天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高中數(shù)學(xué)教案

高中數(shù)學(xué)教案

時間:2023-01-25 13:56:14 數(shù)學(xué)教案 我要投稿

高中數(shù)學(xué)教案匯編15篇

  作為一位優(yōu)秀的人民教師,就不得不需要編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么教案應(yīng)該怎么寫才合適呢?以下是小編精心整理的高中數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。

高中數(shù)學(xué)教案匯編15篇

高中數(shù)學(xué)教案1

  1. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己。有較強的集體榮譽感,學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績穩(wěn)定。生活艱苦樸素,待人熱情大方,是個基礎(chǔ)扎實,品德兼優(yōu)的好學(xué)生。

  2. 該生能嚴(yán)格遵守學(xué)校的規(guī)章制度。尊敬師長,團(tuán)結(jié)同學(xué)。熱愛集體,積極配合其他同學(xué)搞好班務(wù)工作,勞動積極肯干。學(xué)習(xí)刻苦認(rèn)真,勤學(xué)好問,學(xué)習(xí)成績穩(wěn)定,學(xué)風(fēng)和工作作風(fēng)都較為踏實,堅持出滿勤,并能積極參加社會實踐和文體活動,勞動積極。是一位發(fā)展全面的好學(xué)生。

  3. 你是同學(xué)擁護(hù)、老師信任的班委,乖巧懂事、伶俐開朗、自信大方、樂觀合群,是同學(xué)們學(xué)習(xí)的榜樣。你愛護(hù)集體榮譽,有很強的工作能力,總是及時協(xié)助老師完成班務(wù)工作,是老師的得力幫手。你心性坦蕩,個性鮮明,能大膽說出自己的想法,難能可貴。而你在運動場上的爆發(fā)力更讓老師同學(xué)們驚嘆!潛力深厚,希望在高中時期能逐漸發(fā)掘出來!

  4. 你是個做事小心翼翼,感情細(xì)膩豐富的女孩,每次看你認(rèn)真的樣子老師都很感動。你也是幸運的,周邊有很多人都在關(guān)愛著你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學(xué)著體諒,學(xué)著換位思考,學(xué)著懂事。另外,今后要多運動、多鍛煉,有健康才能成就美好未來!

  5. 你堅強勇敢、樂觀大方的性格讓老師非常欣賞。學(xué)習(xí)上始終保持著上進(jìn)好學(xué)的決心和韌性,生活中始終能做到豁達(dá)開朗,還有著良好的審美和繪畫的專長,令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話,希望你保持好心態(tài),迎接新的學(xué)習(xí)生活。

  6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時機去努力開創(chuàng)的人。你是很有才華的孩子,老師希望你能把握好機會,求得上進(jìn)。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅定目標(biāo)致力于學(xué)習(xí),定能大限度地發(fā)揮你的聰明才智!

  7. 該生遵紀(jì)守法,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。是一位誠實守信,思想上進(jìn),尊敬老師,團(tuán)結(jié)同學(xué),熱心助人,積極參加班集體活動,有體育特長,學(xué)習(xí)認(rèn)真,具有較好綜合素質(zhì)的優(yōu)秀學(xué)生。

  8. 你聰穎活潑,渾身洋溢青春氣息。你愛好廣泛,善鉆精思,具備一定能力,潛質(zhì)無限。但是在有些時候,在面臨一些問題的時候,你總表現(xiàn)得太過緊張,其實,征服畏懼、建立自信的最快最確實的方法,就是大膽地去做你認(rèn)為害怕的.事,直到你獲得成功的經(jīng)驗。繼續(xù)努力!

  9. 你是對3班這個集體的成長貢獻(xiàn)很大的孩子,是老師的得力幫手。你干練沉穩(wěn),堅強隱忍,能從大局出發(fā)考慮問題,在很多時候能獨當(dāng)一面。你獨立能力強,能夠吃苦,但在進(jìn)入高中的學(xué)習(xí)上卻顯得有些吃力。其實你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒有絕望的處境,只有對處境絕望的人,請樂觀一點,踏實地走好接下來的每一步!

  10. 你是個能獨立、有主見的女孩,有自己的想法,有一定的決斷力。但是獨立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點上做的還是不錯的。晟君,老師希望你能一如既往地關(guān)注于學(xué)習(xí)而不懈怠,能堅持懷揣著平和感恩的心態(tài)簡單快樂地生活。

  11. 你給我的第一印象是有些沉默,其實和朋友在一起時還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續(xù)秀出真實而精彩的你!這半個學(xué)期的學(xué)習(xí)有點力不從心,請保持謹(jǐn)慎和細(xì)心,保持好的學(xué)習(xí)習(xí)慣,及時彌補所缺漏的環(huán)節(jié),大步向前進(jìn)!

  12. 該生認(rèn)真遵守學(xué)校的規(guī)章制度,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。尊敬師長,團(tuán)結(jié)同學(xué)。學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績穩(wěn)定上升。是有理想有抱負(fù),基礎(chǔ)扎實,心理素質(zhì)過硬、全面發(fā)展的優(yōu)秀學(xué)生。

  13. 你是一個真誠待人、溫柔可愛的女生。也許是因為你有些不緊不慢的性格,所以在學(xué)習(xí)上有時候行動力不夠堅決,造成了學(xué)習(xí)成績的不穩(wěn)定。請多利用假期時間好好補缺補漏,向上的姿態(tài)才是最重要的!

  14. 老師同學(xué)們都在說你是個很有責(zé)任心和上進(jìn)心的孩子,在班級需要的時候,你承擔(dān)了勞動委員的重任,經(jīng)常最后一個離開,就為了班級能有個整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時間,在工作的空隙抓緊時間做作業(yè)。希望下學(xué)期你的學(xué)習(xí)成績也能隨你的毅力和執(zhí)著步步攀升,加油,羽騰!

  15. 其實你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開心扉,多與旁人交流你快樂的體驗和想法,不要吝嗇展示自己!還有,成功需要成本,時間也是一種成本,對時間的珍惜就是對成本的節(jié)約。請務(wù)必抓緊每寸光陰,努力學(xué)習(xí)!

  16. 你知道嗎?在世界上那些最容易的事情中,拖延時間是最不費力的。而學(xué)習(xí)卻是艱辛的勞動過程。表面安靜的你其實心里有著自己的想法和煩憂。于是在不經(jīng)意間,精力被不自覺地轉(zhuǎn)移到一些瑣事上,卻總無法完全集中心智于學(xué)業(yè)。也許你也已經(jīng)意識到,也有了些許進(jìn)步,那么請千萬記住要持之以恒,要付出比別人更多倍的努力!

  17. 你是班級的數(shù)學(xué)科代表,老師很高興選擇你擔(dān)任這個職務(wù),不僅能促進(jìn)自己的進(jìn)步,而且也展現(xiàn)了你負(fù)責(zé)工作的一面。但是學(xué)習(xí)是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽講是否及時而有效,包括功課的完成是否嚴(yán)謹(jǐn)而認(rèn)真。下學(xué)期,愿看到一個更加全神貫注更加專心致志的你!

  18. 我一直難忘在運動會上你擔(dān)任前導(dǎo)牌的樣子,為班級添光增彩了不少!你有著繪畫的特長,是個善良、真誠的女孩,有著細(xì)膩豐富的內(nèi)心,也許只需一點鼓勵,你便會勇敢走下去,希望能在平時多聽見你爽朗的笑聲!

  19. 可愛、熱情、謹(jǐn)小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認(rèn)為你是能夠認(rèn)真仔細(xì)地作好每一件事情、成就每一個細(xì)節(jié)的,因此,希望你能珍惜時間,提高效率,在學(xué)習(xí)上狠狠加油!

  20. 其實,任何事都是有重量的,那么,就看你把它變成壓力還是重力了。在這個方面,我很高興地看到你做的很好,你學(xué)習(xí)自覺,成績便是努力的證明。老師安排你做物理科代表就是希望能多培養(yǎng)你的責(zé)任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現(xiàn)!

  21. 你是個可愛善良,懂事乖巧的女孩。作為語文科代表,兢兢業(yè)業(yè),一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂郁是旁人不易察覺的。但是你知道,成長就是破蛹成蝶的過程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長帶來的所有痛苦和快樂!

  22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進(jìn)度,迎頭趕上,期待你獲得更大的進(jìn)步!

  23. 你曾經(jīng)和我說過你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現(xiàn)在你覺得有障礙擋在前行之路上,那就說明你還沒有把目標(biāo)看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時無法適從。你現(xiàn)在欠缺的就是對自己發(fā)狠奮進(jìn)的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實踐去爭取,而不是光靠幾句好聽的決心話!

  24. 你乖巧大方,組織能力一流,但在學(xué)習(xí)上總顯得有些力不從心?祚R加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達(dá),只要踏實努力,不懂就問,采用適合自己的學(xué)習(xí)方法,就會看到進(jìn)步。也許剛開始的時候進(jìn)步很小,小到你看不見,但是不要灰心,萬事開頭難!將事前的憂慮,換為事前的思考和計劃,徹底放松,加強鍛煉,養(yǎng)足精神再迎戰(zhàn)!你能做到的,蔡煒,加油!

  25. 該生能遵守校紀(jì)班規(guī),尊敬師長,能與同學(xué)和睦相處,勤學(xué)好問,有較強的獨立鉆研能力,分析問題比較深入、全面,在某些問題上有獨特的見解,學(xué)習(xí)成績在班上一直能保持前茅,樂于助人,能幫助學(xué)習(xí)有困難的同學(xué)。

  26. 不論在體育場還是教室里,看到你神采奕奕的樣子,總讓人聯(lián)想到“英姿颯爽”這四個字。這確是一個高中生應(yīng)該有的精神面貌。你做事認(rèn)真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續(xù)前進(jìn)!也希望能夠多和老師同學(xué)交流,多提些對班集體建設(shè)的好建議!

  27. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己,積極參加社會實踐和文體活動。尊敬師長,團(tuán)結(jié)同學(xué)。集體觀念強,勞動積極肯干。積極參加各種集體活動和社會實踐活動。學(xué)習(xí)目的明確,刻苦認(rèn)真,成績穩(wěn)定,是一個有理想、有抱負(fù),基礎(chǔ)扎實,心理素質(zhì)過硬,全面發(fā)展的優(yōu)秀學(xué)生。

  28. 我很高興看到你是個有上進(jìn)心,有責(zé)任感,能夠讓家人、師長寬慰的孩子。有努力就有回報,你下半學(xué)期的表現(xiàn)不就證明了這一點嗎?進(jìn)步是隨著時間節(jié)節(jié)上升的,不要太過急躁,要知道,若你不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。新學(xué)期要重整旗鼓,再接再勵!

  29. ××× 獨立性較強,對自己的能力也有準(zhǔn)確的定位。建議今后學(xué)習(xí)上要養(yǎng)成勤思愛問的習(xí)慣,不能做井底之蛙,滿足于現(xiàn)狀,要充分利用他人的智慧,最后達(dá)到“好風(fēng)憑借力,送我上青云”的目的。

  30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見讀書的態(tài)度很端正;而你每一次考試的成績雖然不拔尖,卻是在穩(wěn)步前進(jìn),可見讀書的效率還不錯。請繼續(xù)保持這種虛心求學(xué)、穩(wěn)步前進(jìn)的態(tài)勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。

高中數(shù)學(xué)教案2

  教學(xué)目標(biāo):

  1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.

  2.會求一些簡單函數(shù)的反函數(shù).

  3.在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識.

  4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.

  教學(xué)重點:求反函數(shù)的方法.

  教學(xué)難點:反函數(shù)的概念.

  教學(xué)過程

  教學(xué)活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1.復(fù)習(xí)提問

 、俸瘮(shù)的概念

 、趛=f(x)中各變量的意義

  2.同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.

  3.板書課題

  由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.

  二、實例分析,組織探究

  1.問題組一:

  (用投影給出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱.是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

  (2)由,已知y能否求x?

  (3)是否是一個函數(shù)?它與有何關(guān)系?

  (4)與有何聯(lián)系?

  2.問題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3.滲透反函數(shù)的概念.

  (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力.

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).

  三、師生互動,歸納定義

  1.(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C.我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成.

  2.引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因.

  3.兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

  (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4.函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1.(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

  (1)y=3x-1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù).

  (教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟.)

  2.總結(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x與y互換得.

  3° 寫出反函數(shù)的定義域.

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

  (2)的反函數(shù)是________.

  (3)(x<0)的反函數(shù)是__________.

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進(jìn)而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù).在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握.

  通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解.

  通過對具體例題的講解分析,在解題的.步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.

  五、鞏固強化,評價反饋

  1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.

  (讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

  進(jìn)一步強化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度.具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性."問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂.

  六、作業(yè)

  習(xí)題2.4第1題,第2題

  進(jìn)一步鞏固所學(xué)的知識.

  教學(xué)設(shè)計說明

  "問題是數(shù)學(xué)的心臟".一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進(jìn)而又通過若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.

  反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用.通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案3

  教學(xué)目標(biāo)

 。1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

 。2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

  (3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

 。4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

 。5)通過對排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

  教學(xué)建議

  一、知識結(jié)構(gòu)

  二、重點難點分析

  本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中。

  從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當(dāng)于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù)。

  公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導(dǎo)。

  排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力。

  在分析應(yīng)用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時也應(yīng)盡量采用。

  在教學(xué)排列應(yīng)用題時,開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的.只寫一個排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

  三、教法建議

 、僭谥v解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù)。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

  ab,ac,ba,bc,ca,cb,

  其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號表示排列數(shù)。

 、谂帕械亩x中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

  從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

  在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

  在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。

  要特別注意,不加特殊說明,本章不研究重復(fù)排列問題。

 、坳P(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

  導(dǎo)出公式后要分析這個公式的構(gòu)成特點,以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是,共m個因數(shù)相乘!边@實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘。

  公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對這個公式指出兩點:

  (1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;

  (2)為使這個公式在時也能成立,規(guī)定,如同時一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

 、芙ㄗh應(yīng)充分利用樹形圖對問題進(jìn)行分析,這樣比較直觀,便于理解。

  ⑤學(xué)生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

高中數(shù)學(xué)教案4

  教學(xué)目標(biāo)

  (1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

 。2)使學(xué)生掌握組合數(shù)的計算公式;

 。3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

  教學(xué)重點難點

  重點是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點是解組合的應(yīng)用題.

  教學(xué)過程設(shè)計

  (-)導(dǎo)入新課

 。ń處熁顒樱┨岢鱿铝兴伎紗栴},打出字幕.

 。圩帜唬菀粭l鐵路線上有6個火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

 。▽W(xué)生活動)討論并回答.

  答案提示:(1)排列;(2)組合.

  [評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

  (二)新課講授

 。厶岢鰡栴} 創(chuàng)設(shè)情境]

 。ń處熁顒樱┲笇(dǎo)學(xué)生帶著問題閱讀課文.

  [字幕]1.排列的定義是什么?

  2.舉例說明一個組合是什么?

  3.一個組合與一個排列有何區(qū)別?

  (學(xué)生活動)閱讀回答.

 。ń處熁顒樱⿲φ照n文,逐一評析.

  設(shè)計意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

  【歸納概括 建立新知】

  (教師活動)承接上述問題的回答,展示下面知識.

 。圩帜唬菽P停簭 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

  組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

 。墼u述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

 。▽W(xué)生活動)傾聽、思索、記錄.

 。ń處熁顒樱┨岢鏊伎紗栴}.

 。弁队埃 與 的關(guān)系如何?

  (師生活動)共同探討.求從 個不同元素中取出 個元素的'排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

  第2步,求每一個組合中 個元素的全排列數(shù)為 .

  根據(jù)分步計數(shù)原理,得到

 。圩帜唬莨1:

  公式2:

  (學(xué)生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

  設(shè)計意圖:本著以認(rèn)識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

  (三)小結(jié)

 。◣熒顒樱┕餐〗Y(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計算的兩個公式.

  (四)布置作業(yè)

  1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

  2.思考題:某學(xué)習(xí)小組有8個同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

  3.研究性題:

  在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

  (五)課后點評

  在學(xué)習(xí)了排列知識的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

  作業(yè)參考答案

  2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

  3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.

  探究活動

  同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

  解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

  解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

  甲拿乙制作的賀卡時,則賀卡有3種分配方法.

  甲拿丙制作的賀卡時,則賀卡有3種分配方法.

  甲拿丁制作的賀卡時,則賀卡有3種分配方法.

  由加法原理得,賀卡分配方法有3+3+3=9種.

  解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.

  正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

  逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

高中數(shù)學(xué)教案5

  【教學(xué)目標(biāo)】

  1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

  2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

  3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  【教學(xué)重難點】

  教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

  教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

  【教學(xué)過程】

  1.情景導(dǎo)入

  教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

  2.展示目標(biāo)、檢查預(yù)習(xí)

  3、合作探究、交流展示

 。1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

 。2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

 。3)提出問題:請列舉身邊的棱柱并對它們進(jìn)行分類

 。4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

  (5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

  (6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。

 。7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

  (1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

 。2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

 。3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

 。4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

  (5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

  5、典型例題

  例1:判斷下列語句是否正確。

  ⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

  ⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

  答案 A B

  6、課堂檢測:

  課本P8,習(xí)題1.1 A組第1題。

  7.歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

  【板書設(shè)計】

  一、柱、錐、臺、球的結(jié)構(gòu)

  二、例題

  例1

  變式1、2

  【作業(yè)布置】

  導(dǎo)學(xué)案課后練習(xí)與提高

  1.1.1柱、錐、臺、球的結(jié)構(gòu)特征

  課前預(yù)習(xí)學(xué)案

  一、預(yù)習(xí)目標(biāo):

  通過圖形探究柱、錐、臺、球的結(jié)構(gòu)特征

  二、預(yù)習(xí)內(nèi)容:

  閱讀教材第2—6頁內(nèi)容,然后填空

 。1)多面體的概念: 叫多面體,

  叫多面體的面, 叫多面體的棱,

  叫多面體的頂點。

 、 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的'幾何體叫作棱柱

  ②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

 、劾馀_:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。

 。2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。

  ①圓柱: 所圍成的幾何體叫做圓柱

 、趫A錐: 所圍成的幾何

  體叫做圓錐

 、蹐A臺: 的部分叫圓臺

  . ④球的定義

  思考:

 。1)試分析多面體與旋轉(zhuǎn)體有何去別

 。2)球面球體有何去別

 。3)圓與球有何去別

  三、提出疑惑

  同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中

  疑惑點 疑惑內(nèi)容

高中數(shù)學(xué)教案6

  猴子搬香蕉

  一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。

  河岸的距離

  兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達(dá)預(yù)定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?

  解答:

  當(dāng)兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當(dāng)它們雙方抵達(dá)對岸時,走過的總長度

  等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的'距離應(yīng)該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當(dāng)它到達(dá)z點時,已經(jīng)走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。

  變量交換

  不使用任何其他變量,交換a,b變量的值?

  分析與解答

  a = a+b

  b = a-b

  a= a-b

  步行時間

  某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準(zhǔn)時,因此,火車與轎車每次都是在同一時刻到站。

  有一次,司機比以往遲了半個小時出發(fā)。溫斯頓到站后,找不到

  他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風(fēng)馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開;氐郊抑,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?

  解答:

  假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發(fā),因此,也將晚半小時到達(dá)車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達(dá)后坐車回家,從而他將比以往晚半小時到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現(xiàn)在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現(xiàn)在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

  因此,溫斯頓步行了26分鐘。

  付清欠款

  有四個人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;

  貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結(jié)個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?

  解答:

  貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。

  貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復(fù)雜的問題只要有條理地分析就會很簡單。養(yǎng)成經(jīng)常性地歸納整理、摸索實質(zhì)的好習(xí)慣。

  一美元紙幣

  注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

  一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時站起來付帳的時候,出現(xiàn)了以下的情況:

  (1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

 。2)這四人中沒有一人能夠兌開任何一枚硬幣。

  (3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要

  付的帳單款額其次,一個叫內(nèi)德的男士要付的賬單款額最小。

 。4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。

 。5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。

 。6)當(dāng)這三位男士進(jìn)行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。

  (7)隨著事情的進(jìn)一步發(fā)展,又出現(xiàn)如下的情況:

  (8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。

  現(xiàn)在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?

  解答:

  對題意的以下兩點這樣理解:

 。2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。

 。6)中指如果A,B換過,并且A,C換過,這就是兩次交換。

高中數(shù)學(xué)教案7

  1.課題

  填寫課題名稱(高中代數(shù)類課題)

  2.教學(xué)目標(biāo)

  (1)知識與技能:

  通過本節(jié)課的學(xué)習(xí),掌握......知識,提高學(xué)生解決實際問題的能力;

  (2)過程與方法:

  通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

  (3)情感態(tài)度與價值觀:

  通過本節(jié)課的學(xué)習(xí),增強學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。

  3.教學(xué)重難點

  (1)教學(xué)重點:本節(jié)課的知識重點

  (2)教學(xué)難點:易錯點、難以理解的知識點

  4.教學(xué)方法(一般從中選擇3個就可以了)

  (1)討論法

  (2)情景教學(xué)法

  (3)問答法

  (4)發(fā)現(xiàn)法

  (5)講授法

  5.教學(xué)過程

  (1)導(dǎo)入

  簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)

  (2)新授課程(一般分為三個小步驟)

 、俸唵沃v解本節(jié)課基礎(chǔ)知識點(例:奇函數(shù)的定義)。

  ②歸納總結(jié)該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設(shè)置易錯點,進(jìn)行強調(diào)?梢栽O(shè)計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設(shè)置定義域不關(guān)于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。

  ③拓展延伸,將所學(xué)知識拓展延伸到實際題目中,去解決實際生活中的問題。

 。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細(xì)。)

  (3)課堂小結(jié)

  教師提問,學(xué)生回答本節(jié)課的收獲。

  (4)作業(yè)提高

  布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。

  6.教學(xué)板書

  2.高中數(shù)學(xué)教案格式

  一.課題(說明本課名稱)

  二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))

  三.課型(說明屬新授課,還是復(fù)習(xí)課)

  四.課時(說明屬第幾課時)

  五.教學(xué)重點(說明本課所必須解決的關(guān)鍵性問題)

  六.教學(xué)難點(說明本課的學(xué)習(xí)時易產(chǎn)生困難和障礙的知識傳授與能力培養(yǎng)點)

  七.教學(xué)方法要根據(jù)學(xué)生實際,注重引導(dǎo)自學(xué),注重啟發(fā)思維

  八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進(jìn)行的內(nèi)容、方法步驟)

  九.作業(yè)處理(說明如何布置書面或口頭作業(yè))

  十.板書設(shè)計(說明上課時準(zhǔn)備寫在黑板上的內(nèi)容)

  十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)

  十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)

  3.高中數(shù)學(xué)教案范文

  【教學(xué)目標(biāo)】

  1.知識與技能

  (1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:

  (2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:

  (3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。

  2.過程與方法

  在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價值觀

  通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

  【教學(xué)重點】

 、俚炔顢(shù)列的概念;

 、诘炔顢(shù)列的通項公式

  【教學(xué)難點】

 、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;

 、诘炔顢(shù)列的通項公式的推導(dǎo)過程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  【設(shè)計思路】

  1、教法

 、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.

 、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.

  ③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.

  2、學(xué)法

  引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,引入新課

  1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?

  3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的`利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?

  教師:以上三個問題中的數(shù)蘊涵著三列數(shù).

  學(xué)生:

  ①0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  (設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.

  二、觀察歸納,形成定義

  ①0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點?

  思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.

  (設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達(dá).)

  三、舉一反三,鞏固定義

  1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.

  注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.

  (設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).

  2、思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

  (設(shè)計意圖:強化等差數(shù)列的證明定義法)

  四、利用定義,導(dǎo)出通項

  1、已知等差數(shù)列:8,5,2,…,求第200項?

  2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

  教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

  (設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)

  五、應(yīng)用通項,解決問題

  1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?

  2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差數(shù)列3,7,11,…的第4項和第10項

  教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式

  (設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)

  六、反饋練習(xí):教材13頁練習(xí)1

  七、歸納總結(jié):

  1、一個定義:

  等差數(shù)列的定義及定義表達(dá)式

  2、一個公式:

  等差數(shù)列的通項公式

  3、二個應(yīng)用:

  定義和通項公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充

  (設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運用基本概念.)

  【設(shè)計反思】

  本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.

高中數(shù)學(xué)教案8

  教學(xué)目標(biāo)

  (1)了解算法的含義,體會算法思想。

  (2)會用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;

  (3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。

  教學(xué)重難點

  重點:算法的含義、解二元一次方程組的算法設(shè)計。

  難點:把自然語言轉(zhuǎn)化為算法語言。

  情境導(dǎo)入

  電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

  第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

  第二步:瞄準(zhǔn)目標(biāo);

  第三步:計算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;

  第四步:根據(jù)第三步的結(jié)果修正彈著點;

  第五步:開槍;

  第六步:迅速轉(zhuǎn)移(或隱蔽)

  以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。

  課堂探究

  預(yù)習(xí)提升

  1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。

  2、描述方式

  自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。

  3、算法的要求

  (1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;

  (2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。

  4、算法的特征

  (1)有限性:一個算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

  (2)確定性:算法的計算規(guī)則及相應(yīng)的計算步驟必須是唯一確定的。

  (3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

  (4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。

  (5)不唯一性:解決同一問題的算法可以是不唯一的

  課堂典例講練

  命題方向1對算法意義的理解

  例1、下列敘述中,

 、僦矘湫枰\苗、挖坑、栽苗、澆水這些步驟;

  ②按順序進(jìn)行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;

 、蹚那鄭u乘動車到濟(jì)南,再從濟(jì)南乘飛機到倫敦觀看奧運會開幕式;

 、3x>x+1;

 、萸笏心鼙3整除的正數(shù),即3,6,9,12。

  能稱為算法的個數(shù)為(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

  【答案】B

  [規(guī)律總結(jié)]

  1、正確理解算法的概念及其特點是解決問題的關(guān)鍵、

  2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、

  【變式訓(xùn)練】下列對算法的理解不正確的是________

  ①一個算法應(yīng)包含有限的步驟,而不能是無限的

  ②算法可以理解為由基本運算及規(guī)定的運算順序構(gòu)成的完整的解題步驟

 、鬯惴ㄖ械拿恳徊蕉紤(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果

 、芤粋問題只能設(shè)計出一個算法

  【解析】由算法的有限性指包含的步驟是有限的故①正確;

  由算法的明確性是指每一步都是確定的故②正確;

  由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

  由對于同一個問題可以有不同的算法故④不正確。

  【答案】④

  命題方向2解方程(組)的'算法

  例2、給出求解方程組的一個算法。

  [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

  [規(guī)范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程組可化為

  第二步,解方程③,可得y=-1,④

  第三步,將④代入①,可得2x-1=7,x=4

  第四步,輸出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y(tǒng)=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,輸出4,-1

  [規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學(xué)知識的靈活運用。

  2、設(shè)計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計,但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設(shè)計算法步驟。

  【變式訓(xùn)練】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命題方向3篩選問題的算法設(shè)計

  例3、設(shè)計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、

  [思路分析]比較a,b比較m與c―→最小數(shù)

  [規(guī)范解答]算法步驟如下:

  1、比較a與b的大小,若a

  2、比較m與c的大小,若m

  [規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。

  【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一個數(shù)m,m=21;

  2、將m與89比較,是否相等,如果相等,則搜索到89;

  3、如果m與89不相等,則往下執(zhí)行;

  4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

  命題方向4非數(shù)值性問題的算法

  例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。

  (1)設(shè)計安全渡河的算法;

  (2)思考每一步算法所遵循的共同原則是什么?

高中數(shù)學(xué)教案9

  [學(xué)習(xí)目標(biāo)]

 。1)會用坐標(biāo)法及距離公式證明Cα+β;

 。2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

 。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

  [學(xué)習(xí)重點]

  兩角和與差的正弦、余弦、正切公式

  [學(xué)習(xí)難點]

  余弦和角公式的推導(dǎo)

  [知識結(jié)構(gòu)]

  1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的'三角函數(shù)(證明過程見課本)

  2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

  4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)教案10

  教學(xué)準(zhǔn)備

  1.教學(xué)目標(biāo)

  1、知識與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依

  賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.

  2、過程與方法:

  (1)通過實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

 。2)了解構(gòu)成函數(shù)的要素;

 。3)會求一些簡單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;

  3、情感態(tài)度與價值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.

  教學(xué)重點/難點

  重點:理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);

  難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)用具

  多媒體

  4.標(biāo)簽

  函數(shù)及其表示

  教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

  (1)炮彈的射高與時間的變化關(guān)系問題;

 。2)南極臭氧空洞面積與時間的變化關(guān)系問題;

 。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.

  3、分析、歸納以上三個實例,它們有什么共同點;

  4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;

  5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.

 。ǘ┭刑叫轮

  1、函數(shù)的有關(guān)概念

  (1)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

 、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的`函數(shù)值,一個數(shù),而不是f乘x.

  (2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對應(yīng)關(guān)系和值域

  (3)區(qū)間的概念

 、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

 、跓o窮區(qū)間;

 、蹍^(qū)間的數(shù)軸表示.

 。4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?

  通過三個已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會.

  師:歸納總結(jié)

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

 。1)求函數(shù)的定義域;

 。2)求f(-3),f()的值;

 。3)當(dāng)a>0時,求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.

  分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

 。1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.

 。3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.

 。4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)

 。5)滿足實際問題有意義.

  鞏固練習(xí):課本P19第1

  2、如何判斷兩個函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個與函數(shù)y=x相等?

  分析:

  1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

  2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  解:

  課本P18例2

 。ㄋ模w納小結(jié)

 、購木唧w實例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.

  (五)設(shè)置問題,留下懸念

  1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應(yīng)的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應(yīng)關(guān)系.

  課堂小結(jié)

高中數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  1。了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

  2。會求一些簡單函數(shù)的反函數(shù)。

  3。在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識。

  4。進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

  教學(xué)重點:

  求反函數(shù)的方法。

  教學(xué)難點:

  反函數(shù)的概念。

  教學(xué)過程:

  教學(xué)活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1。復(fù)習(xí)提問

 、俸瘮(shù)的概念

 、趛=f(x)中各變量的意義

  2。同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。

  3。板書課題

  由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。

  二、實例分析,組織探究

  1。問題組一:

 。ㄓ猛队敖o出函數(shù)與;與()的圖象)

 。1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

 。2)由,已知y能否求x?

  (3)是否是一個函數(shù)?它與有何關(guān)系?

 。4)與有何聯(lián)系?

  2。問題組二:

 。1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3。滲透反函數(shù)的概念。

  (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力。

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ)。

  三、師生互動,歸納定義

  1。(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C。我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作: ?紤]到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成。

  2。引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因。

  3。兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

 。ㄔ瘮(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的`自變量x是等價的)

  4。函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1。(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

 。1)y=3x—1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù)。

 。ń處煱鍟}過程后,由學(xué)生總結(jié)求反函數(shù)步驟。)

  2?偨Y(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x與y互換得。

  3° 寫出反函數(shù)的定義域。

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

 。2)的反函數(shù)是________。

 。3)(x<0)的反函數(shù)是__________。

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進(jìn)而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握。

  通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解。

  通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn)。并體現(xiàn)了對定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。

  五、鞏固強化,評價反饋

  1。已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

 。1)y=—2x 3(xR) (2)y=—(xR,且x)

 。 3 ) y=(xR,且x)

  2。已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟;榉春瘮(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

  (讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

  進(jìn)一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度。具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性。"問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂。

  六、作業(yè)

  習(xí)題2。4 第1題,第2題

  進(jìn)一步鞏固所學(xué)的知識。

  教學(xué)設(shè)計說明

  "問題是數(shù)學(xué)的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進(jìn)而又通過若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念。

  反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維。使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案12

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

  掌握兩角和與差的.正、余弦公式,能用公式解決相關(guān)問題。

  教學(xué)重難點

  熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

  教學(xué)過程

  復(fù)習(xí)

  兩角差的余弦公式

  用- B代替B看看有什么結(jié)果?

高中數(shù)學(xué)教案13

  教學(xué)目標(biāo):

 。1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題。

 。2)進(jìn)一步理解曲線的方程和方程的曲線。

 。3)初步掌握求曲線方程的方法。

  (4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。

  教學(xué)重點、難點:

  求曲線的方程。

  教學(xué)用具:

  計算機。

  教學(xué)方法:

  啟發(fā)引導(dǎo)法,討論法。

  教學(xué)過程:

  【引入】

  1、提問:什么是曲線的方程和方程的曲線。

  學(xué)生思考并回答。教師強調(diào)。

  2、坐標(biāo)法和解析幾何的意義、基本問題。

  對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問題就是:

 。1)根據(jù)已知條件,求出表示平面曲線的方程。

  (2)通過方程,研究平面曲線的性質(zhì)。

  事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

  【問題】

  如何根據(jù)已知條件,求出曲線的方程。

  【實例分析】

  例1:設(shè)、兩點的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。

  首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決。

  解法一:易求線段的中點坐標(biāo)為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

 、

  分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決。可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

 。ㄍㄟ^教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。

  證明:(1)曲線上的點的坐標(biāo)都是這個方程的解。

  設(shè)是線段的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點的坐標(biāo)是方程的解。

 。2)以這個方程的解為坐標(biāo)的點都是曲線上的點。

  設(shè)點的坐標(biāo)是方程①的任意一解,則

  到、的距離分別為

  所以,即點在直線上。

  綜合(1)、(2),①是所求直線的方程。

  至此,證明完畢;仡櫳鲜鰞(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想。因此是個好方法。

  讓我們用這個方法試解如下問題:

  例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程。

  分析:這是一個純粹的'幾何問題,連坐標(biāo)系都沒有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。

  求解過程略。

  【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正。說得更準(zhǔn)確一點就是:

  (1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點的坐標(biāo);

 。2)寫出適合條件的點的集合

 ;

 。3)用坐標(biāo)表示條件,列出方程;

 。4)化方程為最簡形式;

 。5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點。

  一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點。所以,通常情況下證明可省略,不過特殊情況要說明。

  上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正。

  下面再看一個問題:

  例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程。

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系。

  解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

  由距離公式,點適合的條件可表示為

 、

  將①式移項后再兩邊平方,得

  化簡得

  由題意,曲線在軸的上方,所以,雖然原點的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示。

  【練習(xí)鞏固】

  題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程。

  分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。

  根據(jù)條件,代入坐標(biāo)可得

  化簡得

  ①

  由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

 。1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進(jìn)行評價。各步驟的作用,哪步重要,哪步應(yīng)注意什么?

  【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)教案14

  教學(xué)目標(biāo)

  1.明確等差數(shù)列的定義.

  2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

  3.培養(yǎng)學(xué)生觀察、歸納能力.

  教學(xué)重點

  1.等差數(shù)列的概念;

  2.等差數(shù)列的通項公式

  教學(xué)難點

  等差數(shù)列“等差”特點的理解、把握和應(yīng)用

  教具準(zhǔn)備

  投影片1張

  教學(xué)過程

  (I)復(fù)習(xí)回顧

  師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的'角度反映數(shù)列的特點,下面看一些例子。(放投影片)

  (Ⅱ)講授新課

  師:看這些數(shù)列有什么共同的特點?

  1,2,3,4,5,6;①

  10,8,6,4,2,…;②

  生:積極思考,找上述數(shù)列共同特點。

  對于數(shù)列①(1≤n≤6);(2≤n≤6)

  對于數(shù)列②-2n(n≥1)(n≥2)

  對于數(shù)列③(n≥1)(n≥2)

  共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

  師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

  一、定義:

  等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2,。

  二、等差數(shù)列的通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

  若將這n-1個等式相加,則可得:

  即:即:即:……

  由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

  如數(shù)列①(1≤n≤6)

  數(shù)列②:(n≥1)

  數(shù)列③:(n≥1)

  由上述關(guān)系還可得:即:則:=如:三、例題講解

  例1:(1)求等差數(shù)列8,5,2…的第20項

  (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

  (Ⅲ)課堂練習(xí)

  生:(口答)課本P118練習(xí)3

  (書面練習(xí))課本P117練習(xí)1

  師:組織學(xué)生自評練習(xí)(同桌討論)

  (Ⅳ)課時小結(jié)

  師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

  即(n≥2)

 、诘炔顢(shù)列通項公式(n≥1)

  推導(dǎo)出公式:

  (V)課后作業(yè)

  一、課本P118習(xí)題3.21,2

  二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4

  2.預(yù)習(xí)提綱:

 、偃绾螒(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

 、诘炔顢(shù)列有哪些性質(zhì)?

高中數(shù)學(xué)教案15

  教學(xué)目的:掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

  教學(xué)重點:圓的標(biāo)準(zhǔn)方程及有關(guān)運用

  教學(xué)難點:標(biāo)準(zhǔn)方程的靈活運用

  教學(xué)過程:

  一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

  二、掌握知識,鞏固練習(xí)

  練習(xí):⒈說出下列圓的方程

 、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的圓心和半徑

 、牛▁-2)2+(y+3)2=3

 、苮2+y2=2

 、莤2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的'位置關(guān)系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

  練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

  例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

  四、小結(jié)練習(xí)P771,2,3,4

  五、作業(yè)P811,2,3,4

【高中數(shù)學(xué)教案】相關(guān)文章:

高中數(shù)學(xué)教案08-16

高中數(shù)學(xué)教案12-30

高中數(shù)學(xué)教案【精】02-01

【薦】高中數(shù)學(xué)教案01-31

【推薦】高中數(shù)學(xué)教案01-25

高中數(shù)學(xué)教案【熱門】01-25

【熱】高中數(shù)學(xué)教案01-25

高中數(shù)學(xué)教案【推薦】01-25

高中數(shù)學(xué)教案【薦】01-25

【精】高中數(shù)學(xué)教案01-25