。
教學準備
多媒體、課件、三角板。并讓學生課前準備好三角形紙片
教學過程
復習提問
1.什么叫三角形的外角?三角形外角和它相鄰內角之間有什么關系?
2.三角形內角和等于多少度?
。ㄓ蓪W生回答上述問題)
設計意圖:
回顧上節(jié)課學習內容,為本節(jié)課的學習做好鋪墊。
講授新課
1.學一學:
自學課本47頁長方形框上面的內容。然后回答下列問題:
。1)找出△ABC(如圖)的外角,以及與這個外角相鄰的內角、不相鄰的內角。(2)外角與其相鄰的內角之間的關系呢?
(3)外角與其不相鄰的內角又會有什么關系
呢?這將是我們這節(jié)課要探索的主要內容。
設計意圖:以學生自學的形式,來掌握與本節(jié)課相關的幾個基本概念,并通過問題(3)進行設疑,引出這節(jié)課的重點內容。
七年級數(shù)學下冊教案14
教學目標:
1.掌握數(shù)軸三要素,能正確畫出數(shù)軸.
2.能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù).
教學重點:
數(shù)軸的概念.
教學難點:
從直觀認識到理性認識,從而建立數(shù)軸概念.
教與學互動設計:
(一)創(chuàng)設情境,導入新課
課件展示課本P7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數(shù)分別用正數(shù)和負數(shù)來表示,即用一直線上的點把正數(shù)、負數(shù)、0都表示出來,也就是本節(jié)要學的內容——數(shù)軸.
【點撥】(1)引導學生學會畫數(shù)軸.
第一步:畫直線,定原點.
第二步:規(guī)定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當?shù)拈L度為單位長度(據(jù)情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結構和數(shù)軸的結構是否有共同之處.
對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎,我們可以來試著定義數(shù)軸:
規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸.
做一做學生自己練習畫出數(shù)軸.
試一試你能利用你自己畫的'數(shù)軸上的點來表示數(shù)4,1.5,-3,-2,0嗎?
討論若a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結整數(shù)在數(shù)軸上都能找到點表示嗎?分數(shù)呢?
可見,所有的都可以用數(shù)軸上的點表示;都在原點的左邊,都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數(shù)軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
、贁(shù)軸上的點只能表示整數(shù);②數(shù)軸是一條直線;③數(shù)軸上的一個點只能表示一個數(shù);④數(shù)軸上找不到既不表示正數(shù),又不表示負數(shù)的點;⑤數(shù)軸上的點所表示的數(shù)都是有理數(shù).正確的說法有( )
A.1個B.2個C.3個D.4個
【例4】在數(shù)軸上表示-2和1,并根據(jù)數(shù)軸指出所有大于-2而小于1的整數(shù).
【例5】數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度是1cm,若在這個數(shù)軸上隨意畫出一條長為20xxcm的線段AB,則線段AB蓋住的整點有( )
A.1998個或1999個B.1999個或20xx個
C.20xx個或20xx個D.20xx個或20xx個
(四)總結反思,拓展升華
數(shù)軸是非常重要的工具,它使數(shù)和直線上的點建立了一一對應的關系.它揭示了數(shù)和形的內在聯(lián)系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數(shù)軸的三要素,正確畫出數(shù)軸.提醒大家,所有的有理數(shù)都可以用數(shù)軸上的相關點來表示,但反過來并不成立,即數(shù)軸上的點并不都表示有理數(shù).
(五)課堂跟蹤反饋
夯實基礎
1.規(guī)定了、 、的直線叫做數(shù)軸,所有的有理數(shù)都可從用上的點來表示.
2.P從數(shù)軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數(shù)是.
3.把數(shù)軸上表示2的點移動5個單位長度后,所得的對應點表示的數(shù)是( )
A.7 B.-3
C.7或-3 D.不能確定
4.在數(shù)軸上,原點及原點左邊的點所表示的數(shù)是( )
A.正數(shù)B.負數(shù)
C.不是負數(shù)D.不是正數(shù)
5.數(shù)軸上表示5和-5的點離開原點的距離是,但它們分別表示.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是和.
7.畫出一條數(shù)軸,并把下列數(shù)表示在數(shù)軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數(shù)軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數(shù)軸上,最多能覆蓋個整數(shù)點.
9.下列四個數(shù)中,在-2到0之間的數(shù)是( )
A.-1 B.1 C.-3 D.3
七年級數(shù)學下冊教案15
教學目標
1.知道有效數(shù)字的概念;
2.會按要求進行近似數(shù)的運算
教學過程
一、創(chuàng)設情境,導入新課
1.什么叫實數(shù)?實數(shù)怎么分類?
2.在有理數(shù)范圍內學過的概念、運算法則、運算定律、性質,在實數(shù)范圍內還適應嗎?
3.做一做
如果正方形ABCD的面積為3平方厘米,正方形EFGH的面積為5平方厘米,這兩個正方形的邊長的和大約是多少厘米(精確到小數(shù)點后面第一位)?
二、合作交流,探究新知
1 交流上面問題的做法
(1)估計同學們會有兩種做法:
用計算器分別求的近似值,用四舍五入取到小數(shù)點后面第一位,然后相加,得:(厘米)
(2)用計算器直接求出的`近似值,用四舍五入取到小數(shù)點后面第一位,得:
如果沒有兩種做法,也要想辦法引出這兩種做法
兩種做法的答案不同,哪一種答案正確呢?
請同學們把第一種做法修改一下:將的近似值分別取到小數(shù)點后第二位,然后相加。你發(fā)現(xiàn)了什么?
這時兩種做法的答案就一樣了。
從這個例子看出,在進行實數(shù)的加減運算時,如果要求答案取到小數(shù)點后面第一位,那么參與運算的每一個實數(shù)的近似值應當多一位,即取到第二位,最后結果才取到小數(shù)點后面第一位。
2、引入有效數(shù)字的概念
在上面運算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似數(shù)1.73的三個有效數(shù)字。什么叫近似數(shù)的有效數(shù)字呢?
先思考:0.010256精確到小數(shù)點后面第三位,等于多少呢?
0.0102560.0103
近似數(shù)0.0103有三個有效數(shù)字1、0、3
現(xiàn)在你能說說,什么叫近似數(shù)的有效數(shù)字嗎?
從第一個不是零點數(shù)字起到最后一個不數(shù)字止的所有數(shù)字叫近似數(shù)的有效數(shù)字。
考考你:1 近似數(shù)0.03350有幾個有效數(shù)字,分別是______________________.
2 125萬保留兩個有效數(shù)字等于__________
3 有_______個有效數(shù)字。
3、怎樣進行近似值的運算?
在近似數(shù)的加減法運算中,如果被減數(shù)與減數(shù)相差較大,那么參與運算的最大數(shù)多取一位有效數(shù)字,其余的數(shù)取到與最大數(shù)最低位相對應的那一位止。
例1 計算: 27.65+0.02856+-3.414(保留三個有效數(shù)字)提醒:最后一位數(shù)字為0,不能省略。
(2)在進行近似數(shù)的乘法和除法運算中,參與運算的每一個數(shù)應多取一位有效數(shù)字。
例2 在上面做一做問題中 ,如果分別以正方形ABCD、EFGH的邊長作為寬與長,做一個長方形,那么這個長方形的面積大約是多少平方厘米(保留三個有效數(shù)字)
考考你:1.計算(精確到小數(shù)點后面第二位)(1),(2)
2.計算(保留三個有效數(shù)字)(1) (2)
三、應用遷移,鞏固提高
例3(1)一個正方形的體積變?yōu)樵瓉淼?7倍,它的棱長變?yōu)槎嗌俦?表面積變?yōu)樵瓉淼亩嗌俦?
變式:上面問題中27倍改為:8倍,其他不變
例4 已知求a+b的值。
例5 設a、b為實數(shù),且求的值。
四、反思小結,拓展提高
這節(jié)課,你認為最重要的是什么?
1.有效數(shù)字的概念;2.實數(shù)的近似數(shù)的計算