人教版高一數學上冊教案
作為一位杰出的老師,很有必要精心設計一份教案,借助教案可以更好地組織教學活動。我們應該怎么寫教案呢?下面是小編精心整理的人教版高一數學上冊教案,希望對大家有所幫助。
人教版高一數學上冊教案1
一、等差數列
1、定義
注:“從第二項起”及
“同一常數”用紅色粉筆標注
二、等差數列的通項公式
(一)例題與練習
通過練習2和3 引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。
(二)新課探究
1、由引入自然的給出等差數列的概念:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:
① “從第二項起”滿足條件; f
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(強調“同一個常數” );
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:
an+1—an=d (n≥1) ;h4z+0"6vG
同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。
1。 9 ,8,7,6,5,4,……;√ d=—1
2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01
3。 0,0,0,0,0,0,……。; √ d=0
4。 1,2,3,2,3,4,……;×
5。 1,0,1,0,1,……×
其中第一個數列公差<0,>0,第三個數列公差=0
由此強調:公差可以是正數、負數,也可以是0
2、第二個重點部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的`教學方法。給出等差數列的首項 ,公差d,由學生研究分組討論a4 的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。
若一等差數列{an }的首項是a1,公差是d,
則據其定義可得:
a2 — a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進而歸納出等差數列的通項公式:
an=a1+(n—1)d
此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹的學習態(tài)度,在這里向學生介紹另外一種求數列通項公式的辦法——————迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1) 當n=1時,(1)也成立, 所以對一切n∈N﹡,上面的公式都成立 因此它就是等差數列{an}的通項公式。 在迭加法的證明過程中,我采用啟發(fā)式教學方法。 利用等差數列概念啟發(fā)學生寫出n—1個等式。 對照已歸納出的通項公式啟發(fā)學生想出將n—1個等式相加。證出通項公式。 在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求 接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數列通項公式運用 同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現(xiàn)得更加清楚。 (三)應用舉例 這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。 例1 (1)求等差數列8,5,2,…的第20項;第30項;第40項 (2)—401是不是等差數列—5,—9,—13,…的項?如果是,是第幾項? 在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an 例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。 在前面例1的基礎上將例2當作練習作為對通項公式的鞏固 例3 是一個實際建模問題 建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米? 這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型——————等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點) 設置此題的目的: 1。加強同學們對應用題的綜合分析能力, 2。通過數學實際問題引出等差數列問題,激發(fā)了學生的興趣; 3。再者通過數學實例展示了“從實際問題出發(fā)經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法 (四)反饋練習 1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。 2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。 目的:對學生加強建模思想訓練。 3、若數例{an} 是等差數列,若 bn = an ,(為常數)試證明:數列{bn}是等差數列 此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。 (五)歸納小結 (由學生總結這節(jié)課的收獲) 1。等差數列的概念及數學表達式. 強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數 2。等差數列的通項公式 an= a1+(n—1) d會知三求一 3.用“數學建!彼枷敕椒ń鉀Q實際問題 (六)布置作業(yè) 必做題:課本P114 習題3。2第2,6 題 選做題:已知等差數列{an}的首項a1= —24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求) 五、板書設計 在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。 一、教材的本質、地位與作用 對數函數(第二課時)是20xx人教版高一數學(上冊)第二章第八節(jié)第二課時的內容,本小節(jié)涉及對數函數相關知識,分三個課時,這里是第二課時復習鞏固對數函數圖像及性質,并用此解決三類對數比大小問題,是對已學內容(指數函數、指數比大小、對數函數)的延續(xù)和發(fā)展,同時也體現(xiàn)了數學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內容起到了一種承上啟下的作用。 二、教學目標 根據教學大綱的要求以及本節(jié)課的地位與作用,結合高一學生的認知特點確定教學目標如下: 學習目標: 1、復習鞏固對數函數的圖像及性質 2、運用對數函數的性質比較兩個數的大小 能力目標: 1、培養(yǎng)學生運用圖形解決問題的意識即數形結合能力 2、學生運用已學知識,已有經驗解決新問題的能力 3、探索出方法,有條理闡述自己觀點的能力 德育目標: 培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質 三、教材的重點及難點 對數比大小發(fā)揮的是承上啟下的作用,對前一是復習鞏固對數函數的圖像和性質,二是對指數中比大小問題的數學思想及方法的再次體現(xiàn)和應用,對后為解對數方程及對數不等式奠定基礎。所以確定本節(jié)課重點:運用對數函數圖像性質比較兩數的大小 教學中將在以下2個環(huán)節(jié)中突出教學重點: 1、利用學生預習后的心得交流,資源共享,互補不足 2、通過適當的練習,加強對解題方法的掌握及原理的理解 另一方面,學生在預習后上課的情況下,對于課本上知識有了一定的認識,但本節(jié)課教師要補充第三類比大小問題———同真異底型,對于學生以小組為單位自主探究有一定的挑戰(zhàn)性。所以確定本節(jié)課難點:同真異底的對數比大小 教學中會在以下3個方面突破教學難點: 1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。 2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。 3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。 四、學生學情分析 長處:高一學生經過幾年的數學學習,已具備一定的數學素養(yǎng),對于已學知識或用過的數學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數函數的圖像和性質剛剛學過,本節(jié)課是知識的應用,從數學能力上說,指數比大小問題的解題思想和方法在這可借鑒,另外數形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。 學生可能遇到的困難:本節(jié)課從教學內容上來看,第三類對數比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。 五、教法特點 新課程強調教師要調整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可;诖,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。 六、教學過程分析 1、課件展示本節(jié)課學習目標 設計意圖:明確任務,激發(fā)興趣 2、溫故知新(已填表形式復習對數函數的圖像和性質) 設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。 3、預習后心得交流 1)同底對數比大小 2)既不同底數,也不同真數的對數比大小 以課本例題為例,交流解題思路,題后總結此類型比大小問題的一般方法,而后通過練習加強理解鞏固 設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。 4、合作探究——同真異底型的對數比大小 以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數的大小關系探究出不同底對數函數在同一直角坐標系中的圖像,以此來解決此類型比大小問題。 設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的'一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數”。 5、小結 以學生自主小結的方式總結本節(jié)課得收獲,教師可引導小結三個方面:所學內容、數學思想、數學方法 6、思考題 以20xx高考題為例,讓學生學以致用,增強數學學習興趣。 7、作業(yè) 包括兩個方面: 1、書寫作業(yè) 2、下節(jié)課前的預習作業(yè) 七、教學效果分析 通過本節(jié)課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當的提示,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環(huán)節(jié)中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數學思想、數學方法的小結內容,使這些數學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。 【高一數學上冊教案】相關文章: 數學高一上冊教案12-17 高一上冊的數學教案02-14 數學高一上冊教案8篇12-18 數學高一上冊教案(8篇)12-19 數學高一上冊教案(通用8篇)12-20 人教版高一數學上冊教案2篇02-07 高一上冊的數學教案3篇02-14 數學上冊教案01-15 高一數學的教案08-26人教版高一數學上冊教案2