高一數(shù)學(xué)集合教案(通用11篇)
作為一名辛苦耕耘的教育工作者,常常需要準(zhǔn)備教案,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。來(lái)參考自己需要的教案吧!以下是小編幫大家整理的高一數(shù)學(xué)集合教案,僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)集合教案1
[三維目標(biāo)]
一、知識(shí)與技能:
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個(gè)數(shù)問(wèn)題的討論說(shuō)明
二、過(guò)程與方法
通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時(shí)安排]:1課時(shí)
[教學(xué)過(guò)程]:集合部分匯總
本單元主要介紹了以下三個(gè)問(wèn)題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運(yùn)算
一,集合的`含義與表示(含分類)
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合
2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類
高一數(shù)學(xué)集合教案2
教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。
課 型:新授課
教學(xué)目標(biāo):(1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的理解集合“屬于”關(guān)系;
(2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
教學(xué)重點(diǎn):集合的基本概念與表示方法;
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合;
教學(xué)過(guò)程:
一、 引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。
閱讀課本P2-P3內(nèi)容
二、 新課教學(xué)
(一)集合的有關(guān)概念
1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。
2. 一般地,研究對(duì)象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡(jiǎn)稱集。
3. 思考1:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。
4. 關(guān)于集合的元素的特征
(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣
5. 元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說(shuō)a屬于(belong to)A,記作a∈A
(2)如果a不是集合A的元素,就說(shuō)a不屬于(not belong to)A,記作a A(或a A)(舉例)
6. 常用數(shù)集及其記法
非負(fù)整數(shù)集(或自然數(shù)集),記作N
正整數(shù)集,記作N*或N+;
整數(shù)集,記作Z
有理數(shù)集,記作Q
實(shí)數(shù)集,記作R
(二)集合的表示方法
我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
(1) 列舉法:把集合中的'元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi)。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(課本例1)
思考2,引入描述法
說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
(2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào){}內(nèi)。
具體方法:在大括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(課本例2)
說(shuō)明:(課本P5最后一段)
思考3:(課本P6思考)
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數(shù)}。下列寫(xiě)法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(三)課堂練習(xí)(課本P6練習(xí))
三、 歸納小結(jié)
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
四、 作業(yè)布置
書(shū)面作業(yè):習(xí)題1.1,第1- 4題
五、 板書(shū)設(shè)計(jì)(略
高一數(shù)學(xué)集合教案3
教學(xué)目的:
。1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;
(2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;(3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽象概念的作用。
課 型:新授課
教學(xué)重點(diǎn):
集合的交集與并集、補(bǔ)集的概念;
教學(xué)難點(diǎn):
集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;
教學(xué)過(guò)程:
1、引入課題
我們兩個(gè)實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類比實(shí)數(shù)的加法運(yùn)算,兩個(gè)集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
2、新課教學(xué)
1.并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說(shuō)明:兩個(gè)集合求并集,結(jié)果還是一個(gè)集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個(gè)元素)。
例題(P9-10例4、例5)
說(shuō)明:連續(xù)的(用不等式表示的`)實(shí)數(shù)集合可以用數(shù)軸上的一段封閉曲線來(lái)表示。
問(wèn)題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問(wèn)號(hào)部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。
2.交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說(shuō)明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。
例題(P9-10例6、例7)
拓展:求下列各圖中集合A與B的并集與交集
說(shuō)明:當(dāng)兩個(gè)集合沒(méi)有公共元素時(shí),兩個(gè)集合的交集是空集,而不能說(shuō)兩個(gè)集合沒(méi)有交集
3.補(bǔ)集
全集:一般地,如果一個(gè)集合含有我們所研究問(wèn)題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。
補(bǔ)集:對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集(complementary set),簡(jiǎn)稱為集合A的補(bǔ)集,
記作:CUA
即:CUA={x|x∈U且x∈A}
補(bǔ)集的Venn圖表示
說(shuō)明:補(bǔ)集的概念必須要有全集的限制
例題(P12例8、例9)
4.求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。
5.集合基本運(yùn)算的一些結(jié)論:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
。–UA)∪A=U,(CUA)∩A=
若A∩B=A,則AB,反之也成立
若A∪B=B,則AB,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
6.課堂練習(xí)
。1)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∩Z=A,B∩Z=B,A∩B=
(2)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∪Z=Z,B∪Z=Z,A∪B=Z
3、歸納小結(jié)(略)
4、作業(yè)布置
1、書(shū)面作業(yè):P13習(xí)題1.1,第6-12題
2、提高內(nèi)容:
。1)已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,試求p、q;
。2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;
。3)A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B。
高一數(shù)學(xué)集合教案4
1.1.2集合的表示方法
一、教學(xué)目標(biāo):
1、集合的兩種表示方法(列舉法和特征性質(zhì)描述法).
2、能選擇適當(dāng)?shù)姆椒ㄕ_的表示一個(gè)集合.
重點(diǎn):集合的表示方法。
難點(diǎn):集合的特征性質(zhì)的概念,以及運(yùn)用特征性質(zhì)描述法表示集合。
二、復(fù)習(xí)回顧:
1.集合中元素的特性:______________________________________.
2.常見(jiàn)的數(shù)集的簡(jiǎn)寫(xiě)符號(hào):自然數(shù)集 整數(shù)集 正整數(shù)集
有理數(shù)集 實(shí)數(shù)集
三、知識(shí)預(yù)習(xí):
1. ___________________________________________________________________________ ____________________________________________________________________叫做列舉法;
2. _______________________ ____________________________________________________叫做集合A的一個(gè)特征性質(zhì). ___________________________________________________________________________________
叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法.
說(shuō)明:概念的理解和注意問(wèn)題
1. 用列舉法表示集合時(shí)應(yīng)注意以下5點(diǎn):
(1) 元素間用分隔號(hào),
(2) 元素不重復(fù);
(3) 不考慮元素順序;
(4) 對(duì)于含有較多元素的集合,如果構(gòu)成該集合的元素有明顯規(guī)律,可用列舉法,但必須把元素間的規(guī)律顯示清楚后方能用省略號(hào).
(5) 無(wú)限集有時(shí)也可用列舉法表示。
2. 用特征性質(zhì)描述法表示集合時(shí)應(yīng)注意以下6點(diǎn);
(1) 寫(xiě)清楚該集合中元素的代號(hào)(字母或用字母表達(dá)的元素符號(hào));
(2) 說(shuō)明該集合中元素的性質(zhì);
(3) 不能出現(xiàn)未被說(shuō)明的字母;
(4) 多層描述時(shí),應(yīng)當(dāng)準(zhǔn)確使用且和或
(5) 所有描述的內(nèi)容都要寫(xiě)在集合符號(hào)內(nèi);
(6) 用于描述的語(yǔ)句力求簡(jiǎn)明,準(zhǔn)確.
四、典例分析
題型一 用列舉法表示下列集合
例1 用列舉法表示下列集合
(1)A={x N|0
變式訓(xùn)練:○1課本7頁(yè)練習(xí)A第1題。 ○2課本9頁(yè)習(xí)題A第3題。
題型二 用描述法表示集合
例2 用描述法表示下列集合
(1){-1,1} (2)大于3的全體偶數(shù)構(gòu)成的集合 (3)在平面 內(nèi),線段AB的垂直平分線
變式訓(xùn)練:課本8頁(yè)練習(xí)A第2題、練習(xí)B第2題、9頁(yè)習(xí)題A第4題。
題型三 集合表示方法的靈活運(yùn)用
例3 分別判斷下列各組集合是否為同一個(gè)集合:
(1)A={x|x+32} B={y|y+32}
(2) A={(1,2)} B={1,2}
(3) M={(x,y)|y= +1} N={y| y= +1}
變式訓(xùn)練:1、集合A={x|y= ,x Z,y Z},則集合A的元素個(gè)數(shù)為( )
A 4 B 5 C 10 D 12
2、課本8頁(yè)練習(xí)B第1題、習(xí)題A第1題
例4 已知集合A={x|k -8x+16=0}只有一個(gè)元素,試求實(shí)數(shù)k的值,并用列舉法表示集合A.
作業(yè):課本第9頁(yè)A組第2題、B組第1、2題。
限時(shí)訓(xùn)練
1. 選擇
(1)集合 的另一種表示法是( B )
A. B. C. D.
(2) 由大于-3小于11的偶數(shù)所組成的集合是( D )
A. B.
C. D.
(3) 方程組 的解集是( D )
A. (5, 4) B. C. (-5, 4) D. (5,-4)
(4)集合M= (x,y)| xy0, x , y 是( D )
A. 第一象限內(nèi)的點(diǎn)集 B. 第三象限內(nèi)的點(diǎn)集
C. 第四象限內(nèi)的`點(diǎn)集 D. 第二、四象限內(nèi)的點(diǎn)集
(5)設(shè)a, b , 集合 1,a+b, a = 0, , b , 則b-a等于( C )
A. 1 B. -1 C. 2 D. -2
2. 填空
(1)已知集合A= 2, 4, x2-x , 若6 ,則x=___-2或3______.
(2)由平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合為_(kāi)_ __.
(3)下面幾種表示法:○1 ;○2 ; ○3 ;
○4(-1,2);○5 ;○6 . 能正確表示方程組
的解集的是__○2__○5_______.
(4) 用列舉法表示下列集合:
A= =___{0,1,2}________________________;
B= =___{-2,-1,0,1,2}________________________;
C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.
(5) 已知A= , B= , 則集合B=__{0,1,2}________.
3. 已知集合A= , 且-3 ,求實(shí)數(shù)a. (a= )
4. 已知集合A= .
(1) 若A中只有一個(gè)元素,求a的值;(a=0或a=1)
(2)若A中至少有一個(gè)元素,求a的取值范圍;(a1)
(3)若A中至多有一個(gè)元素,求a的取值范圍。(a=0或a1)
高一數(shù)學(xué)集合教案5
高一數(shù)學(xué)教案設(shè)計(jì)一:集合的概念
教學(xué)目的:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
。2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
教學(xué)重點(diǎn):
集合的基本概念及表示方法
教學(xué)難點(diǎn):
運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合
授課類型:
新授課
課時(shí)安排:
1課時(shí)
教具:
多媒體、實(shí)物投影儀
內(nèi)容分析:
1、集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念。在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集。至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具。這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)
把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)。例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念。學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義。本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念
集合是集合論中的原始的'、不定義的概念。在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí)。教科書(shū)給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。”這句話,只是對(duì)集合概念的描述性說(shuō)明
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);
4、“物以類聚”,“人以群分”;
5、教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問(wèn)題如下:
(1)有那些概念?是如何定義的?
。2)有那些符號(hào)?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集.集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合、
1、集合的概念
。1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)
。2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,
。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合記作Z ,
。4)有理數(shù)集:全體有理數(shù)的集合記作Q ,
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0
。2)非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對(duì)于集合的隸屬關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒(méi)有重復(fù)
(3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)
三、練習(xí)題:
1、教材P5練習(xí)
2、下列各組對(duì)象能確定一個(gè)集合嗎?
。1)所有很大的實(shí)數(shù)(不確定)
(2)好心的人(不確定)
。3)1,2,2,3,4,5、(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是_-2,0,2__
4、由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)
(A)2個(gè)元素
。˙)3個(gè)元素
(C)4個(gè)元素
。―)5個(gè)元素
5、設(shè)集合G中的元素是所有形如a+b(a∈Z, b∈Z)的數(shù),求證:
(1)當(dāng)x∈N時(shí), x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,又∵不一定都是整數(shù),∴=不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無(wú)序性
3、常用數(shù)集的定義及記法
高一數(shù)學(xué)集合教案6
教學(xué)目標(biāo):
1.使學(xué)生理解集合的含義,知道常用集合及其記法;
2.使學(xué)生初步了解屬于關(guān)系和集合相等的意義,初步了解有限集、無(wú)限集、空集的意義;
3.使學(xué)生初步掌握集合的表示方法,并能正確地表示一些簡(jiǎn)單的集合.
教學(xué)重點(diǎn):
集合的含義及表示方法.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境.
新生自我介紹:介紹家庭、原畢業(yè)學(xué)校、班級(jí).
2.問(wèn)題.
在介紹的過(guò)程中,常常涉及像家庭、學(xué)校、班級(jí)、男生、女生等概念,這些概念與學(xué)生相比,它們有什么共同的特征?
二、學(xué)生活動(dòng)
1.介紹自己;
2.列舉生活中的集合實(shí)例;
3.分析、概括各集合實(shí)例的共同特征.
三、數(shù)學(xué)建構(gòu)
1.集合的含義:一般地,一定范圍內(nèi)不同的、確定的對(duì)象的全體組成一個(gè)集合.構(gòu)成集合的每一個(gè)個(gè)體都叫做集合的一個(gè)元素.
2.元素與集合的關(guān)系及符號(hào)表示:屬于,不屬于.
3.集合的表示方法:
另集合一般可用大寫(xiě)的拉丁字母簡(jiǎn)記為集合A、集合B.
4.常用數(shù)集的記法:自然數(shù)集N,正整數(shù)集N*,整數(shù)集Z,有理數(shù)集Q,實(shí)數(shù)集R.
5.有限集,無(wú)限集與空集.
6.有關(guān)集合知識(shí)的歷史簡(jiǎn)介.
四、數(shù)學(xué)運(yùn)用
1.例題.
例1 表示出下列集合:
(1)中國(guó)的直轄市;(2)中國(guó)國(guó)旗上的`顏色.
小結(jié):集合的確定性和無(wú)序性
例2 準(zhǔn)確表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x0的解集;
(3)不等式組 的解集;
(4)不等式組 2x-1-33x+10的解集.
解:略.
小結(jié):(1)集合的表示方法列舉法與描述法;
(2)集合的分類有限集⑴,無(wú)限集⑵與⑶,空集⑷
例3 將下列用描述法表示的集合改為列舉法表示:
(1){(x,y)| x+y = 3,x N,y N }
(2){(x,y)| y = x2-1,|x |2,x Z }
(3){y| x+y = 3,x N,y N }
(4){ x R | x3-2x2+x=0}
小結(jié):常用數(shù)集的記法與作用.
例4 完成下列各題:
(1)若集合A={ x|ax+1=0}=,求實(shí)數(shù)a的值;
(2)若-3{ a-3,2a-1,a2-4},求實(shí)數(shù)a.
小結(jié):集合與元素之間的關(guān)系.
2.練習(xí):
(1)用列舉法表示下列集合:
、賩 x|x+1=0};
②{ x|x為15的正約數(shù)};
、踸 x|x 為不大于10的正偶數(shù)};
、躿(x,y)|x+y=2且x-2y=4};
、輠(x,y)|x{1,2},y{1,3}};
、辿(x,y)|3x+2y=16,xN,yN}.
(2)用描述法表示下列集合:
、倨鏀(shù)的集合;②正偶數(shù)的集合;③{1,4,7,10,13}
五、回顧小結(jié)
(1)集合的概念集合、元素、屬于、不屬于、有限集、無(wú)限集、空集;
(2)集合的表示列舉法、描述法以及Venn圖;
(3)集合的元素與元素的個(gè)數(shù);
(4)常用數(shù)集的記法.
高一數(shù)學(xué)集合教案7
1.1 集合含義及其表示
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語(yǔ)。
教學(xué)過(guò)程:
一、閱讀下列語(yǔ)句:
1) 全體自然數(shù)0,1,2,3,4,5,
2) 代數(shù)式 .
3) 拋物線 上所有的點(diǎn)
4) 今年本校高一(1)(或(2))班的全體學(xué)生
5) 本校實(shí)驗(yàn)室的所有天平
6) 本班級(jí)全體高個(gè)子同學(xué)
7) 著名的科學(xué)家
上述每組語(yǔ)句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________
三、集合中元素的三個(gè)性質(zhì):
1)___________2)___________3)_____________
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號(hào):
1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______
4)有理數(shù)集______5)實(shí)數(shù)集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、 中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長(zhǎng),那么此三角形一定不是 ( )
A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑,然后說(shuō)出它們是有限集還是無(wú)限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù) 的全體 值的集合;
3)函數(shù) 的`全體自變量 的集合;
4)方程組 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號(hào) 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)設(shè) , , 則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例6、設(shè)含有三個(gè)實(shí)數(shù)的集合既可以表示為 ,也可以表示為 ,則 的值等于___________
例7、已知: ,若 中元素至多只有一個(gè),求 的取值范圍。
思考題:數(shù)集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個(gè)元素;2)若 則集合A不可能是單元素集合。
小結(jié):
作業(yè) 班級(jí) 姓名 學(xué)號(hào)
1. 下列集合中,表示同一個(gè)集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .則 ( )
A . B. C. D.
3. 方程組 的解集是____________________.
4. 在(1)難解的題目,(2)方程 在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5. 設(shè)集合 A= , B= ,
C= , D= ,E= 。
其中有限集的個(gè)數(shù)是____________.
6. 設(shè) ,則集合 中所有元素的和為
7. 設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將 所有可能的值組成的集合表示為
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,試用列舉法表示集合B=
9. 把下列集合用另一種方法表示出來(lái):
(1) (2)
(3) (4)
10. 設(shè)a,b為整數(shù),把形如a+b 的一切數(shù)構(gòu)成的集合記為M,設(shè) ,試判斷x+y,x-y,xy是否屬于M,說(shuō)明理由。
11. 已知集合A=
(1) 若A中只有一個(gè)元素,求a的值,并求出這個(gè)元素;
(2) 若A中至多只有一個(gè)元素,求a的取值集合。
12.若-3 ,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來(lái),新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來(lái)幫助!
高一數(shù)學(xué)集合教案8
教學(xué)目的:要求學(xué)生初步理解集合的概念,理解元素與集合間的關(guān)系,掌握集合的表示法,知道常用數(shù)集及其記法.
教學(xué)重難點(diǎn):
1、元素與集合間的關(guān)系
2、集合的表示法
教學(xué)過(guò)程:
一、 集合的概念
實(shí)例引入:
⑴ 1~20以內(nèi)的所有質(zhì)數(shù);
、 我國(guó)從1991~20xx的13年內(nèi)所發(fā)射的所有人造衛(wèi)星;
、 金星汽車廠20xx年生產(chǎn)的所有汽車;
⑷ 20xx年1月1日之前與我國(guó)建立外交關(guān)系的所有國(guó)家;
、 所有的正方形;
、 黃圖盛中學(xué)20xx年9月入學(xué)的高一學(xué)生全體.
結(jié)論:一般地,我們把研究對(duì)象統(tǒng)稱為元素;把一些元素組成的總體叫做集合,也簡(jiǎn)稱集.
二、 集合元素的`特征
。1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立.
。2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.
。3)無(wú)序性:一般不考慮元素之間的順序,但在表示數(shù)列之類的特殊集合時(shí),通常按照習(xí)慣的由小到大的數(shù)軸順序書(shū)寫(xiě)
練習(xí):判斷下列各組對(duì)象能否構(gòu)成一個(gè)集合
、 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形
、 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
、饰覈(guó)的小河流 ⑺方程x2+4=0的所有實(shí)數(shù)解
、毯眯牡娜 ⑼著名的數(shù)學(xué)家 ⑽方程x2+2x+1=0的解
三 、 集合相等
構(gòu)成兩個(gè)集合的元素一樣,就稱這兩個(gè)集合相等
四、 集合元素與集合的關(guān)系
集合元素與集合的關(guān)系用“屬于”和“不屬于”表示:
(1)如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A
。2)如果a不是集合A的元素,就說(shuō)a不屬于A,記作a∈A
五、常用數(shù)集及其記法
非負(fù)整數(shù)集(或自然數(shù)集),記作N;
除0的非負(fù)整數(shù)集,也稱正整數(shù)集,記作N*或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實(shí)數(shù)集,記作R.
練習(xí):(1)已知集合M={a,b,c}中的三個(gè)元素可構(gòu)成某一三角形的三條邊,那么此三角形一定不是( )
A直角三角形 B 銳角三角形 C鈍角三角形 D等腰三角形
。2)說(shuō)出集合{1,2}與集合{x=1,y=2}的異同點(diǎn)?
六、集合的表示方式
。1)列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi);
。2)描述法:用集合所含元素的共同特征表示的方法.(具體方法)
例 1、 用列舉法表示下列集合:
。1)小于10的所有自然數(shù)組成的集合;
。2)方程x2=x的所有實(shí)數(shù)根組成的集合;
(3)由1~20以內(nèi)的所有質(zhì)數(shù)組成。
例 2、 試分別用列舉法和描述法表示下列集合:
。1)由大于10小于20的的所有整數(shù)組成的集合;
(2)方程x2-2=2的所有實(shí)數(shù)根組成的集合.
注意:(1)描述法表示集合應(yīng)注意集合的代表元素
(2)只要不引起誤解集合的代表元素也可省略
七、小結(jié)
集合的概念、表示;集合元素與集合間的關(guān)系;常用數(shù)集的記法.
高一數(shù)學(xué)集合教案9
教學(xué)目的:
。1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;
(2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;
。3)能用Venn圖表達(dá)集合的`關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽象概念的作用。
教學(xué)重點(diǎn):
集合的交集與并集、補(bǔ)集的概念;
教學(xué)難點(diǎn):
集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;
【知識(shí)點(diǎn)】
1、并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
第4 / 7頁(yè)
A與B的所有元素來(lái)表示。 A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說(shuō)明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。
拓展:求下列各圖中集合A與B的并集與交集
A
說(shuō)明:當(dāng)兩個(gè)集合沒(méi)有公共元素時(shí),兩個(gè)集合的交集是空集,不能說(shuō)兩個(gè)集合沒(méi)有交集
3、補(bǔ)集
全集:一般地,如果一個(gè)集合含有我們所研究問(wèn)題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。
補(bǔ)集:對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集(complementary set),簡(jiǎn)稱為集合A的補(bǔ)集,
記作:CUA
即:CUA={x|x∈U且x∈A}
第5 / 7頁(yè)
補(bǔ)集的Venn圖表示
說(shuō)明:補(bǔ)集的概念必須要有全集的限制
4、求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分
交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。
5、集合基本運(yùn)算的一些結(jié)論:
A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A
A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A
。–UA)∪A=U,(CUA)∩A=?
若A∩B=A,則A?B,反之也成立
若A∪B=B,則A?B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
¤例題精講:
【例1】設(shè)集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在數(shù)軸上表示出集合A、B。
【例2】設(shè)A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:
。1)A?(B?C);(2)A??A(B?C)。
【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求實(shí)數(shù)m的取值范圍。
XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求
CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關(guān)系。
高一數(shù)學(xué)集合教案10
教學(xué)目標(biāo):
1、理解集合的概念和性質(zhì)。
2、了解元素與集合的表示方法。
3、熟記有關(guān)數(shù)集。
4、培養(yǎng)學(xué)生認(rèn)識(shí)事物的能力。
教學(xué)重點(diǎn):
集合概念、性質(zhì)
教學(xué)難點(diǎn):
集合概念的理解
教學(xué)過(guò)程:
1、定義:
集合:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合(集)。元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點(diǎn)距離等于兩定點(diǎn)間距離的點(diǎn),
例(3)的元素為滿足不等式3x—2> x+3的實(shí)數(shù)x,
例(4)的.元素為所有直角三角形,
例(5)為高一·六班全體男同學(xué)。
一般用大括號(hào)表示集合,{?}如{我校的籃球隊(duì)員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫(xiě)的拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
。1)確定性;(2)互異性;(3)無(wú)序性。
3、元素與集合的關(guān)系:隸屬關(guān)系
元素與集合的關(guān)系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)
注:1、集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q??
元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)。
4
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作NXX或N+ 。Q、Z、R等其它數(shù)集內(nèi)排除0
的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成ZXX
請(qǐng)回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關(guān)系。
高一數(shù)學(xué)集合教案11
教學(xué)目標(biāo):
(1) 知識(shí)與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個(gè)特性,識(shí)記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語(yǔ)言、列舉法和描述法表示集合。
(2) 過(guò)程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過(guò)探討一系列的例子形成集合的概念,舉例 剖析集合中元素的三個(gè)特性,探討元素與集合的關(guān)系,比較用自然語(yǔ)言、列舉法 和描述法表示集合。
(3) 情感態(tài)度與價(jià)值觀:感受集合語(yǔ)言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的 精神 ,發(fā)展用嚴(yán)密謹(jǐn) 慎的集合語(yǔ)言描述問(wèn)題的習(xí)慣。
教學(xué)重難點(diǎn):
(1) 重點(diǎn):了解集合的含義 與表示、集合中元 素的特性。
(2) 難點(diǎn):區(qū)別集合與元素的`概念及其相應(yīng)的符號(hào),理解集合與元素的關(guān)系,表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。
教學(xué)過(guò)程:
【問(wèn)題1】在初中我們已經(jīng)學(xué) 習(xí)了圓、線段的垂直平分線,大家回憶一下教材中是如何對(duì)它們進(jìn)行定義的?
[設(shè)計(jì)意圖]引出“集合”一詞。
【問(wèn)題2】同學(xué)們知道什么是集合嗎?請(qǐng)大家思考討論課本第2頁(yè)的思考題。
[設(shè)計(jì)意圖]探討并形成集合的含義。
【問(wèn)題3】請(qǐng)同學(xué) 們舉出認(rèn)為是集合的例子。
[設(shè)計(jì)意圖]點(diǎn)評(píng)學(xué)生舉出的例子,剖析并強(qiáng)調(diào)集合中元素的三大特性:確定性、互異性、無(wú)序性。
【問(wèn)題4】同學(xué)們知道用什么來(lái)表示一個(gè)集合,一個(gè)元素嗎?集合與元素之間有怎樣的關(guān)系?
[設(shè)計(jì)意圖] 區(qū)別表示集合與元素的的符號(hào),介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
【問(wèn)題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、 印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有實(shí)數(shù)根”組成的集
[設(shè)計(jì)意圖]引出并介紹列舉法。
【問(wèn)題6】例1的講解。同學(xué)們能用列舉法表示不等式x-7<3的解集嗎?
【問(wèn)題7】例2的講解。請(qǐng)同學(xué)們思考 課本第6頁(yè)的思考題。
[設(shè)計(jì)意圖] 幫助學(xué)生在表示具體的集合時(shí),如何從列舉法與描述法中 做出選擇。
【問(wèn)題8】請(qǐng)同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習(xí)了那些內(nèi)容?有什么學(xué)習(xí)體會(huì)?
[設(shè)計(jì)意圖]學(xué)習(xí)小結(jié)。對(duì)本節(jié)課所學(xué)知識(shí)進(jìn)行回顧。
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案11-05
高一數(shù)學(xué)教案11-08
人教版高一數(shù)學(xué)教案08-07
【熱】高一數(shù)學(xué)教案12-05
高一數(shù)學(xué)教案【薦】12-02
高一數(shù)學(xué)教案【推薦】11-30
【精】高一數(shù)學(xué)教案12-01
高一數(shù)學(xué)教案(薦)03-16