天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高一數(shù)學(xué)教案>高一數(shù)學(xué)函數(shù)的教案

高一數(shù)學(xué)函數(shù)的教案

時(shí)間:2023-01-12 15:27:47 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)函數(shù)的教案15篇

  作為一位不辭辛勞的人民教師,往往需要進(jìn)行教案編寫工作,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。教案要怎么寫呢?下面是小編精心整理的高一數(shù)學(xué)函數(shù)的教案,僅供參考,歡迎大家閱讀。

高一數(shù)學(xué)函數(shù)的教案15篇

高一數(shù)學(xué)函數(shù)的教案1

  一、說課內(nèi)容:

  蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

  (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。

  (2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.

  (3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

  3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。

  三、教法學(xué)法設(shè)計(jì):

  1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程

  2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程

  3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程

  四、教學(xué)過程:

  (一)復(fù)習(xí)提問

  1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

  (一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?

  (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

  3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?

  【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

  (二)引入新課

  函數(shù)是研究?jī)蓚(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?

  解:s=πr(r>0)

  例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?

  解: y=x(20/2-x)=x(10-x)=-x+10x (0

  例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解: y=100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0

  教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

  (三)講解新課

  以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

  鞏固對(duì)二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0 ?

  (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則y=ax2+c;

  若c=0,則y=ax2+bx;

  若b=c=0,則y=ax2.

  注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

  【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

  (1)y=3(x-1)+1 (2)

  (3)s=3-2t (4)y=(x+3)- x

  (5) s=10πr (6) y=2+2x

  (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

  【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

  (四)鞏固練習(xí)

  1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

  (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

  (2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

  于x的函數(shù)關(guān)系式。

  【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

  2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。

  (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

  (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

  【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

  3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3

  (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

  (2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

  【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。

  4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

  【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。

  (五)拓展延伸

  1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.

  【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

  2.確定下列函數(shù)中k的值

  (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的.值一定是______

  (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

  【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

  (六) 小結(jié)思考:

  本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

  (七) 作業(yè)布置:

  必做題:

  1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

  2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

  選做題:

  1.已知函數(shù) 是二次函數(shù),求m的值。

  2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象

  【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

  五、教學(xué)設(shè)計(jì)思考

  以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

  以現(xiàn)代教育理論為依據(jù)

  以現(xiàn)代信息技術(shù)為手段

  貫穿一個(gè)原則——以學(xué)生為主體的原則

  突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色

  滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)

高一數(shù)學(xué)函數(shù)的教案2

  和初中數(shù)學(xué)相比,高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強(qiáng),因?yàn)椴簧偻瑢W(xué)進(jìn)入高中之后很不適應(yīng),特別是高一年級(jí),進(jìn)校后,代數(shù)里首先遇到的是理論性很強(qiáng)的函數(shù),再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來,這就使一些初中數(shù)學(xué)學(xué)得還不

  錯(cuò)的同學(xué)不能很快地適應(yīng)而感到困難,以下就怎樣學(xué)好高中數(shù)學(xué)談幾點(diǎn)意見和建議。

  一、首先要改變觀念。

  初中階段,特別是初中三年級(jí),通過大量的練習(xí),可使你的成績(jī)有明顯的提高,這是因?yàn)槌踔袛?shù)學(xué)知識(shí)相對(duì)比較淺顯,更易于掌握,通過反復(fù)練習(xí),提高了熟練程度,即可提高成績(jī),既使是這樣,對(duì)有些問題理解得不夠深刻甚至是不理解的。例如在初中問a=2時(shí),a等于什么,在中考中錯(cuò)的人極少,然而進(jìn)入高中后,老師問,如果a=2,且a<0,那么a等于什么,既使是重點(diǎn)學(xué)校的學(xué)生也會(huì)有一些同學(xué)毫不思索地回答:a=2。就是以說明了這個(gè)問題。又如,前幾年北京四中高一年級(jí)的一個(gè)同學(xué)在高一上學(xué)期期中考試以后,曾向老師提出“抗議”說:“你們平時(shí)的作業(yè)也不多,測(cè)驗(yàn)也很少,我不會(huì)學(xué)”,這也正說明了改變觀念的重要性。

  高中數(shù)學(xué)的理論性、抽象性強(qiáng),就需要在對(duì)知識(shí)的理解上下功夫,要多思考,多研究。

  二、提高聽課的效率是關(guān)鍵。

  學(xué)生學(xué)習(xí)期間,在課堂的時(shí)間占了一大部分。因此聽課的效率如何,決定著學(xué)習(xí)的基本狀況,提高聽課效率應(yīng)注意以下幾個(gè)方面:

  1、 課前預(yù)習(xí)能提高聽課的針對(duì)性。

  預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對(duì)預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識(shí),可進(jìn)行補(bǔ)缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。

  2、 聽課過程中的科學(xué)。

  首先應(yīng)做好課前的物質(zhì)準(zhǔn)備和精神準(zhǔn)備,以使得上課時(shí)不至于出現(xiàn)書、本等物丟三落四的現(xiàn)象;上課前也不應(yīng)做過于激烈的體育運(yùn)動(dòng)或看小書、下棋、打牌、激烈爭(zhēng)論等。以免上課后還喘噓噓,或不能平靜下來。

  其次就是聽課要全神貫注。

  全神貫注就是全身心地投入課堂學(xué)習(xí),耳到、眼到、心到、口到、手到。

  耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結(jié),另外,還要聽同學(xué)們的答問,看是否對(duì)自己有所啟發(fā)。

  眼到:就是在聽講的同時(shí)看課本和板書,看老師講課的表情,手勢(shì)和演示實(shí)驗(yàn)的動(dòng)作,生動(dòng)而深刻的接受老師所要表達(dá)的思想。

  心到:就是用心思考,跟上老師的數(shù)學(xué)思路,分析老師是如何抓住重點(diǎn),解決疑難的。

  口到:就是在老師的指導(dǎo)下,主動(dòng)回答問題或參加討論。

  手到:就是在聽、看、想、說的基礎(chǔ)上劃出課文的重點(diǎn),記下講課的要點(diǎn)以及自己的感受或有創(chuàng)新思維的見解。

  若能做到上述“五到”,精力便會(huì)高度集中,課堂所學(xué)的一切重要內(nèi)容便會(huì)在自己頭腦中留下深刻的印象。

  3、 特別注意老師講課的開頭和結(jié)尾。

  老師講課開頭,一般是概括前節(jié)課的要點(diǎn)指出本節(jié)課要講的內(nèi)容,是把舊知識(shí)和新知識(shí)聯(lián)系起來的.環(huán)節(jié),結(jié)尾常常是對(duì)一節(jié)課所講知識(shí)的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識(shí)方法的綱要。

  4、要認(rèn)真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅(jiān)持下去,就一定能舉一反三,提高思維和解決問題的能力。

  此外還要特別注意老師講課中的提示。

  老師講課中常常對(duì)一些重點(diǎn)難點(diǎn)會(huì)作出某些語言、語氣、甚至是某種動(dòng)作的提示。

  最后一點(diǎn)就是作好筆記,筆記不是記錄而是將上述聽課中的要點(diǎn),思維方法等作出簡(jiǎn)單扼要的記錄,以便復(fù)習(xí),消化,思考。

  三、做好復(fù)習(xí)和總結(jié)工作。

  1、做好及時(shí)的復(fù)習(xí)。

  課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。

  復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí):先把書,筆記合起來回憶上課老師講的內(nèi)容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對(duì)照一下還有哪些沒記清的,把它補(bǔ)起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時(shí)也就檢查了當(dāng)天課堂聽課的效果如何,也為改進(jìn)聽課方法及提高聽課效果提出必要的改進(jìn)措施。

  2、 做好單元復(fù)習(xí)。

  學(xué)習(xí)一個(gè)單元后應(yīng)進(jìn)行階段復(fù)習(xí),復(fù)習(xí)方法也同及時(shí)復(fù)習(xí)一樣,采取回憶式復(fù)習(xí),而后與書、筆記相對(duì)照,使其內(nèi)容完善,而后應(yīng)做好單元小節(jié)。

  3做好單元小結(jié)。

  單元小結(jié)內(nèi)容應(yīng)包括以下部分。

 。1)本單元(章)的知識(shí)網(wǎng)絡(luò);

 。2)本章的基本思想與方法(應(yīng)以典型例題形式將其表達(dá)出來);

  (3)自我體會(huì):對(duì)本章內(nèi),自己做錯(cuò)的典型問題應(yīng)有記載,分析其原因及正確答案,應(yīng)記錄下來本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。

  四、關(guān)于做練習(xí)題量的問題

  有不少同學(xué)把提高數(shù)學(xué)成績(jī)的希望寄托在大量做題上。我認(rèn)為這是不妥當(dāng)?shù),我認(rèn)為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學(xué)的知識(shí),方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識(shí)和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對(duì)于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識(shí),數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時(shí),是否也用到過,把它們聯(lián)系起來,你就會(huì)得到更多的經(jīng)驗(yàn)和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。當(dāng)然沒有一定量(老師布置的作業(yè)量)的練習(xí)就不能形成技能,也是不行的。

  另外,就是無論是作業(yè)還是測(cè)驗(yàn),都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學(xué)好數(shù)學(xué)的重要問題。

  最后想說的是:“興趣”和信心是學(xué)好數(shù)學(xué)的最好的老師。這里說的“興趣”沒有將來去研究數(shù)學(xué),做數(shù)學(xué)家的意思,而主要指的是不反感,不要當(dāng)做負(fù)擔(dān)!皞ゴ蟮膭(dòng)力產(chǎn)生于偉大的理想”。只要明白學(xué)習(xí)數(shù)學(xué)的重要,你就會(huì)有無窮的力量,并逐步對(duì)數(shù)學(xué)感到興趣。有了一定的興趣,隨之信心就會(huì)增強(qiáng),也就不會(huì)因?yàn)槟炒慰荚嚨某煽?jī)不理想而泄氣,在不斷總結(jié)經(jīng)驗(yàn)和教訓(xùn)的過程中,你的信心就會(huì)不斷地增強(qiáng),你也就會(huì)越來越認(rèn)識(shí)到“興趣”和信心是你學(xué)習(xí)中的最好的老師。

高一數(shù)學(xué)函數(shù)的教案3

  目標(biāo):

  1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù) ;

  2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系 ;

  3.讓學(xué)生認(rèn)識(shí)到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用 ;

  4。培養(yǎng)學(xué)生動(dòng)手操作的'能力 。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):零點(diǎn)的概念及存在性的判定;

  難點(diǎn):零點(diǎn)的確定。

  三、復(fù)習(xí)引入

  例1:判斷方程 x2-x-6=0 解的存在。

  分析:考察函數(shù)f(x)= x2-x-6, 其

  圖像為拋物線容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

  點(diǎn)B (0,-6)與點(diǎn)C(4,6)之間的那部分曲線

  必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)

  X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

  少有點(diǎn)X2,使得f( X2)=0,而方程至多有兩

  個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解

  定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù) x叫函數(shù)y=f(x)的零點(diǎn)

  抽象概括

  y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。

  若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在 (a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。

  f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)

  所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)

  注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個(gè)實(shí)數(shù)解指出了方程f(x)=0的實(shí)數(shù)解的存在性,并不能判斷具體有多少個(gè)解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實(shí)數(shù)解;

  3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

  4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點(diǎn)。

  四、知識(shí)應(yīng)用

  例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實(shí)數(shù)解?為什么?

  解:f(x)=3x-x2的圖像是連續(xù)曲線, 因?yàn)?/p>

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點(diǎn),即f(x)=0在區(qū)間[-1,0]內(nèi)有實(shí)數(shù)解

  練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點(diǎn)?

  例3 判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。

  解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因?yàn)閒(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在( -,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。

  練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。

  五、課后作業(yè)

  p133第2,3題

高一數(shù)學(xué)函數(shù)的教案4

  一、教學(xué)內(nèi)容:橢圓的方程

  要求:理解橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì).

  重點(diǎn):橢圓的方程與幾何性質(zhì).

  難點(diǎn):橢圓的方程與幾何性質(zhì).

  二、點(diǎn):

  1、橢圓的定義、標(biāo)準(zhǔn)方程、圖形和性質(zhì)

  定 義

  第一定義:平面內(nèi)與兩個(gè)定點(diǎn) )的點(diǎn)的軌跡叫作橢圓,這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距

  第二定義:

  平面內(nèi)到動(dòng)點(diǎn)距離與到定直線距離的比是常數(shù)e.(0

  標(biāo)準(zhǔn)方程

  焦點(diǎn)在x軸上

  焦點(diǎn)在y軸上

  圖 形

  焦點(diǎn)在x軸上

  焦點(diǎn)在y軸上

  性 質(zhì)

  焦點(diǎn)在x軸上

  范 圍:

  對(duì)稱性: 軸、 軸、原點(diǎn).

  頂點(diǎn): , .

  離心率:e

  概念:橢圓焦距與長(zhǎng)軸長(zhǎng)之比

  定義式:

  范圍:

  2、橢圓中a,b,c,e的關(guān)系是:(1)定義:r1+r2=2a

 。2)余弦定理: + -2r1r2cos(3)面積: = r1r2 sin ?2c y0 (其中P( )

  三、基礎(chǔ)訓(xùn)練:

  1、橢圓 的標(biāo)準(zhǔn)方程為 ,焦點(diǎn)坐標(biāo)是 ,長(zhǎng)軸長(zhǎng)為___2____,短軸長(zhǎng)為2、橢圓 的值是__3或5__;

  3、兩個(gè)焦點(diǎn)的坐標(biāo)分別為 ___;

  4、已知橢圓 上一點(diǎn)P到橢圓一個(gè)焦點(diǎn) 的距離是7,則點(diǎn)P到另一個(gè)焦點(diǎn)5、設(shè)F是橢圓的一個(gè)焦點(diǎn),B1B是短軸, ,則橢圓的離心率為6、方程 =10,化簡(jiǎn)的結(jié)果是 ;

  滿足方程7、若橢圓短軸上的兩個(gè)三等分點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成一個(gè)正方形,則橢圓的離心率為

  8、直線y=kx-2與焦點(diǎn)在x軸上的橢圓9、在平面直角坐標(biāo)系 頂點(diǎn) ,頂點(diǎn) 在橢圓 上,則10、已知點(diǎn)F是橢圓 的右焦點(diǎn),點(diǎn)A(4,1)是橢圓內(nèi)的一點(diǎn),點(diǎn)P(x,y)(x≥0)是橢圓上的一個(gè)動(dòng)點(diǎn),則 的最大值是 8 .

  【典型例題】

  例1、(1)已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,短軸長(zhǎng)為4,求橢圓的方程.

  解:設(shè)方程為 .

  所求方程為

 。2)中心在原點(diǎn),焦點(diǎn)在x軸上,右焦點(diǎn)到短軸端點(diǎn)的距離為2,到右頂點(diǎn)的距離為1,求橢圓的方程.

  解:設(shè)方程為 .

  所求方程為(3)已知三點(diǎn)P,(5,2),F(xiàn)1 (-6,0),F(xiàn)2 (6,0).設(shè)點(diǎn)P,F(xiàn)1,F(xiàn)2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為 ,求以 為焦點(diǎn)且過點(diǎn) 的橢圓方程 .

  解:(1)由題意可設(shè)所求橢圓的標(biāo)準(zhǔn)方程為 ∴所以所求橢圓的標(biāo)準(zhǔn)方程為(4)求經(jīng)過點(diǎn)M( , 1)的橢圓的標(biāo)準(zhǔn)方程.

  解:設(shè)方程為

  例2、如圖所示,我國發(fā)射的第一顆人造地球衛(wèi)星運(yùn)行軌道是以地心(地球的中心) 為一個(gè)焦點(diǎn)的橢圓,已知它的近地點(diǎn)A(離地面最近的點(diǎn))距地面439km,遠(yuǎn)地點(diǎn)B(離地面最遠(yuǎn)的點(diǎn))距地面2384km,并且 、A、B在同一直線上,設(shè)地球半徑約為6371km,求衛(wèi)星運(yùn)行的`軌道方程 (精確到1km).

  解:建立如圖所示直角坐標(biāo)系,使點(diǎn)A、B、 在 軸上,

  則 =OA-O = A=6371+439=6810

  解得 =7782.5, =972.5

  衛(wèi)星運(yùn)行的軌道方程為

  例3、已知定圓

  分析:由兩圓內(nèi)切,圓心距等于半徑之差的絕對(duì)值 根據(jù)圖形,用符號(hào)表示此結(jié)論:

  上式可以變形為 ,又因?yàn)?,所以圓心M的軌跡是以P,Q為焦點(diǎn)的橢圓

  解:知圓可化為:圓心Q(3,0),

  設(shè)動(dòng)圓圓心為 ,則 為半徑 又圓M和圓Q內(nèi)切,所以 ,

  即 ,故M的軌跡是以P,Q為焦點(diǎn)的橢圓,且PQ中點(diǎn)為原點(diǎn),所以 ,故動(dòng)圓圓心M的軌跡方程是:

  例4、已知橢圓的焦點(diǎn)是 |和|(1)求橢圓的方程;

 。2)若點(diǎn)P在第三象限,且∠ =120°,求 .

  選題意圖:綜合考查數(shù)列與橢圓標(biāo)準(zhǔn)方程的基礎(chǔ)知識(shí),靈活運(yùn)用等比定理進(jìn)行解題.

  解:(1)由題設(shè)| |=2| |=4

  ∴ , 2c=2, ∴b=∴橢圓的方程為 .

  (2)設(shè)∠ ,則∠ =60°-θ

  由正弦定理得:

  由等比定理得:

  整理得: 故

  說明:曲線上的點(diǎn)與焦點(diǎn)連線構(gòu)成的三角形稱曲線三角形,與曲線三角形有關(guān)的問題常常借助正(余)弦定理,借助比例性質(zhì)進(jìn)行處理.對(duì)于第二問還可用后面的幾何性質(zhì),借助焦半徑公式余弦定理把P點(diǎn)橫坐標(biāo)先求出來,再去解三角形作答

  例5、如圖,已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向 軸作垂線段PP?@,求線段PP?@的中點(diǎn)M的軌跡(若M分 PP?@之比為 ,求點(diǎn)M的軌跡)

  解:(1)當(dāng)M是線段PP?@的中點(diǎn)時(shí),設(shè)動(dòng)點(diǎn) ,則 的坐標(biāo)為

  因?yàn)辄c(diǎn) 在圓心為坐標(biāo)原點(diǎn)半徑為2的圓上,

  所以有 所以點(diǎn)

  (2)當(dāng)M分 PP?@之比為 時(shí),設(shè)動(dòng)點(diǎn) ,則 的坐標(biāo)為

  因?yàn)辄c(diǎn) 在圓心為坐標(biāo)原點(diǎn)半徑為2的圓上,所以有 ,

  即所以點(diǎn)

  例6、設(shè)向量 =(1, 0), =(x+m) +y =(x-m) +y + (I)求動(dòng)點(diǎn)P(x,y)的軌跡方程;

  (II)已知點(diǎn)A(-1, 0),設(shè)直線y= (x-2)與點(diǎn)P的軌跡交于B、C兩點(diǎn),問是否存在實(shí)數(shù)m,使得 ?若存在,求出m的值;若不存在,請(qǐng)說明理由.

  解:(I)∵ =(1, 0), =(0, 1), =6

  上式即為點(diǎn)P(x, y)到點(diǎn)(-m, 0)與到點(diǎn)(m, 0)距離之和為6.記F1(-m, 0),F(xiàn)2(m, 0)(0

  ∴ PF1+PF2=6>F1F2

  又∵x>0,∴P點(diǎn)的軌跡是以F1、F2為焦點(diǎn)的橢圓的右半部分.

  ∵ 2a=6,∴a=3

  又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2

  ∴ 所求軌跡方程為 (x>0,0<m<3)

  ( II )設(shè)B(x1, y1),C(x2, y2),

  ∴∴ 而y1y2= (x1-2)? (x2-2)

  = [x1x2-2(x1+x2)+4]

  ∴ [x1x2-2(x1+x2)+4]

  = [10x1x2+7(x1+x2)+13]

  若存在實(shí)數(shù)m,使得 成立

  則由 [10x1x2+7(x1+x2)+13]=

  可得10x1x2+7(x1+x2)+10=0 ①

  再由

  消去y,得(10-m2)x2-4x+9m2-77=0 ②

  因?yàn)橹本與點(diǎn)P的軌跡有兩個(gè)交點(diǎn).

  所以

  由①、④、⑤解得m2= <9,且此時(shí)△>0

  但由⑤,有9m2-77= <0與假設(shè)矛盾

  ∴ 不存在符合題意的實(shí)數(shù)m,使得

  例7、已知C1: ,拋物線C2:(y-m)2=2px (p>0),且C1、C2的公共弦AB過橢圓C1的右焦點(diǎn).

 。á瘢┊(dāng)AB⊥x軸時(shí),求p、m的值,并判斷拋物線C2的焦點(diǎn)是否在直線AB上;

 。á颍┤魀= ,且拋物線C2的焦點(diǎn)在直線AB上,求m的值及直線AB的方程.

  解:(Ⅰ)當(dāng)AB⊥x軸時(shí),點(diǎn)A、B關(guān)于x軸對(duì)稱,所以m=0,直線AB的方程為x=1,從而點(diǎn)A的坐標(biāo)為(1, )或(1,- ).

  ∵點(diǎn)A在拋物線上,∴

  此時(shí)C2的焦點(diǎn)坐標(biāo)為( ,0),該焦點(diǎn)不在直線AB上.

 。á颍┊(dāng)C2的焦點(diǎn)在AB上時(shí),由(Ⅰ)知直線AB的斜率存在,設(shè)直線AB的方程為y=k(x-1).

  由 (kx-k-m)2= ①

  因?yàn)镃2的焦點(diǎn)F( ,m)在y=k(x-1)上.

  所以k2x2- (k2+2)x+ =0 ②

  設(shè)A(x1,y1),B(x2,y2),則x1+x2=

  由

 。3+4k2)x2-8k2x+4k2-12=0 ③

  由于x1、x2也是方程③的兩根,所以x1+x2=

  從而 = k2=6即k=±

  又m=- ∴m= 或m=-

  當(dāng)m= 時(shí),直線AB的方程為y=- (x-1);

  當(dāng)m=- 時(shí),直線AB的方程為y= (x-1).

  例8、已知橢圓C: (a>0,b>0)的左、右焦點(diǎn)分別是F1、F2,離心率為e.直線l:y=ex+a與x軸,y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對(duì)稱點(diǎn),設(shè) = .

  (Ⅰ)證明:(Ⅱ)若 ,△MF1F2的周長(zhǎng)為6,寫出橢圓C的方程;

  (Ⅲ)確定解:(Ⅰ)因?yàn)锳、B分別為直線l:y=ex+a與x軸、y軸的交點(diǎn),所以A、B的坐標(biāo)分別是A(- ,0),B(0,a).

  由 得 這里∴M = ,a)

  即 解得

 。á颍┊(dāng) 時(shí), ∴a=2c

  由△MF1F2的周長(zhǎng)為6,得2a+2c=6

  ∴a=2,c=1,b2=a2-c2=3

  故所求橢圓C的方程為

 。á螅逷F1⊥l ∴∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有PF1=F1F2,即 PF1=C.

  設(shè)點(diǎn)F1到l的距離為d,由

  PF1= =得: =e ∴e2= 于是

  即當(dāng)(注:也可設(shè)P(x0,y0),解出x0,y0求之)

  【模擬】

  一、選擇題

  1、動(dòng)點(diǎn)M到定點(diǎn) 和 的距離的和為8,則動(dòng)點(diǎn)M的軌跡為 ( )

  A、橢圓 B、線段 C、無圖形 D、兩條射線

  2、設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,過F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,則橢圓的離心率是 ( )

  A、 C、2- -1

  3、(20xx年高考湖南卷)F1、F2是橢圓C: 的焦點(diǎn),在C上滿足PF1⊥PF2的點(diǎn)P的個(gè)數(shù)為( )

  A、2個(gè) B、4個(gè) C、無數(shù)個(gè) D、不確定

  4、橢圓 的左、右焦點(diǎn)為F1、F2,一直線過F1交橢圓于A、B兩點(diǎn),則△ABF2的周長(zhǎng)為 ( )

  A、32 B、16 C、8 D、4

  5、已知點(diǎn)P在橢圓(x-2)2+2y2=1上,則 的最小值為( )

  A、 C、

  6、我們把離心率等于黃金比 是優(yōu)美橢圓,F(xiàn)、A分別是它的左焦點(diǎn)和右頂點(diǎn),B是它的短軸的一個(gè)端點(diǎn),則 等于( )

  A、 C、

  二、填空題

  7、橢圓 的頂點(diǎn)坐標(biāo)為 和 ,焦點(diǎn)坐標(biāo)為 ,焦距為 ,長(zhǎng)軸長(zhǎng)為 ,短軸長(zhǎng)為 ,離心率為 ,準(zhǔn)線方程為 .

  8、設(shè)F是橢圓 的右焦點(diǎn),且橢圓上至少有21個(gè)不同的點(diǎn)Pi(i=1,2, ),使得FP1、FP2、FP3…組成公差為d的等差數(shù)列,則d的取值范圍是 .

  9、設(shè) , 是橢圓 的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且 ,則得 .

  10、若橢圓 =1的準(zhǔn)線平行于x軸則m的取值范圍是

  三、解答題

  11、根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程

  (1)和橢圓 共準(zhǔn)線,且離心率為 .

 。2)已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為 和 ,過P作長(zhǎng)軸的垂線恰好過橢圓的一個(gè)焦點(diǎn).

  12、已知 軸上的一定點(diǎn)A(1,0),Q為橢圓 上的動(dòng)點(diǎn),求AQ中點(diǎn)M的軌跡方程

  13、橢圓 的焦點(diǎn)為 =(3, -1)共線.

 。1)求橢圓的離心率;

 。2)設(shè)M是橢圓上任意一點(diǎn),且 = 、 ∈R),證明 為定值.

  【試題答案】

  1、B

  2、D

  3、A

  4、B

  5、D(法一:設(shè) ,則y=kx代入橢圓方程中得:(1+2k2)x2-4x+3=0,由△≥0得: .法二:用橢圓的參數(shù)方程及三角函數(shù)的有界性求解)

  6、C

  7、( ;(0, );6;10;8; ; .

  8、 ∪

  9、

  10、m< 且m≠0.

  11、(1)設(shè)橢圓方程 .

  解得 , 所求橢圓方程為(2)由 .

  所求橢圓方程為 的坐標(biāo)為

  因?yàn)辄c(diǎn) 為橢圓 上的動(dòng)點(diǎn)

  所以有

  所以中點(diǎn)

  13、解:設(shè)P點(diǎn)橫坐標(biāo)為x0,則 為鈍角.當(dāng)且僅當(dāng) .

  14、(1)解:設(shè)橢圓方程 ,F(xiàn)(c,0),則直線AB的方程為y=x-c,代入 ,化簡(jiǎn)得:

  x1x2=

  由 =(x1+x2,y1+y2), 共線,得:3(y1+y2)+(x1+x2)=0,

  又y1=x1-c,y2=x2-c

  ∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=

  即 = ,∴ a2=3b2

  ∴ 高中地理 ,故離心率e= .

 。2)證明:由(1)知a2=3b2,所以橢圓 可化為x2+3y2=3b2

  設(shè) = (x2,y2),∴ ,

  ∵M(jìn)∴ ( )2+3( )2=3b2

  即: )+ (由(1)知x1+x2= ,a2= 2,b2= c2.

  x1x2= = 2

  x1x2+3y1y2=x1x2+3(x1-c)(x2-c)

  =4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0

  又 =3b2代入①得

  為定值,定值為1.

高一數(shù)學(xué)函數(shù)的教案5

  教材分析:

  “指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運(yùn)算性質(zhì)的基礎(chǔ)上展開研究的.作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ).指數(shù)函數(shù)在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

  學(xué)情分析:

  通過初中階段的學(xué)習(xí)和高中對(duì)函數(shù)、指數(shù)的運(yùn)算等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對(duì)函數(shù)已經(jīng)有了一定的認(rèn)識(shí),學(xué)生對(duì)用“描點(diǎn)法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學(xué)生對(duì)由特殊到一般再到特殊的數(shù)學(xué)活動(dòng)過程已有一定的體會(huì).

  教學(xué)目標(biāo):

  知識(shí)與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大。

  過程與方法:

  (1) 體會(huì)從特殊到一般再到特殊的研究問題的方法,培養(yǎng)學(xué)生觀察、歸納、猜想、概括的能力,讓學(xué)生了解數(shù)學(xué)來源于生活又在生活中有廣泛的應(yīng)用;理解并掌握探求函數(shù)性質(zhì)的一般方法;

  (2) 從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀、嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).

  情感、態(tài)度與價(jià)值觀:

  (1)體驗(yàn)從特殊到一般再到特殊的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題,激發(fā)學(xué)生自主探究的精神,在探究過程中體驗(yàn)合作學(xué)習(xí)的樂趣;

  (2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進(jìn)一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣.

  教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)

  教學(xué)難點(diǎn):指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用

  教法研究:

  本節(jié)課準(zhǔn)備由實(shí)際問題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來源于客觀實(shí)際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).

  利用函數(shù)圖象來研究函數(shù)性質(zhì)是函數(shù)中的一個(gè)非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的性質(zhì),這樣便于學(xué)生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法 同時(shí)運(yùn)用現(xiàn)代信息技術(shù)學(xué)習(xí)、探索和解決問題,幫助學(xué)生理解新知識(shí)

  本節(jié)課使用的教學(xué)方法有:直觀教學(xué)法、啟發(fā)引導(dǎo)法、發(fā)現(xiàn)法

  教學(xué)過程:

  一、問題情境 :

  問題1:某種細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),以此類推,一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞個(gè)數(shù)y與x的函數(shù)關(guān)系式是什么?

  問題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過一年剩余質(zhì)量約是原來的 ,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過 年后的剩余質(zhì)量為 ,你能寫出 之間的函數(shù)關(guān)系式嗎?

  分析可知,函數(shù)的關(guān)系式分別是 與

  問題3:在問題1和2中,兩個(gè)函數(shù)的自變量都是正整數(shù),但在實(shí)際問題中自變量不一定都是正整數(shù),比如在問題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的`剩余量外,還想知道3個(gè)月、一年半后該物質(zhì)的剩余量,怎么辦?

  這就需要對(duì)函數(shù)的定義域進(jìn)行擴(kuò)充,結(jié)合指數(shù)概念的的擴(kuò)充,我們也可以將函數(shù)的定義域擴(kuò)充至全體實(shí)數(shù),這樣就得到了一個(gè)新的函數(shù)——指數(shù)函數(shù).

  二、數(shù)學(xué)建構(gòu) :

  1]定義:

  一般地,函數(shù) 叫做指數(shù)函數(shù),其中 .

  問題4:為什么規(guī)定 ?

  問題5:你能舉出指數(shù)函數(shù)的例子嗎?

  閱讀材料(“放射性碳法”測(cè)定古物的年代):

  在動(dòng)植物體內(nèi)均含有微量的放射性 ,動(dòng)植物死亡后,停止了新陳代謝, 不在產(chǎn)生,且原有的 會(huì)自動(dòng)衰變.經(jīng)過5740年( 的半衰期),它的殘余量為原來的一半.經(jīng)過科學(xué)測(cè)定,若 的原始含量為1,則經(jīng)過x年后的殘留量為 = .

  這種方法經(jīng)常用來推算古物的年代.

  練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù).

 。1) (2)

 。3) (4)

  說明:指數(shù)函數(shù)的解析式y(tǒng)= 中, 的系數(shù)是1.

  有些函數(shù)貌似指數(shù)函數(shù),實(shí)際上卻不是,如y= +k (a>0且a 1,k Z);

  有些函數(shù)看起來不像指數(shù)函數(shù),實(shí)際上卻是,如y= (a>0,且a 1),因?yàn)樗梢曰癁閥= ,其中 >0,且 1

  2]通過圖象探究指數(shù)函數(shù)的性質(zhì)及其簡(jiǎn)單應(yīng)用:利用幾何畫板及其他多媒體軟件和學(xué)生一起完成

  問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?

  函數(shù)的定義域,值域,單調(diào)性,奇偶性等;

  利用函數(shù)圖象研究函數(shù)的性質(zhì)

  問題7:作函數(shù)圖象的一般步驟是什么?

  列表,描點(diǎn),作圖

  探究活動(dòng)1:用列表描點(diǎn)法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個(gè)函數(shù)的圖像,我們可以得到這兩個(gè)函數(shù)哪些共同的性質(zhì)?請(qǐng)同學(xué)們仔細(xì)觀察.

  引導(dǎo)學(xué)生分析圖象并總結(jié)此時(shí)指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):

 。1)定義域?R

 。2)值域?函數(shù)的值域?yàn)?/p>

 。3)過哪個(gè)定點(diǎn)?恒過 點(diǎn),即

 。4)單調(diào)性? 時(shí), 為 上的增函數(shù)

 。5)何時(shí)函數(shù)值大于1?小于1? 當(dāng) 時(shí), ;當(dāng) 時(shí),

  問題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?

 。ㄒ龑(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問題的能力).

  根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時(shí)指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.

  問題9:到現(xiàn)在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質(zhì)嗎?

 。▽W(xué)生完成表格的設(shè)計(jì),教師適當(dāng)引導(dǎo))

高一數(shù)學(xué)函數(shù)的教案6

  二次函數(shù)的性質(zhì)與圖像(第2課時(shí))

  一 學(xué)習(xí)目標(biāo):

  1、 掌握二次函數(shù)的圖象及性質(zhì);

  2、 會(huì)用二次函數(shù)的圖象與性質(zhì)解決問題;

  學(xué)習(xí)重點(diǎn):二次函數(shù)的性質(zhì);

  學(xué)習(xí)難點(diǎn):二次函數(shù)的性質(zhì)與圖像的應(yīng)用;

  二 知識(shí)點(diǎn)回顧:

  函數(shù) 的性質(zhì)

  函數(shù) 函數(shù)

  圖象 a0

  性質(zhì)

  三 典型例題:

  例 1:已知 是二次函數(shù),求m的值

  例 2:(1)已知函數(shù) 在區(qū)間 上為增函數(shù),求a的范圍;

  (2)知函數(shù) 的單調(diào)區(qū)間是 ,求a;

  例 3:求二次函數(shù) 在區(qū)間[0,3]上的最大值和最小值;

  變式:(1)已知 在[t,t+1]上的最小值為g(t),求g(t)的表達(dá)式。

  (2)已知 在區(qū)間[0,1]內(nèi)有最大值-5,求a。

  (3)已知 ,a0,求 的最值。

  四、 限時(shí)訓(xùn)練:

  1 、如果函數(shù) 在區(qū)間 上是增函數(shù),那么實(shí)數(shù)a的`取值

  范圍為 B

  A 、a-2 B、a-2 C、a-6 D、B、a-6

  2 、函數(shù) 的定義域?yàn)閇0,m],值域?yàn)閇 ,-4],則m的取值范圍是

  A、 B、 C、 D、

  3 、定義域?yàn)镽的二次函數(shù) ,其對(duì)稱軸為y軸,且在 上為減函數(shù),則下列不等式成立的是

  A、 B、

  C、 D、

  4 、已知函數(shù) 在[0,m]上有最大值3,最小值2,則m的取值范圍是

  A、 B、 C、 D、

  5、 函數(shù) ,當(dāng) 時(shí)是減函數(shù),當(dāng) 時(shí)是增函數(shù),則

  f(2)=

  6、 已知函數(shù) ,有下列命題:

  ① 為偶函數(shù) ② 的圖像與y軸交點(diǎn)的縱坐標(biāo)為3

 、 在 上為增函數(shù) ④ 有最大值4

  7、已知 在區(qū)間[0,1]上的最大值為2,求a的值。

  8、已知 在[t,t+1]上的最小值為g(t),求g(t)的表達(dá)式。

  9、已知函數(shù) ,求a的取值范圍使 在[-5,5]上是單調(diào)函數(shù)。

  10、設(shè)函數(shù) ,當(dāng) 時(shí) a恒成立,求a的取值范圍。

高一數(shù)學(xué)函數(shù)的教案7

  概念反思:

  變式:關(guān)于 的不等式 在 上恒成立,則實(shí)數(shù) 的范圍為__ ____

  變式:設(shè) ,則函數(shù)( 的最小值是 .

  課后拓展:

  1.下列說法正確的.有 (填序號(hào))

 、偃 ,當(dāng) 時(shí), ,則 在I上是增函數(shù).

 、诤瘮(shù) 在R上是增函數(shù).

 、酆瘮(shù) 在定義域上是增函數(shù).

  ④ 的單調(diào)區(qū)間是 .

  2.若函數(shù) 的零點(diǎn) , ,則所有滿足條件的 的和為?

  3. 已知函數(shù) ( 為實(shí)常數(shù)).

 。1)若 ,求 的單調(diào)區(qū)間;

 。2)若 ,設(shè) 在區(qū)間 的最小值為 ,求 的表達(dá)式;

 。3)設(shè) ,若函數(shù) 在區(qū)間 上是增函數(shù),求實(shí)數(shù) 的取值范圍.

  解析:(1) 2分

  ∴ 的單調(diào)增區(qū)間為( ),(- ,0), 的單調(diào)減區(qū)間為(- ),( )

  (2)由于 ,當(dāng) ∈[1,2]時(shí),

  10 即

  20 即

  30 即 時(shí)

  綜上可得

  (3) 在區(qū)間[1,2]上任取 、 ,且

  則

  (*)

  ∵ ∴

  ∴(*)可轉(zhuǎn)化為 對(duì)任意 、

  即

  10 當(dāng)

  20 由 得 解得

  30 得 所以實(shí)數(shù) 的取值范圍是

高一數(shù)學(xué)函數(shù)的教案8

  重點(diǎn)難點(diǎn)教學(xué):

  1。正確理解映射 概念;

  2。函數(shù)相等 兩個(gè)條件;

  3。求函數(shù) 定義域和值域。

  一。教學(xué)過程:

  1。 使學(xué)生熟練掌握函數(shù) 概念和映射 定義;

  2。 使學(xué)生能夠根據(jù)已知條件求出函數(shù) 定義域和值域; 3。 使學(xué)生掌握函數(shù) 三種表示方法。

  二。教學(xué)內(nèi)容:

  1。函數(shù) 定義

  設(shè)A、B是兩個(gè)非空 數(shù)集,如果按照某種確定 對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中 任意一個(gè)數(shù)x,在集合B中都有唯一確定 數(shù)()fx和它對(duì)應(yīng),那么稱:fAB為從集合A到集合B 一個(gè)函數(shù)(function),記作:(),yfxxA

  其中,x叫自變量,x 取值范圍A叫作定義域(domain),與x 值對(duì)應(yīng) y值叫函數(shù)值,函數(shù)值 集合{()|}fxxA叫值域(range)。顯然,值域是集合B 子集。

  注意:

 、 “y=f(x)”是函數(shù)符號(hào),可以用任意 字母表示,如“y=g(x)”;

 、诤瘮(shù)符號(hào)“y=f(x)”中 f(x)表示與x對(duì)應(yīng) 函數(shù)值,一個(gè)數(shù),而不是f乘x。

  2。構(gòu)成函數(shù) 三要素 定義域、對(duì)應(yīng)關(guān)系和值域。

  3、映射 定義

  設(shè)A、B是兩個(gè)非空 集合,如果按某一個(gè)確定 對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中 任意

  一個(gè)元素x,在集合B中都有唯一確定 元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從 集合A到集合B 一個(gè)映射。

  4。 區(qū)間及寫法:

  設(shè)a、b是兩個(gè)實(shí)數(shù),且a

 。1) 滿足不等式axb 實(shí)數(shù)x 集合叫做閉區(qū)間,表示為[a,b];

 。2) 滿足不等式axb 實(shí)數(shù)x 集合叫做開區(qū)間,表示為(a,b);

  5。函數(shù) 三種表示方法 ①解析法 ②列表法 ③圖像法

高一數(shù)學(xué)函數(shù)的教案9

  本文題目:高一數(shù)學(xué)教案:函數(shù)的奇偶性

  課題:1.3.2函數(shù)的奇偶性

  一、三維目標(biāo):

  知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

  過程與方法:通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推斷的能力。

  情感態(tài)度與價(jià)值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學(xué)生的情操. 通過組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

  二、學(xué)習(xí)重、難點(diǎn):

  重點(diǎn):函數(shù)的奇偶性的概念。

  難點(diǎn):函數(shù)奇偶性的判斷。

  三、學(xué)法指導(dǎo):

  學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

  四、知識(shí)鏈接:

  1.復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的'定義:

  2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說出圖象的對(duì)稱性。

  五、學(xué)習(xí)過程:

  函數(shù)的奇偶性:

  (1)對(duì)于函數(shù) ,其定義域關(guān)于原點(diǎn)對(duì)稱:

  如果______________________________________,那么函數(shù) 為奇函數(shù);

  如果______________________________________,那么函數(shù) 為偶函數(shù)。

  (2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。

  (3)奇函數(shù)在對(duì)稱區(qū)間的增減性 ;偶函數(shù)在對(duì)稱區(qū)間的增減性 。

  六、達(dá)標(biāo)訓(xùn)練:

  A1、判斷下列函數(shù)的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .

  B3、已知 ,其中 為常數(shù),若 ,則

  _______ .

  B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )

  (A) 軸對(duì)稱 (B) 軸對(duì)稱 (C)原點(diǎn)對(duì)稱 (D)以上均不對(duì)

  B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .

  C6、若函數(shù) 是定義在R上的奇函數(shù),且當(dāng) 時(shí), ,那么當(dāng)

  時(shí), =_______ .

  D7、設(shè) 是 上的奇函數(shù), ,當(dāng) 時(shí), ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .

  七、學(xué)習(xí)小結(jié):

  本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

  八、課后反思:

高一數(shù)學(xué)函數(shù)的教案10

  案例背景:

  對(duì)數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).

  案例敘述:

  (一).創(chuàng)設(shè)情境

  (師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

  反函數(shù)的實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).

  (提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

  (學(xué)生): 是指數(shù)函數(shù),它是存在反函數(shù)的.

  (師):求反函數(shù)的步驟

  (由一個(gè)學(xué)生口答求反函數(shù)的過程):

  由 得 .又 的值域?yàn)?,

  所求反函數(shù)為 .

  (師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù).

  (二)新課

  1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對(duì)數(shù)函數(shù).

  (師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識(shí)是什么?

  (教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),學(xué)生自主探究,合作交流)

  (學(xué)生)對(duì)數(shù)函數(shù)的定義域?yàn)?,對(duì)數(shù)函數(shù)的值域?yàn)?,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

  (在此基礎(chǔ)上,我們將一起來研究對(duì)數(shù)函數(shù)的圖像與性質(zhì).)

  2.研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)

  (提問)用什么方法來畫函數(shù)圖像?

  (學(xué)生1)利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.

  (學(xué)生2)用列表描點(diǎn)法也是可以的。

  請(qǐng)學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

  (師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

  具體操作時(shí),要求學(xué)生做到:

  (1) 指數(shù)函數(shù) 和 的'圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等).

  (2) 畫出直線 .

  (3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

  學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出

  和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:

  教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:

  然后提出讓學(xué)生根據(jù)圖像說出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)

  3. 性質(zhì)

  (1) 定義域:

  (2) 值域:

  由以上兩條可說明圖像位于 軸的右側(cè).

  (3)圖像恒過(1,0)

  (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱,也不關(guān)于 軸對(duì)稱.

  (5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的

  當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的.

  之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

  當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .

  學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.

  最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)

  對(duì)圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.

  (三).簡(jiǎn)單應(yīng)用

  1. 研究相關(guān)函數(shù)的性質(zhì)

  例1. 求下列函數(shù)的定義域:

  (1) (2) (3)

  先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的條件限制.

  2. 利用單調(diào)性比較大小

  例2. 比較下列各組數(shù)的大小

  (1) 與 ; (2) 與 ;

  (3) 與 ; (4) 與 .

  讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來比大小.最后讓學(xué)生以其中一組為例寫出詳細(xì)的比較過程.

 三.拓展練習(xí)

  練習(xí):若 ,求 的取值范圍.

四.小結(jié)及作業(yè)

  案例反思:

  本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在教學(xué)上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

  在教學(xué)中一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地以反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

高一數(shù)學(xué)函數(shù)的教案11

  第二十四教時(shí)

  教材:倍角公式,推導(dǎo)和差化積及積化和差公式

  目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對(duì)公式靈活運(yùn)用的訓(xùn)練;同時(shí),讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對(duì)此有所了解。

  過程:

  一、 復(fù)習(xí)倍角公式、半角公式和萬能公式的推導(dǎo)過程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教學(xué)與測(cè)試》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的'值

  解:∵sin cos =

  化簡(jiǎn)得:

  ∵ 即

  二、 積化和差公式的推導(dǎo)

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點(diǎn)在于將積式化為和差,有利于簡(jiǎn)化計(jì)算。(在告知公式前提下)

  例三、 求證:sin3sin3 + cos3cos3 = cos32

  證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右邊

  原式得證

  三、 和差化積公式的推導(dǎo)

  若令 + = , = ,則 , 代入得:

  這套公式稱為和差化積公式,其特點(diǎn)是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小結(jié):和差化積,積化和差

  五、 作業(yè):《課課練》P3637 例題推薦 13

  P3839 例題推薦 13

  P40 例題推薦 13

高一數(shù)學(xué)函數(shù)的教案12

  學(xué)習(xí)目標(biāo):

  (1)理解函數(shù)的概念

  (2)會(huì)用集合與對(duì)應(yīng)語言來刻畫函數(shù),

  (3)了解構(gòu)成函數(shù)的要素。

  重點(diǎn):

  函數(shù)概念的理解

  難點(diǎn)

  函數(shù)符號(hào)y=f(x)的理解

  知識(shí)梳理:

  自學(xué)課本P29—P31,填充以下空格。

  1、設(shè)集合A是一個(gè)非空的實(shí)數(shù)集,對(duì)于A內(nèi) ,按照確定的對(duì)應(yīng)法則f,都有 與它對(duì)應(yīng),則這種對(duì)應(yīng)關(guān)系叫做集合A上的一個(gè)函數(shù),記作 。

  2、對(duì)函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。

  3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要

  。

  4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):

  ① ;② 。

  5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a

  (1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。

  (2)滿足不等式a

  (3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ;

  分別滿足x≥a,x>a,x≤a,x

  其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。

  完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。

  例題解析

  題型一:函數(shù)的概念

  例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )

  練習(xí):設(shè)M={x| },N={y| },給出下列四個(gè)圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個(gè)。

  題型二:相同函數(shù)的判斷問題

  例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與

 、 與 其中表示同一函數(shù)的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )

  A. 和 B. 和

  C. 和 D. 和

  題型三:函數(shù)的.定義域和值域問題

  例3:求函數(shù)f(x)= 的定義域

  練習(xí):課本P33練習(xí)A組 4.

  例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。

  當(dāng)堂檢測(cè)

  1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( A )

  A、 B、

  C、 D、

  2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、給出下列四個(gè)命題:

 、 函數(shù)就是兩個(gè)數(shù)集之間的對(duì)應(yīng)關(guān)系;

 、 若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素;

 、 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);

 、 定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.

  其中正確的有( B )

  A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4 個(gè)

  4、下列函數(shù)完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( B )

  6、設(shè) ,則 等于 ( D )

  A. B. C. 1 D.0

  7、已知函數(shù) ,求 的值.( )

高一數(shù)學(xué)函數(shù)的教案13

  一、教材分析

  1、教材的地位和作用:

  函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。

  2、教學(xué)目標(biāo)及確立的依據(jù):

  教學(xué)目標(biāo):

  (1)教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。

  (2)能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。

  (3)德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。

  教學(xué)目標(biāo)確立的依據(jù):

  函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

  3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):

  教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。

  教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。

  重點(diǎn)難點(diǎn)確立的依據(jù):

  映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。

  二、教材的處理:

  將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的'關(guān)鍵。函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。

  三、教學(xué)方法和學(xué)法

  教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。

  依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。

  學(xué)法:四、教學(xué)程序

  一、課程導(dǎo)入

  通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。

  例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

  二、新課講授:

  (1)接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。

  (2)鞏固練習(xí)課本52頁第八題。

  此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。

  例1.給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。

  并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

  再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):

  1、函數(shù)是非空數(shù)集到非空數(shù)集的映射。

  2、 f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

  3、f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。

  4、集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。

  5、“f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

  三、講解例題

  例1.問y=1(x∈a)是不是函數(shù)?

  解:y=1可以化為y=0xx+1

  畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

  [注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。

  四、課時(shí)小結(jié):

  1.映射的定義。

  2.函數(shù)的近代定義。

  3.函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。

  4.函數(shù)近代定義的五大注意點(diǎn)。

高一數(shù)學(xué)函數(shù)的教案14

  一、內(nèi)容及其解析

  (一)內(nèi)容:指數(shù)函數(shù)的性質(zhì)的應(yīng)用。

  (二)解析:通過進(jìn)一步鞏固指數(shù)函數(shù)的圖象和性質(zhì),掌握由指數(shù)函數(shù)和其他簡(jiǎn)單函數(shù)組成的復(fù)合函數(shù)的性質(zhì):定義域、值域、單調(diào)性,最值等性質(zhì)。

  二、目標(biāo)及其解析

  (一)教學(xué)目標(biāo)

  指數(shù)函數(shù)的圖象及其性質(zhì)的應(yīng)用;

  (二)解析

  通過進(jìn)一步掌握指數(shù)函數(shù)的圖象和性質(zhì),能夠構(gòu)建指數(shù)函數(shù)的模型來解決實(shí)際問題;體會(huì)指數(shù)函數(shù)在實(shí)際生活中的重要作用,感受數(shù)學(xué)建模在解題中的作用,提高學(xué)生分析問題與解決問題的能力。

  三、問題診斷分析

  解決實(shí)際問題本來就是學(xué)生的一個(gè)難點(diǎn),并且學(xué)生對(duì)函數(shù)模型也不熟悉,所以在構(gòu)建函數(shù)模型解決實(shí)際問題是學(xué)生的一個(gè)難點(diǎn),解決的方法就是在實(shí)例中讓學(xué)生加強(qiáng)理解,通過實(shí)例讓學(xué)生感受到如何選擇適當(dāng)?shù)暮瘮?shù)模型。

  四、教學(xué)過程設(shè)計(jì)

  探究點(diǎn)一:平移指數(shù)函數(shù)的圖像

  例1:畫出函數(shù) 的圖像,并根據(jù)圖像指出它的單調(diào)區(qū)間.

  解析:由函數(shù)的解析式可得:

  其圖像分成兩部分,一部分是將 (x-1)的圖像作出,而它的圖像可以看作 的圖像沿x軸的負(fù)方向平移一個(gè)單位而得到的,另一部分是將 的圖像作出,而它的圖像可以看作將 的圖像沿x軸的負(fù)方向平移一個(gè)單位而得到的.

  解:圖像由老師們自己畫出

  變式訓(xùn)練一:已知函數(shù)

  (1)作出其圖像;

  (2)由圖像指出其單調(diào)區(qū)間;

  解:(1) 的圖像如下圖:

  (2)函數(shù)的增區(qū)間是(-,-2],減區(qū)間是[-2,+).

  探究點(diǎn)二:復(fù)合函數(shù)的`性質(zhì)

  例2:已知函數(shù)

  (1)求f(x)的定義域;

  (2)討論f(x)的奇偶性;

  解析:求定義域注意分母的范圍,判斷奇偶性需要注意定義域是否關(guān)于原點(diǎn)對(duì)稱。

  解:(1)要使函數(shù)有意義,須 -1 ,即x 1,所以,定義域?yàn)?- ,0) (0,+ ).

  (2)變式訓(xùn)練二:已知函數(shù) ,試判斷函數(shù)的奇偶性;

  簡(jiǎn)析:∵定義域?yàn)?,且 是奇函數(shù);

  探究點(diǎn)三 應(yīng)用問題

  例3某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩留的質(zhì)量是原來的

  84%.寫出這種物質(zhì)的剩留量關(guān)于時(shí)間的函數(shù)關(guān)系式.

  【解】

  設(shè)該物質(zhì)的質(zhì)量是1,經(jīng)過 年后剩留量是 .

  經(jīng)過1年,剩留量

  變式:儲(chǔ)蓄按復(fù)利計(jì)算利息,若本金為 元,每期利率為 ,設(shè)存期是 ,本利和(本金加上利息)為 元.

  (1)寫出本利和 隨存期 變化的函數(shù)關(guān)系式;

  (2)如果存入本金1000元,每期利率為2.25%,試計(jì)算5期后的本利和.

  分析:復(fù)利要把本利和作為本金來計(jì)算下一年的利息.

  【解】

  (1)已知本金為 元,利率為 則:

  1期后的本利和為

  2期后的本利和為

  期后的本利和為

  (2)將 代入上式得

  六.小結(jié)

  通過本節(jié)課的學(xué)習(xí),本節(jié)課應(yīng)用了指數(shù)函數(shù)的性質(zhì)來解決了什么問題?如何構(gòu)建指數(shù)函數(shù)模型,解決生活中的實(shí)際問題?

高一數(shù)學(xué)函數(shù)的教案15

  平面解析幾何初步:

 、僦本與方程是解析幾何的基礎(chǔ),是重點(diǎn)考查的內(nèi)容,單獨(dú)考查多以選擇題、填空題出現(xiàn);間接考查則以直線與圓、橢圓、雙曲線、拋物線等綜合為主,多為中、高難度,往往作為把關(guān)題出現(xiàn)在題目中。直接考查主要考查直線的傾斜角、直線方程,兩直線的位置關(guān)系,點(diǎn)到直線的距離,對(duì)稱問題等,間接考查一定會(huì)出現(xiàn)在中 高考,主要考查直線與圓錐曲線的綜合問題。

 、趫A的問題主要涉及圓的方程、直線與圓的位置關(guān)系、圓與圓的位置關(guān)系以及圓的集合性質(zhì)的討論,難度中等或偏易,多以選擇題、填空題的形式出現(xiàn),其中熱點(diǎn)為圓的切線問題。③空間直角坐標(biāo)系是平面直角坐標(biāo)系在空間的推廣,在解決空間問題中具有重要的作業(yè),空間向量的坐標(biāo)運(yùn)算就是在空間直角坐標(biāo)系下實(shí)現(xiàn)的。空間直角坐標(biāo)系也是解答立體幾何問題的重要工具,一般是與空間向量在坐標(biāo)運(yùn)算結(jié)合起來運(yùn)用,也不排除出現(xiàn)考查基礎(chǔ)知識(shí)的選擇題和填空題。

  直線方程及其應(yīng)用

  直線是最簡(jiǎn)單的幾何圖形,是解析幾何最基礎(chǔ)的部分,本章的基本概念;基本公式;直線方程的各種形式以及兩直線平行、垂直、重合的判定都是解析幾何重要的基礎(chǔ)內(nèi)容。應(yīng)達(dá)到熟練掌握、靈活運(yùn)用的程度,線性規(guī)劃是直線方程一個(gè)方面的應(yīng)用,屬教材新增內(nèi)容,中單純的直線方程問題不難,但將直線方程與其他綜合的問題是比較棘手的。

  難點(diǎn)磁場(chǎng)

  已知a<1,b<1,c<1,求證:abc+2>a+b+c.

  案例探究

  [例1]某校一年級(jí)為配合素質(zhì),利用一間教室作為學(xué)生繪畫成果展覽室,為節(jié)約經(jīng)費(fèi),他們利用課桌作為展臺(tái),將裝畫的鏡框放置桌上,斜靠展出,已知鏡框?qū)ψ烂娴膬A斜角為α(90°≤α<180°)鏡框中,畫的上、下邊緣與鏡框下邊緣分別相距a m,b m,(a>b)。問學(xué)生距離鏡框下緣多遠(yuǎn)看畫的效果最佳?

  命題意圖:本題是一個(gè)非常實(shí)際的問題,它不僅考查了直線的有關(guān)概念以及對(duì)三角知識(shí)的綜合運(yùn)用,而且更重要的是考查了把實(shí)際問題轉(zhuǎn)化為問題的。

  知識(shí)依托:三角函數(shù)的定義,兩點(diǎn)連線的斜率公式,不等式法求最值。

  錯(cuò)解分析:解決本題有幾處至關(guān)重要,一是建立恰當(dāng)?shù)淖鴺?biāo)系,使問題轉(zhuǎn)化成解析幾何問題求解;二是把問題進(jìn)一步轉(zhuǎn)化成求tanACB的最大值。如果坐標(biāo)系選擇不當(dāng),或選擇求sinACB的最大值。都將使問題變得復(fù)雜起來。

  技巧與:欲使看畫的效果最佳,應(yīng)使∠ACB取最大值,欲求角的最值,又需求角的一個(gè)三角函數(shù)值。

  解:建立如圖所示的直角坐標(biāo)系,AO為鏡框邊,AB為畫的寬度,O為下邊緣上的一點(diǎn),在x軸的正半軸上找一點(diǎn)C(x,0)(x>0),欲使看畫的效果最佳,應(yīng)使∠ACB取得最大值。

  由三角函數(shù)的定義知:A、B兩點(diǎn)坐標(biāo)分別為(acosα,asinα)、(bcosα,bsinα),于是直線AC、BC的斜率分別為:

  kAC=tanxCA=

  于是tanACB=

  由于∠ACB為銳角,且x>0,則tanACB≤,當(dāng)且僅當(dāng)=x,即x=時(shí),等號(hào)成立,此時(shí)∠ACB取最大值,對(duì)應(yīng)的點(diǎn)為C(,0),因此,學(xué)生距離鏡框下緣cm處時(shí),視角最大,即看畫效果最佳。

 。劾2]預(yù)算用20xx元購買單件為50元的桌子和20元的椅子,希望使桌椅的總數(shù)盡可能的多,但椅子不少于桌子數(shù),且不多于桌子數(shù)的1.5倍,問桌、椅各買多少才行?

  命題意圖:利用線性規(guī)劃的思想方法解決某些實(shí)際問題屬于直線方程的一個(gè)應(yīng)用,本題主要考查找出約束條件與目標(biāo)函數(shù)、準(zhǔn)確地描畫可行域,再利用圖形直觀求得滿足題設(shè)的最優(yōu)解。

  知識(shí)依托:約束條件,目標(biāo)函數(shù),可行域,最優(yōu)解。

  錯(cuò)解分析:解題中應(yīng)當(dāng)注意到問題中的桌、椅張數(shù)應(yīng)是自然數(shù)這個(gè)隱含條件,若從圖形直觀上得出的最優(yōu)解不滿足題設(shè)時(shí),應(yīng)作出相應(yīng)地調(diào)整,直至滿足題設(shè)。

  技巧與方法:先設(shè)出桌、椅的變數(shù)后,目標(biāo)函數(shù)即為這兩個(gè)變數(shù)之和,再由此在可行域內(nèi)求出最優(yōu)解。

  解:設(shè)桌椅分別買x,y張,把所給的條件表示成不等式組,即約束條件

  為由

  ∴A點(diǎn)的坐標(biāo)為(,)

  由

  ∴B點(diǎn)的坐標(biāo)為(25,)

  所以滿足約束條件的可行域是以A(,),B(25,),O(0,0)為頂點(diǎn)的三角形區(qū)域(如下圖)

  由圖形直觀可知,目標(biāo)函數(shù)z=x+y在可行域內(nèi)的最優(yōu)解為(25,),但注意到x∈N,y∈N*,故取y=37.

  故有買桌子25張,椅子37張是最好選擇。

 。劾3]拋物線有光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線折射后,高中數(shù)學(xué),沿平行于拋物線對(duì)稱軸的方向射出,今有拋物線y2=2px(p>0)。一光源在點(diǎn)M(,4)處,由其發(fā)出的光線沿平行于拋物線的軸的方向射向拋物線上的點(diǎn)P,折射后又射向拋物線上的點(diǎn) Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l:2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如下圖所示)

 。1)設(shè)P、Q兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),證明:y1.y2=-p2;

 。2)求拋物線的方程;

 。3)試判斷在拋物線上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線對(duì)稱?若存在,請(qǐng)求出此點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

  命題意圖:對(duì)稱問題是直線方程的又一個(gè)重要應(yīng)用。本題是一道與中的光學(xué)知識(shí)相結(jié)合的綜合性題目,考查了學(xué)生理解問題、分析問題、解決問題的能力。

  知識(shí)依托:韋達(dá)定理,點(diǎn)關(guān)于直線對(duì)稱,直線關(guān)于直線對(duì)稱,直線的點(diǎn)斜式方程,兩點(diǎn)式方程。

  錯(cuò)解分析:在證明第(1)問題,注意討論直線PQ的斜率不存在時(shí)。

  技巧與方法:點(diǎn)關(guān)于直線對(duì)稱是解決第(2)、第(3)問的.關(guān)鍵。

 。1)證明:由拋物線的光學(xué)性質(zhì)及題意知

  光線PQ必過拋物線的焦點(diǎn)F(,0),

  設(shè)直線PQ的方程為y=k(x-) ①

  由①式得x=y+,將其代入拋物線方程y2=2px中,整理,得y2-y-p2=0,由韋達(dá)定理,y1y2=-p2.

  當(dāng)直線PQ的斜率角為90°時(shí),將x=代入拋物線方程,得y=±p,同樣得到y(tǒng)1.y2=

  -p2.

 。2)解:因?yàn)楣饩QN經(jīng)直線l反射后又射向M點(diǎn),所以直線MN與直線QN關(guān)于直線l對(duì)稱,設(shè)點(diǎn)M(,4)關(guān)于l的對(duì)稱點(diǎn)為M′(x′,y′),則

  解得

  直線QN的方程為y=-1,Q點(diǎn)的縱坐標(biāo)y2=-1,

  由題設(shè)P點(diǎn)的縱坐標(biāo)y1=4,且由(1)知:y1.y2=-p2,則4.(-1)=-p2,

  得p=2,故所求拋物線方程為y2=4x.

 。3)解:將y=4代入y2=4x,得x=4,故P點(diǎn)坐標(biāo)為(4,4)

  將y=-1代入直線l的方程為2x-4y-17=0,得x=,

  故N點(diǎn)坐標(biāo)為(,-1)

  由P、N兩點(diǎn)坐標(biāo)得直線PN的方程為2x+y-12=0,

  設(shè)M點(diǎn)關(guān)于直線NP的對(duì)稱點(diǎn)M1(x1,y1)

  又M1(,-1)的坐標(biāo)是拋物線方程y2=4x的解,故拋物線上存在一點(diǎn)(,-1)與點(diǎn)M關(guān)于直線PN對(duì)稱。

  錦囊妙計(jì)

  1.對(duì)直線方程中的基本概念,要重點(diǎn)掌握好直線方程的特征值(主要指斜率、截距)等問題;直線平行和垂直的條件;與距離有關(guān)的問題等。

  2.對(duì)稱問題是直線方程的一個(gè)重要應(yīng)用,里面所涉及到的對(duì)稱一般都可轉(zhuǎn)化為點(diǎn)關(guān)于點(diǎn)或點(diǎn)關(guān)于直線的對(duì)稱。中點(diǎn)坐標(biāo)公式和兩條直線垂直的條件是解決對(duì)稱問題的重要工具。

  3.線性規(guī)劃是直線方程的又一應(yīng)用。線性規(guī)劃中的可行域,實(shí)際上是二元一次不等式(組)表示的平面區(qū)域。求線性目標(biāo)函數(shù)z=ax+by的最大值或最小值時(shí),設(shè)t=ax+by,則此直線往右(或左)平移時(shí),t值隨之增大(或減。,要會(huì)在可行域中確定最優(yōu)解。

  4.由于一次函數(shù)的圖象是一條直線,因此有關(guān)函數(shù)、數(shù)列、不等式、復(fù)數(shù)等代數(shù)問題往往借助直線方程進(jìn)行,考查學(xué)生的綜合能力及創(chuàng)新能力

【高一數(shù)學(xué)函數(shù)的教案】相關(guān)文章:

高一數(shù)學(xué)函數(shù)的教案08-26

高一數(shù)學(xué)教案函數(shù)12-28

高一數(shù)學(xué)函數(shù)的教案(15篇)01-13

高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案08-26

高一數(shù)學(xué)指數(shù)函數(shù)教案12-09

高一數(shù)學(xué)教案《函數(shù)概念》11-20

數(shù)學(xué)函數(shù)的教案03-06

高一數(shù)學(xué)教案函數(shù)15篇12-30

高一數(shù)學(xué)函數(shù)的教案通用15篇01-14