天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>初中數(shù)學(xué)第六冊(cè)分式教案

初中數(shù)學(xué)第六冊(cè)分式教案

時(shí)間:2023-01-10 10:46:20 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

初中數(shù)學(xué)第六冊(cè)分式教案

  在教學(xué)工作者開展教學(xué)活動(dòng)前,時(shí)常需要用到教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。寫教案需要注意哪些格式呢?下面是小編精心整理的初中數(shù)學(xué)第六冊(cè)分式教案,希望能夠幫助到大家。

初中數(shù)學(xué)第六冊(cè)分式教案

初中數(shù)學(xué)第六冊(cè)分式教案1

  第一課時(shí)

  一、 教學(xué) 目標(biāo)

  1.使學(xué)生掌握由一個(gè)二元二次方程和一個(gè)可以分解為兩個(gè)二元一次方程組成的方程組的解法.

  2. 通過例題的分析講解,進(jìn)一步提高學(xué)生的分析問題和解決問題的能力;

  3. 通過一個(gè)二元二次方程解法的分析,使學(xué)生進(jìn)一步體會(huì)“消元”和“降次”的數(shù)學(xué)思想方法,繼續(xù)向?qū)W生滲透“轉(zhuǎn)化”的辨證唯物主義觀點(diǎn).

  二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1. 教學(xué) 重點(diǎn):通過把一個(gè)二元二次方程分解為兩個(gè)二元一次方程來解由兩個(gè)二元二次方程組成的方程組.

  2. 教學(xué) 難點(diǎn):正確地判斷出可以分解的二元二次方程.

  3. 教學(xué) 疑點(diǎn):降次后的二元一次方程與哪個(gè)方程重新組成方程組,一定要分清楚.

  4.解決辦法:(1)看好哪個(gè)二元二次方程能分成兩個(gè)二元一次方程,它們之間是“或”的關(guān)系,不能聯(lián)立成方程組.(2)分解好的二元一次方程應(yīng)與另一個(gè)二元二次方程組成兩個(gè)二元二次方程組.

  三、 教學(xué) 過程

  1.復(fù)習(xí)提問

 。1)我們所學(xué)習(xí)的二元二次方程組有哪幾種類型?

 。2)解二元二次方程組的基本思想是什么?

  (3)解由一個(gè)二元一次方程和一個(gè)二元二次方程組成的`方程組的基本方法是什么?其主要步驟是什么?

 。4)解方程組: .

  (5)把下列各式分解因式:

 、 ; ② ; ③ .

  關(guān)于問題設(shè)計(jì)的說明:

  由于二元二次方程組的第一節(jié)課已經(jīng)向?qū)W生闡明了我們所研究的二元二次方程組有兩種類型.其一是由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組;其二是由

  兩個(gè)二元二次方程所組成的方程組.由于第一種類型我們已經(jīng)研究完,使學(xué)生自然而然地接

  受了第二種類型研究的要求.關(guān)于問題(2)的提出,由于兩種類型的二元二次方程組的解題思想均為“消元”和“降次”,所以問題(2)讓學(xué)生懂得“消元”和“降次”的數(shù)學(xué)思想,貫穿于解二元二次方程組的始終.問題(3)、(4)是對(duì)上兩節(jié)課內(nèi)容的復(fù)習(xí),以便學(xué)生對(duì)已學(xué)過的知識(shí)得到進(jìn)一步的鞏固.由于本節(jié)課的學(xué)習(xí)內(nèi)容是由兩個(gè)二元二次方程組成的二元二次方程組的解法,其中有一個(gè)二元二次方程可以分解,因此,問題(5)的設(shè)計(jì)是為本節(jié)課的學(xué)習(xí)內(nèi)容做準(zhǔn)備的

  2.例題講解

  例1 解方程組

  分析:這是一個(gè)由兩個(gè)二元二次方程組成的二元二次方程組,其解題的基本思路仍為“消元”、“降次”,使之轉(zhuǎn)化為我們已經(jīng)學(xué)過的方程組或方程的解法.那么如何轉(zhuǎn)化呢?關(guān)于轉(zhuǎn)

  化的形式有兩種,要么降二次為一次,要么化二元為一元我們通過觀察方程組中的兩個(gè)方程有什么特點(diǎn),可以發(fā)現(xiàn):方程組(2)的右邊是0,左邊 是一個(gè)二次齊次式,并且可以分解為 ,因此方程(2)可轉(zhuǎn)化為 ,即 或 ,從而可分別和方程(1)組成兩個(gè)由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組,從而解出這兩個(gè)方程組,得到原方程組的解.

  解:由(2)得

  因此,原方程組可化為兩個(gè)方程組

  解方程組,得原方程組的解為

  說明:本題可由 教師 引導(dǎo)學(xué)生獨(dú)立完成, 教師 應(yīng)對(duì)學(xué)生的解題格式給予強(qiáng)調(diào).

  例2 解方程組

  分析:這個(gè)方程組也是由兩個(gè)二元二次方程組成的方程組,通過認(rèn)真的觀察與分析可以

  發(fā)現(xiàn)方程(2)的左邊是一個(gè)完全平方式,而右邊是完全平方米,因此將右邊16移到左邊后可利用平方差公式進(jìn)行分解, ,即 或 ,從而可仿例1的解法進(jìn)行.

  解:由 (2)得.

  即 ,或 .

  因此,原方程組可轉(zhuǎn)化為兩個(gè)方程組

  解這兩個(gè)方程組,得原方程組的解為

  鞏固練習(xí):

  1.教材P60中1.此練習(xí)可讓學(xué)生口答.

  2.教材P60中2.此題讓學(xué)生獨(dú)立完成.

  四、總結(jié)擴(kuò)展

  本節(jié)小結(jié),內(nèi)容較為集中并且比較簡(jiǎn)單,可引導(dǎo)學(xué)生從兩個(gè)方面進(jìn)行總結(jié):(1)本節(jié)課學(xué)習(xí)了哪種類型的方程組的解法;(2)這種類型的方程組的解題步驟如何?

  這節(jié)課我們學(xué)習(xí)了由兩個(gè)二元二次方程組成的并且有一個(gè)方程是可以分解成兩個(gè)二元一次方程的方程組的解法,解這種類型的方程組的步驟是將原二元二次方程組轉(zhuǎn)化為兩個(gè)已學(xué)習(xí)過的二元二次方程組,從而求出原方程組的解.

  關(guān)于比較特殊的二元二次方程組的解法, 教師 可以利用輔導(dǎo)課的時(shí)間補(bǔ)充兩個(gè)二元二次方程都可以分解的二元二次方程組的解法.

  五、布置作業(yè)

  1.教材P61A 1,2,3.

  六、 板書 設(shè)計(jì)

  探究活動(dòng)

  若關(guān)于 的方程 只有一個(gè)解,試求出 值與方程的解.

  當(dāng) 時(shí),原方程有惟一解 ,符合題意.

  當(dāng) 時(shí),方程(1)根據(jù)的判別式

  ∵

  ∴ ,故方程(1)總有兩個(gè)不同的實(shí)數(shù)解,按題意其中必有一根是原方程的增根,原方程可能產(chǎn)生的增根只是0或1.

  把 代入(1),方程不成立,不合題,故增根只能是 ,把 代入(1)得 ,此時(shí)方程為 ,

  ∴當(dāng) 時(shí),分式方程的解為 ;當(dāng) 時(shí),分式方程的解為 .

初中數(shù)學(xué)第六冊(cè)分式教案2

  分式(2課時(shí))

  上課時(shí)間 年 月 日星期

  一、復(fù)習(xí)要點(diǎn)

  1、分式的通分和約分

  2、分式的定義域

  3、分式的化簡(jiǎn)和求值

  二、復(fù)習(xí)過程

  1、求代數(shù)式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

 、谝阎猘=-1,b=-3,c=1,求 a2b--3abc

 、垡阎猘= 求 ÷( - )+

 、芤阎獂= y= ,求 +

  2、分式的通分和約分

 。1)通分最簡(jiǎn)公分母:;高

 。2)約分:注: 與 和

  3、分式的定義域

  ①分式 (1)何時(shí)有意義(2)何時(shí)無意義(3)何時(shí)值為0

  4、分式的化簡(jiǎn)和求值

  ①1- ÷ +

  其他例題見復(fù)習(xí)用書13頁5(6、7、8、)6

  三、小結(jié) 1、分式的`通分和約分

  2、分式的定義域

  3、分式的化簡(jiǎn)和求值

  四、練習(xí):略

  五、作業(yè):

  見復(fù)習(xí)用書

  分式(2課時(shí))

  上課時(shí)間 年 月 日星期

  一、復(fù)習(xí)要點(diǎn)

  1、分式的通分和約分

  2、分式的定義域

  3、分式的化簡(jiǎn)和求值

  二、復(fù)習(xí)過程

  1、求代數(shù)式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

 、谝阎猘=-1,b=-3,c=1,求 a2b--3abc

 、垡阎猘= 求 ÷( - )+

 、芤阎獂= y= ,求 +

  2、分式的通分和約分

 。1)通分最簡(jiǎn)公分母:。桓

 。2)約分:注: 與 和

  3、分式的定義域

 、俜质 (1)何時(shí)有意義(2)何時(shí)無意義(3)何時(shí)值為0

  4、分式的化簡(jiǎn)和求值

 、1- ÷ +

  其他例題見復(fù)習(xí)用書13頁5(6、7、8、)6

  三、小結(jié) 1、分式的通分和約分

  2、分式的定義域

  3、分式的化簡(jiǎn)和求值

  四、練習(xí):略

  五、作業(yè):

  見復(fù)習(xí)用書

【初中數(shù)學(xué)第六冊(cè)分式教案】相關(guān)文章:

初中數(shù)學(xué)分式教案12-29

初中數(shù)學(xué)分式教案5篇12-29

初中數(shù)學(xué) 教案02-24

分式教學(xué)反思02-14

初中數(shù)學(xué)教案08-12

初中數(shù)學(xué)方差教案12-28

初中數(shù)學(xué)直線教案12-29

初中數(shù)學(xué)矩形教案12-30

初中數(shù)學(xué)《圓 》教案12-30