初一數(shù)學(xué)上冊教案
作為一名教師,時常需要用到教案,借助教案可以更好地組織教學(xué)活動。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家收集的初一數(shù)學(xué)上冊教案,希望對大家有所幫助。
初一數(shù)學(xué)上冊教案1
【教學(xué)目標(biāo)】
知識與技能
了解并掌握數(shù)據(jù)收集的基本方法。
過程與方法
在調(diào)查的過程中,要有認(rèn)真的態(tài)度,積極參與。
情感、態(tài)度與價值觀
體會統(tǒng)計調(diào)查在解決實際問題中的作用,逐步養(yǎng)成用數(shù)據(jù)說話的良好習(xí)慣。
【教學(xué)重難點(diǎn)】
重點(diǎn):掌握統(tǒng)計調(diào)查的基本方法。
難點(diǎn):能根據(jù)實際情況合理地選擇調(diào)查方法。
【教學(xué)過程】
一、講授新課
像前面提到的收集數(shù)據(jù)的活動中,全班同學(xué)是我們要考察的對象,我們采用問卷對全體同學(xué)作了逐一調(diào)查,像這樣對全體對象進(jìn)行的調(diào)查叫做全面調(diào)查。
調(diào)查、試驗如采用普查可以收集到較全面、準(zhǔn)確的數(shù)據(jù),但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進(jìn)行,有時由于調(diào)查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調(diào)查(samplingsurvey),即從被考察的全體對象中抽出一部分對象進(jìn)行考察的調(diào)查方式。
在一個統(tǒng)計問題中,我們把所要考察對象的全體叫做總體(population),其中的每一個考察對象叫做個體(individual),從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數(shù)目叫做樣本容量(samplesize)。
例如,在通過試驗考察500只新工藝生產(chǎn)的燈泡的使用壽命時,從中抽取50只進(jìn)行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進(jìn)行編號,再把編號寫在小紙片上,將小紙片揉成團(tuán),放在一個不透明的容器內(nèi),充分?jǐn)嚢韬,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機(jī)會被抽到,像這樣的抽樣方法是一種簡單隨機(jī)抽樣(simplerandomsampling)。
師:以“你知道父母的生日嗎?”為題在班級進(jìn)行調(diào)查,請設(shè)計一張問卷調(diào)查表。
學(xué)生小組合作、討論,學(xué)生代表展示結(jié)果。
教師指導(dǎo)、評論。
師:除了問卷調(diào)查外,我們還有哪些方法收集到數(shù)據(jù)呢?
學(xué)生小組討論、交流,學(xué)生代表回答。
師:收集數(shù)據(jù)的直接方法有訪問、調(diào)查、觀察、測量、試驗等,間接方法有查閱資料、上網(wǎng)查詢等。就以下統(tǒng)計的數(shù)據(jù),你認(rèn)為選擇何種方法去收集比較合適?
(1)你班中的同學(xué)是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數(shù)量;
(3)某種玉米種子的發(fā)芽率;
(4)學(xué)校門口十字路口每天7:00~7:10時的車流量。
學(xué)生討論,并舉手回答。
師:采用何種方法一定要結(jié)合實際問題來定。在解決問題(1)的過程中,不但要同學(xué)們動手調(diào)查,并且對全班所有學(xué)生都要調(diào)查,像這樣對全體對象進(jìn)行的調(diào)查叫做全面調(diào)查(普查)。同學(xué)們還知道哪些數(shù)據(jù)的收集需要全面調(diào)查嗎?
學(xué)生討論,并回答。
生:如人口普查、本班同學(xué)的出生年月、某班學(xué)生50米跑成績等。
師:很好!下列問題也適合采用普查方式來收集數(shù)據(jù)嗎?
(1)了解某批次炮彈的殺傷半徑;
(2)某一天全國牛肉的平均價格;
(3)一批罐頭產(chǎn)品的質(zhì)量檢查;
(4)對某條河的河水的污染情況的調(diào)查。
學(xué)生討論、分析,并舉手回答。
師:普查可以收集到較全面、準(zhǔn)確的數(shù)據(jù),但普查的工作量比較大,有時受到客觀條件(如人力、財力等)的限制難以進(jìn)行,有時由于調(diào)查具有破壞性,不允許采用。在這些情況下,常采用抽樣調(diào)查,即從被考察的全體對象中抽出一部分對象進(jìn)行考察的調(diào)查方式。
二、例題講解
【例】(1)電視臺準(zhǔn)備在某市調(diào)查一電視節(jié)目的收視率,需要對所有看電視的人進(jìn)行全面調(diào)查嗎?對一所中學(xué)學(xué)生的調(diào)查結(jié)果能否作為該節(jié)目的收視率?
(2)對本年級同學(xué)是否喜歡某電視節(jié)目調(diào)查的結(jié)果,能代表學(xué)校全體同學(xué)的意見嗎?如果不適用,應(yīng)如何改進(jìn)調(diào)查方法?
解:(1)電視臺不可能對每個看電視的人進(jìn)行全面調(diào)查。對這?所中學(xué)學(xué)生的'調(diào)查結(jié)果不能作為該節(jié)目的收視率,因為調(diào)查對象只有中學(xué)生,缺乏代表性;
(2)對本年級同學(xué)是否喜歡某電視節(jié)目的調(diào)查結(jié)果不能代表
《6。2普查與抽樣調(diào)查》課時練習(xí)
2。下列事件中最適合使用普查方式收集數(shù)據(jù)的是()
A。為制作校服,了解某班同學(xué)的身高情況
B。了解全市初三學(xué)生的視力情況
C。了解一種節(jié)能燈的使用壽命
D。了解我省農(nóng)民的年人均收入情況
答案:A
解析:解答:A。人數(shù)不多,適合使用普查方式,所以A正確;
B。人數(shù)較多,結(jié)果的實際意義不大,因而不適用普查方式,所以B錯誤;
C。是具有破壞性的調(diào)查,因而不適用普查方式,所以C錯誤;
D。人數(shù)較多,結(jié)果的實際意義不大,因而不適用普查方式,所以D錯誤。
故選:A。
分析:由普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似。此題考查了抽樣調(diào)查和全面調(diào)查,一般來說,對于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價值不大時,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查選用普查。
《6。2普查與抽樣調(diào)查》基礎(chǔ)鞏固
1、(知識點(diǎn)1)要調(diào)查某校九年級550名學(xué)生周日的睡眠時間,下列調(diào)查對象選取最合適的是()
A、選取該校一個班級的學(xué)生
B、選取該校50名男生
C、選取該校50名女生
D、隨機(jī)選取該校50名九年級學(xué)生
2、(題型二)下列調(diào)查適合用抽樣調(diào)查的是()
A、了解義烏電視臺“同年哥講新聞”欄目的收視率
B、了解禽流感H7N9確診病人同機(jī)乘客的健康狀況
C、了解某班每個學(xué)生家庭電腦的數(shù)量
D、“神七”載人飛船發(fā)射前對重要零部件的檢查
3、(題型三)為了了解某市八年級男生的身高,有關(guān)部門準(zhǔn)備對200名八年級男生的身高做調(diào)查,以下調(diào)查方案中比較合理的是()
A、查閱外地200名八年級男生的身高統(tǒng)計資料
B、測量該市一所中學(xué)200名八年級男生的身高
C、測量該市兩所農(nóng)村中學(xué)各100名八年級男生的身高
D、在該市市區(qū)任選兩所中學(xué),農(nóng)村任選兩所中學(xué),每所中學(xué)用抽簽的方法分別選出50名八年級男生,然后測量他們的身高
初一數(shù)學(xué)上冊教案2
《1.1正數(shù)和負(fù)數(shù)》教學(xué)設(shè)計
教學(xué)目標(biāo)
1. 通過對“零”的意義的探討,進(jìn)一步理解正數(shù)和負(fù)數(shù)的概念,能利用正負(fù)數(shù)正確表示相反意義的量(規(guī)定了向指定方向變化的量);
2. 進(jìn)一步體驗正負(fù)數(shù)在生產(chǎn)生活中的廣泛應(yīng)用,提高解決實際問題的能力;
3. 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):深化對正負(fù)數(shù)概念的理解.
難點(diǎn):正確理解和表示向指定方向變化的`量
《1.1正數(shù)和負(fù)數(shù)》同步練習(xí)
1、下列說法正確的是( )
A、零 是正數(shù)不是負(fù)數(shù) B、零既不是正數(shù)也不是負(fù)數(shù)
C、零既是正數(shù)也是負(fù)數(shù) D、不是正數(shù)的數(shù)一定是負(fù)數(shù),不是負(fù)數(shù)的數(shù)一定是正數(shù)
2、向東行進(jìn)-30米表示的意義是( )
A、向東行進(jìn)30米 B、向東行進(jìn)-30米
C、向西行進(jìn)30米 D、向西行進(jìn)-30米
3、零上13℃記作 +13℃,零下2℃可記作( )
A、2 B、-2 C、2℃ D、-2℃
4、某市20 15年元旦的最高氣溫為2℃,最低氣溫為-8℃,那么這天的最高 氣溫比 最低氣溫高( )
A、-10℃ B、-6℃ C、6℃ D、10℃
5、 中,正數(shù)有 ,負(fù)數(shù)有 .
6、如 果水位升高5m時水位變化記作+5m,那么水位下降3m時水位變化記作 m,
水位不升不降時水位變化記作 m.
7、在同一個問題中,分別用正數(shù)與負(fù)數(shù)表示的量具有 的意義.
8、甲、乙兩人同時從A地出發(fā), 如果向南走48m,記作+48m,則乙向北走32m,記為 ,
這時甲乙 兩人相距 m. .
9、某種藥品的說明書上標(biāo)明保存溫度是(20±2)℃,由此可知在 ℃~ ℃范圍內(nèi)保存才合適.
10、20xx年我國全年平均降水量比 上年減少24㎜,20xx年比上年增長8㎜,20xx年比上年減少20㎜。用正數(shù)和負(fù)數(shù)表示這三年我國全年平均降水量比上年的增長量.
11、如果把一個物體向右移動5m記作移動-5m,那么這個物體又移動+5m是什么 意思?這時物體離它兩次移動前的位置多 遠(yuǎn)?
12、某老師把某一小組五名同學(xué)的成績簡記為:+10,-5,0,+8,-3,又知道記為0的成績表 示90分,正數(shù)表示超過90分,則五名 同學(xué)的平均成績?yōu)槎嗌俜?
13、某地一天中午12時的氣溫是7℃,過5小時氣溫下降了4℃ ,又過7小時氣溫又下降了4℃,第二天0時的氣溫是多少?
《1.1正數(shù)和負(fù)數(shù)》同步練習(xí)含答案
19.體育課上,對初三(1)班的學(xué)生進(jìn)行了仰臥起坐的測試,以能做28個為標(biāo)準(zhǔn),超過的次數(shù)用正數(shù)來表示,不足的次數(shù)用負(fù)數(shù)來表示,其中10名 女學(xué)生成績?nèi)缦拢?、4、0、8、6、8、0、6、-5、-1.
(1)這10名女生的達(dá)標(biāo)率為多少?
(2)沒達(dá)標(biāo)的同學(xué)做了幾個仰臥起坐?
解:(1)這10名女生的達(dá)標(biāo)率為8÷10 ×100%=80%.
(2)沒達(dá)標(biāo)的同學(xué)做仰臥起坐的個數(shù)分別是23個和27個.
初一數(shù)學(xué)上冊教案3
教學(xué)目標(biāo):
知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能夠按要求對給定的有理數(shù)進(jìn)行分類。
過程與方法:通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生正確的分類討論觀點(diǎn)和分類能力。
情感、態(tài)度、價值觀:通過本節(jié)課的學(xué)習(xí),體驗成功的喜悅,保持學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn):掌握有理數(shù)的兩種分類方法
教學(xué)難點(diǎn):給定的數(shù)字將被填入它所屬的集合中
教學(xué)方法:問題導(dǎo)向法
學(xué)習(xí)方法:自主探究法
一、形勢歸納
小學(xué)我們學(xué)了整數(shù)和分?jǐn)?shù),上節(jié)課我們學(xué)了正數(shù)和負(fù)數(shù)。誰能快速提出以下問題?
1.有以下數(shù)字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將以上數(shù)字填入以下兩組:正整數(shù)集{}和負(fù)整數(shù)集{}。你填完了嗎?
(2)將以上數(shù)字填入以下兩個集合:整數(shù)集合{}和分?jǐn)?shù)集合{}。你填完了嗎?
稱整數(shù)和分?jǐn)?shù)為有理數(shù)。(指點(diǎn)題,板書)
二、自學(xué)指導(dǎo)
學(xué)生自學(xué)課本,根據(jù)課本尋找自學(xué)的機(jī)會
提綱中問題的答案;老師先做必要的板書準(zhǔn)備,再到學(xué)生中巡視指導(dǎo),并了解掌握學(xué)生自學(xué)情況,為展示歸納作準(zhǔn)備。
附:自學(xué)提綱:
1.___________、____、_______統(tǒng)稱為整數(shù),
2._______和_________統(tǒng)稱為分?jǐn)?shù)
3.____ ______統(tǒng)稱為有理數(shù),
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù): 、分?jǐn)?shù):;正整數(shù):、負(fù)整數(shù): 、正分?jǐn)?shù): 、負(fù)分?jǐn)?shù):.
三、展示歸納
1、找有問題的學(xué)生逐題展示自學(xué)提綱中的問題答案,學(xué)生說,老師板書;
2、發(fā)動學(xué)生進(jìn)行評價、補(bǔ)充、完善,教師根據(jù)每個題目的展示情況進(jìn)行必要的講解和強(qiáng)調(diào);
3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關(guān)鍵點(diǎn)予以強(qiáng)調(diào)。
四、變式練習(xí)
逐題出示,先讓學(xué)生獨(dú)立完成,再請有問題的`學(xué)生匯報結(jié)果,老師板書,并發(fā)動其他學(xué)生評價、補(bǔ)充并完善,最后老師根據(jù)需要進(jìn)行重點(diǎn)強(qiáng)調(diào)。
1.整數(shù)可分為:_____、______和_______,分?jǐn)?shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.
2.判斷下列說法是否正確,并說明理由。
(1)有理數(shù)包括有整數(shù)和分?jǐn)?shù).
(2)0.3不是有理數(shù).
(3)0不是有理數(shù).
(4)一個有理數(shù)不是正數(shù)就是負(fù)數(shù).
(5)一個有理數(shù)不是整數(shù)就是分?jǐn)?shù)
3.所有的正整數(shù)組成正整數(shù)集合,所有負(fù)整數(shù)組成負(fù)整數(shù)集合,依次類推有正數(shù)集合、負(fù)數(shù)集合、整數(shù)集合、分?jǐn)?shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內(nèi),將各數(shù)用逗號分開):
楊桂花:1.2.1有理數(shù)教學(xué)設(shè)計
正數(shù)集合:{ …}負(fù)數(shù)集合:{ …}
正整數(shù)集合:{ …}負(fù)分?jǐn)?shù)集合:{ …}
4.下列說法正確的是( )
A.0是最小的正整數(shù)
B.0是最小的有理數(shù)
C.0既不是整數(shù)也不是分?jǐn)?shù)
D. 0既不是正數(shù)也不是負(fù)數(shù)
5、下列說法正確的有( )
(1)整數(shù)就是正整數(shù)和負(fù)整數(shù)(2)零是整數(shù),但不是自然數(shù)(3)分?jǐn)?shù)包括正分?jǐn)?shù)和負(fù)分?jǐn)?shù)(4)正數(shù)和負(fù)數(shù)統(tǒng)稱為有理數(shù)(5)一個有理數(shù),它不是整數(shù)就是分?jǐn)?shù)
五、總結(jié)與反思:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
六、作業(yè):必做題:課本14頁:1、9題
初一數(shù)學(xué)上冊教案4
一:教材分析:
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎(chǔ)上,講述一元一次方程的應(yīng)用,讓學(xué)生通過審題,根據(jù)應(yīng)用題的實際意義,找出相等關(guān)系,列出有關(guān)一元一次方程,是本節(jié)的重點(diǎn)和難點(diǎn),同時也是本章節(jié)的重難點(diǎn)。本課講述一元一次方程的應(yīng)用題,為學(xué)生初中階段學(xué)好必備的代數(shù),幾何的基礎(chǔ)知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學(xué)科的學(xué)習(xí)的應(yīng)用。在提高學(xué)生的能力,培養(yǎng)他們對數(shù)學(xué)的興趣
以及對他們進(jìn)行思想教育方面有獨(dú)特的意義,同時,對后續(xù)教學(xué)內(nèi)容起到奠基作用。
2:教育教學(xué)目標(biāo):
。1)知識目標(biāo):
。ˋ)通過教學(xué)使學(xué)生了解應(yīng)用題的一個重要步驟是根據(jù)題意找出相等關(guān)系,然后列出方程,關(guān)鍵在于分析已知未知量之間關(guān)系及尋找相等關(guān)系。
。˙)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應(yīng)用題。
。2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。
。3)思想目標(biāo):
通過對一元一次方程應(yīng)用題的教學(xué),讓學(xué)生初步認(rèn)識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉(zhuǎn)化為已知的辯證思想,介紹我國古代數(shù)學(xué)家對一元一次方程的研究成果,激發(fā)學(xué)生熱愛中國共產(chǎn)黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學(xué)好數(shù)學(xué)的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應(yīng)用,培養(yǎng)學(xué)生唯物主義的思想觀點(diǎn)。
3:重點(diǎn),難點(diǎn)以及確定的依據(jù):
根據(jù)題意尋找和;差;倍;分問題的相等關(guān)系是本課的重點(diǎn),根據(jù)題意列出一元一次方程是本課的難點(diǎn),其理論依據(jù)是關(guān)鍵讓學(xué)生找出相等關(guān)系克服列出一元一次方程解應(yīng)用題這一難點(diǎn),但由于學(xué)生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。
二:學(xué)情分析:(說學(xué)法)
1:學(xué)生初學(xué)列方程解應(yīng)用題時,往往弄不清解題步驟,不設(shè)未知數(shù)就直接進(jìn)行列方程或在設(shè)未知數(shù)時,有單位卻忘記寫單位等。
2:學(xué)生在列方程解應(yīng)用題時,可能存在三個方面的困難:
。1)抓不準(zhǔn)相等關(guān)系;
。2)找出相等關(guān)系后不會列方程;
。3)習(xí)慣于用小學(xué)算術(shù)解法,得用代數(shù)方法分析應(yīng)用題不適應(yīng),不知道要抓怎樣的相等關(guān)系。
3:學(xué)生在列方程解應(yīng)用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學(xué)生可能認(rèn)為存在錯誤,實際不是,作為教師應(yīng)鼓勵學(xué)生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學(xué)生選擇合理的思路,使得方程盡可能簡單明了。
4:學(xué)生在學(xué)習(xí)中可能習(xí)慣于用算術(shù)方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關(guān)系,對于較為復(fù)雜的應(yīng)用題無法找出等量關(guān)系,隨便行事,亂列式子。
5:學(xué)生在學(xué)習(xí)過程中可能不重視分析等量關(guān)系,而習(xí)慣于套題型,找解題模式。
三:教學(xué)策略:(說教法)
如何突出重點(diǎn),突破難點(diǎn),從而實現(xiàn)教學(xué)目標(biāo)。我在教學(xué)過程中擬計劃進(jìn)行如下操作:
1:“讀(看)——議——講”結(jié)合法
2:圖表分析法
3:教學(xué)過程中堅持啟發(fā)式教學(xué)的原則
教學(xué)的理論依據(jù)是:
1:必須先明確根據(jù)應(yīng)用題題意列方程是重點(diǎn),同時也是難點(diǎn)的觀點(diǎn),在教學(xué)過程中幫助學(xué)生抓住關(guān)鍵,克服難點(diǎn),正確列方程弄清楚題意,找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系,并列出代數(shù)式表示這相等關(guān)系的左邊和右邊。為此,在教學(xué)過程中要讓學(xué)生明確知曉解題步驟,通過例1可以讓學(xué)生大致了解列出一元一次方程解應(yīng)用題的方法。
2:在教學(xué)過程中要求學(xué)生仔細(xì)審題,認(rèn)真閱讀例題的內(nèi)容提要,弄清題意,找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系,分析的過程可以讓學(xué)生只寫在草稿上,在寫解的過程中,要求學(xué)生先設(shè)未知數(shù),再根據(jù)相等關(guān)系列出需要的代數(shù)式,再把相等關(guān)系表示成方程形式,然后解這個方程,并寫出答案,在設(shè)未知數(shù)時,如有單位,必須讓學(xué)生寫在字母后,如例1中,不能把“設(shè)原來有X千克面粉”寫成“設(shè)原來有X”。另外,在列方程中,各代數(shù)式的單位應(yīng)該是相同的,如例1中,代數(shù)式“X 字串7 ”“—15%X”“42500”的單位都是千克。在本例教學(xué)中,關(guān)鍵在于找出這個相等關(guān)系,將其中涉及待求的某個數(shù)設(shè)為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關(guān)系比較簡單明顯,可通過啟發(fā)式讓學(xué)生自己找出來。在例1教學(xué)中同時讓學(xué)生鞏固解一元一次方程應(yīng)用題的五個步驟,特別是第2步是關(guān)鍵步驟。
3:針對學(xué)生在列方程解應(yīng)用題中可能存在的三個方面的困難,在教學(xué)過程中有意識加以解決,特別是學(xué)生抓不準(zhǔn)相等關(guān)系這方面,可以讓學(xué)生通過表格,圖表等形式幫助學(xué)生找出相等關(guān)系表示成方程。如例1在分析過程中通過表格讓學(xué)生明了清楚直觀解決列方程的難點(diǎn)。
4:通過圖表對比使學(xué)生更直觀,理解更深刻,同時,降低了理論教學(xué)的難度和分量,提高課堂教學(xué)效益(教學(xué)手段)。
5:在課后習(xí)題的安排上適當(dāng)讓學(xué)生通過模仿例題的思想方法,加深學(xué)生解應(yīng)用題的能力,這主要由于學(xué)生剛剛?cè)腴T,多進(jìn)行模仿,習(xí)慣以后,再做與例題不一樣的習(xí)題,可以提高運(yùn)用知識能力,同時讓學(xué)生進(jìn)行一題多解,找出共同點(diǎn),區(qū)別或最佳列法,以開闊學(xué)生的思路。
四:教學(xué)程序:
(一):課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授新課,課堂練習(xí),鞏固新課,布置作業(yè)五個部分。
(二):教學(xué)簡要過程:
1:復(fù)習(xí)提問:
。1):什么叫做等式?
(2):等式與方程之間有哪些關(guān)系?
。3):求X的15%的代數(shù)式。
。4):敘述代數(shù)式與方程的區(qū)別。
。ɡ碛墒牵和ㄟ^復(fù)習(xí)加深學(xué)生對等式,方程,代數(shù)式之間關(guān)系的理解,有利于學(xué)生熟練正確根據(jù)題意列出一元一次方程,從而有利降低本節(jié)的難度。)
2:導(dǎo)入講授新課:
。1):教具:
一塊小黑板,抄212例1題目及相對應(yīng)的空表格。
左邊右邊
。2):新課引述:
。3):講述課文212例1:
。康氖牵阂髮W(xué)生認(rèn)真讀懂題目,尋找反映題目的全部含義的相等關(guān)系,必須根據(jù)題目關(guān)系,切勿盲目性)通過理解啟發(fā)學(xué)生尋找出以下關(guān)系:原來重量—運(yùn)出重量=剩余重量(A)(在指導(dǎo)學(xué)生分析尋找題意相等關(guān)系時,可能存在學(xué)生分析問題思路不同,會找出如下關(guān)系:原來重量=運(yùn)出重量+剩余重量,原來重量—剩余重量=運(yùn)出重量的相等關(guān)系來,這主要由于學(xué)生思路不同,得出的'關(guān)系表面不同,但思路是正確的,應(yīng)加以鼓勵培養(yǎng)學(xué)生這種發(fā)散思維能力。)
指導(dǎo)學(xué)生設(shè)原來重量為X千克。這里分析等式左邊:原來重量為X千克,運(yùn)出重量為15%X千克,把以上填入表格左邊。 字串7 分析等式右邊:剩余重量為42500千克,填入表格右邊。
(目的是:通過分析使學(xué)生易看出,先弄懂題意,找出相等關(guān)系,再按照相等關(guān)系來設(shè)未知數(shù)和列代數(shù)式,有利于降低列方程解應(yīng)用題的難度)
把以上左邊和右邊的代數(shù)式分別代入(A)中,同時要求學(xué)生注意方程的左邊和右邊的單位要一致,就可以列出方程。
同時要求學(xué)生在解答過程中勿漏寫“答”和“設(shè)”,且都不要漏寫單位。
結(jié)合解題過程向?qū)W生介紹一元一次應(yīng)用題解法的一般步驟:
課本215黑體字
3:課堂練習(xí):
課文216練習(xí)1,2題
。康氖牵鹤寣W(xué)生通過適當(dāng)?shù)哪7吕}的解題思想方法從而加深對本課的內(nèi)容的理解掌握。)
4:新課鞏固:
學(xué)生對本節(jié)內(nèi)容進(jìn)行要小結(jié):
列方程解應(yīng)用題著重于分析,抓住尋找相等關(guān)系。解一元一次應(yīng)用題的一般步驟及注意事項。
。康模鹤寣W(xué)生加深對應(yīng)用題的解法的認(rèn)識和該注意事項的重視。)
5:作業(yè)布置:
課文221習(xí)題4-4(1)A組1,2,3題
。康模涸谟跈z驗學(xué)生對本節(jié)內(nèi)容的理解和運(yùn)用程度,以及實際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)的內(nèi)容。)
五:板書設(shè)計:
4*4一元一次方程的應(yīng)用:
例題:小黑板出示例1題目解:設(shè)原來有X千克面粉,那么運(yùn)
相等關(guān)系:原來重量—運(yùn)出重量=剩余重量出了15%X千克,依題意,得
等式左邊:等式右邊:X—15%X=42500
原來重量為X千克,剩余重量為42500千克。解這個方程:
運(yùn)出重量為15%X千克。85/100*X=42500
解一元一次方程的一般步驟:X=50000(千克)
小黑板出示課文215黑體字內(nèi)容提要答:原來有50000千克面粉。
初一數(shù)學(xué)上冊教案5
【對話探索設(shè)計】
〖復(fù)習(xí)
我們知道,所有的分?jǐn)?shù)都可以寫成兩個整數(shù)的比.有限小數(shù)5.32可以寫成兩個整數(shù)的比嗎?所有的有限小數(shù)都是分?jǐn)?shù)嗎?可以寫成兩個整數(shù)的比嗎?是不是分?jǐn)?shù)?
結(jié)論:所有的有限小數(shù)和無限循環(huán)小數(shù)都是分?jǐn)?shù).
〖探索1
小學(xué)時所指的整數(shù)包括正整數(shù)和零,學(xué)了負(fù)整數(shù)以后,今后我們所指的整數(shù)與小學(xué)時所指的整數(shù)有什么不同?
結(jié)論:正整數(shù)﹑零﹑負(fù)整數(shù)統(tǒng)稱整數(shù).
〖探索2
下列負(fù)數(shù)哪些是負(fù)分?jǐn)?shù)?
-12, ,-0.33, ,-12.03, .
〖探索3
所有正整數(shù)組成正整數(shù)集合,所有負(fù)整數(shù)組成負(fù)整數(shù)集合.請把下列各數(shù)填入它所屬于的集合的大括號里:
1, 0.0708, -700, -, -3.88, 0, , 3.14159265, , .
正整數(shù)集合:{ }負(fù)整數(shù)集合:{ }
整數(shù)集合:{ }
正分?jǐn)?shù)集合:{ }負(fù)分?jǐn)?shù)集合:{ }
(注意:大括號內(nèi)的'省略號表示什么?)
〖探索4
為什么不是分?jǐn)?shù)?如果說所有的分?jǐn)?shù)都是小數(shù),對嗎?反過來,所有的小數(shù)都是分?jǐn)?shù),對嗎?
結(jié)論: (1)小數(shù)可以分為無限小數(shù)和有限小數(shù)兩類,而無限小數(shù)又可分為(無限)循環(huán)小數(shù)和無限不循環(huán)小數(shù)兩類;
(2)分?jǐn)?shù)一定是小數(shù),小數(shù)不一定是分?jǐn)?shù).
〖探索5
整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
在數(shù)-100, 70.8, -7, , -3.8, 0, , ,中,不是分?jǐn)?shù)的是___________________;不是小數(shù)的'是_____________;不是有理數(shù)的是__________.
(友情提示:,都是小數(shù),但都不是分?jǐn)?shù),自然也都不是有理數(shù).你答對了嗎?)
〖練習(xí)
P10.練習(xí)
【作業(yè)】
P18.習(xí)題1.
【補(bǔ)充作業(yè)】
1.列出豎式,把分?jǐn)?shù)化為小數(shù).(體會分?jǐn)?shù)不可能是無限不循環(huán)小數(shù).)
2.把下列小數(shù)化為分?jǐn)?shù):3.14159, .
【備選素材】
1.判斷:
(1)一個有理數(shù),不是正數(shù),就是負(fù)數(shù);
(2)一個有理數(shù),不是整數(shù),就是分?jǐn)?shù);
(3)一個有理數(shù),是分?jǐn)?shù),就一定是小數(shù);
(4)一個無限小數(shù),如果不循環(huán),就不是有理數(shù);
(5)小數(shù)就是分?jǐn)?shù);
(6)有理數(shù)只能分成兩類.
(7)負(fù)分?jǐn)?shù)不是負(fù)數(shù).
2.按符號分,整數(shù)可以分為正整數(shù)、______和______三類,而分?jǐn)?shù)則分為__________和_________,共兩類.
3.分?jǐn)?shù)可以分為有限小數(shù)和________________兩類.
4.滿足什么條件的小數(shù)才是有理數(shù)?
5.(1)列出豎式,把分?jǐn)?shù)化為小數(shù);(體會分?jǐn)?shù)不可能是無限不循環(huán)小數(shù).)
(2)有的小數(shù)不是分?jǐn)?shù),你能舉出一個例子嗎?
(3)說明為什么0.3是分?jǐn)?shù),而卻不是.
6.有理數(shù)可以分為整數(shù)和分?jǐn)?shù)兩類,還可以按符號分為正有理數(shù)﹑____和___________三類.
7.把下列各數(shù)填在相應(yīng)的集合里:
-|-3|, -(-0.072), , -3.88, , 3.14, , .
初一數(shù)學(xué)上冊教案6
(一)知識點(diǎn)目標(biāo):
1.了解正數(shù)和負(fù)數(shù)是怎樣產(chǎn)生的。 2.知道什么是正數(shù)和負(fù)數(shù)。 3.理解數(shù)0表示的量的意義。
(二)能力訓(xùn)練目標(biāo):
1.體會數(shù)學(xué)符號與對應(yīng)的思想,用正、負(fù)數(shù)表示具有相反意義的量的符號化方法。
2.會用正、負(fù)數(shù)表示具有相反意義的量。
(三)情感與價值觀要求: 通過師生合作,聯(lián)系實際,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。
教學(xué)重點(diǎn):
知道什么是正數(shù)和負(fù)數(shù),理解數(shù)0表示的量的意義。
教學(xué)難點(diǎn):
理解負(fù)數(shù),數(shù)0表示的量的意義。
教學(xué)方法:
師生互動與教師講解相結(jié)合。
教具準(zhǔn)備:
地圖冊(中國地形圖)。
教學(xué)過程:
引入新課:
1.活動:由兩組各派兩名同學(xué)進(jìn)行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、最好? 內(nèi)容:老師說出指令: 向前兩步,向后兩步;
向前一步,向后三步; 向前兩步,向后一步; 向前四步,向后兩步。 如果學(xué)生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運(yùn)用這樣的符號的地方很多,這節(jié)課,我們就來學(xué)習(xí)這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負(fù)數(shù)。
講授新課:
1.自然數(shù)的產(chǎn)生、分?jǐn)?shù)的產(chǎn)生。 2.章頭圖。問題見教材。讓學(xué)生思考-3~3℃、凈勝球數(shù)與排名順序、±、-9的意義。
3、正數(shù)、負(fù)數(shù)的定義:我們把以前學(xué)過的'0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負(fù)數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。
舉例說明:3、2、
3 1 等是正數(shù)(也可加上“十”) -3、-2、
-3 1等是負(fù)數(shù)。 4、數(shù)0既不是正,也不是負(fù)數(shù),0是正數(shù)和負(fù)數(shù)的分界。 0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。 5、讓學(xué)生舉例說明正、負(fù)數(shù)在實際中的應(yīng)用。展示圖片(又見教材P5圖)讓學(xué)生觀察地形圖上的標(biāo)注和記錄支出、存入信息的
鞏固提高:練習(xí):課本P5練習(xí) 課時小結(jié):這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?
課后作業(yè):課本P7習(xí)題的第1、2、4、5題。 活動與探究:在一次數(shù)學(xué)測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數(shù)。
(1)美美得95分,應(yīng)記為多少?
(2)多多被記作一12分,他實際得分是多少?
課后反思:
初一數(shù)學(xué)上冊教案7
教學(xué)目標(biāo):
1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;
2、能體會引進(jìn)負(fù)數(shù)的必要性和意義,建立正數(shù)和負(fù)數(shù)的數(shù)感。
重點(diǎn):通過列舉現(xiàn)實世界中的“相反意義的量”的例子來引進(jìn)正數(shù)和負(fù)數(shù),要求學(xué)生理解正數(shù)和負(fù)數(shù)的意義,為以后通過實例引進(jìn)有理數(shù)的大小比較、加法和乘法法則打基礎(chǔ)。
難點(diǎn):對負(fù)數(shù)的意義的.理解。
教學(xué)過程:
一、知識導(dǎo)向:本節(jié)課是一個從小學(xué)過渡的知識點(diǎn),主要是要抓緊在數(shù)范圍上擴(kuò)充,對引進(jìn)“負(fù)數(shù)”這一概念的必要性及意義的理解。
二、新課拆析:1、回顧小學(xué)中有關(guān)數(shù)的范圍及數(shù)的分類,指出小學(xué)中的“數(shù)”是為了滿足生產(chǎn)和生活的需要而產(chǎn)生發(fā)展起來的。如:0,1,2,3,…,,
2、能讓學(xué)生舉例出更多的有關(guān)生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的對立面。
如:汽車向東行駛3千米和向西行駛2千米
溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會發(fā)現(xiàn):如果只用原來所學(xué)過的數(shù)很難區(qū)分具有相反意義的量。
一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學(xué)過的數(shù)表示;把與它意義相反的量規(guī)定為負(fù)的,用過去學(xué)過的數(shù)(零除外)前面放上一個“—”號來表示。
如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負(fù)”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負(fù)數(shù),如:-3,-45,…過去學(xué)過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負(fù)數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負(fù)數(shù),1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓(xùn)練:P18練習(xí):1,2,3,4。
四、知識小結(jié):
從本節(jié)課所學(xué)的內(nèi)容中,應(yīng)能從數(shù)的角度來區(qū)分小學(xué)與初中的異同點(diǎn),通過運(yùn)用發(fā)現(xiàn)相反意義量,能理解引進(jìn)“負(fù)數(shù)”的必要性及其意義。
五、作業(yè)鞏固:
1、每個同學(xué)分別舉出5個生活中表示相反意義量的的例子;并用正、負(fù)數(shù)來表示; 2、分別舉出幾個正數(shù)與負(fù)數(shù)(最少6個)。 3、P20習(xí)題2.1:1題。
初一數(shù)學(xué)上冊教案8
一、等式的概念和性質(zhì)
1.等式的概念,用等號“=”來表示相等關(guān)系的式子,叫做等式. 在等式中,等號左、右兩邊的式子,分別叫做這個等式的左邊、右邊.等式可以是數(shù)字算式,可以是公式、方程,也可以是用式子表示的運(yùn)算律、運(yùn)算法則.
2.等式的類型楷體五號
(1)恒等式:無論用什么數(shù)值代替等式中的字母,等式總能成立.如:數(shù)字算式 .
(2)條件等式:只能用某些數(shù)值代替等式中的字母,等式才能成立.方程 需要 才成立.
(3)矛盾等式:無論用什么數(shù)值代替等式中的字母,等式都不能成立.如 , .
注意:等式由代數(shù)式構(gòu)成,但不是代數(shù)式.代數(shù)式?jīng)]有等號.體五號
3.等式的性質(zhì)五號
等式的性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式.若 ,則 ;
等式的性質(zhì)2:等式兩邊都乘以(或除以)同一個數(shù)(除數(shù)不能是0)或同一個整式,所得結(jié)果仍是等式.若 ,則 , .
注意:
(1)在對等式變形過程中,等式兩邊必須同時進(jìn)行.即:同時加或同時減,同時乘以或同時除以,不能漏掉某一邊.
(2)等式變形過程中,兩邊同加或同減,同乘或同除以的數(shù)或整式必須相同.
(3)在等式變形中,以下兩個性質(zhì)也經(jīng)常用到:
、俚仁骄哂袑ΨQ性,即:如果 ,那么 .
、诘仁骄哂袀鬟f性,即:如果 , ,那么 .黑體小四
二、方程的相關(guān)概念黑體小四
1.方程,含有未知數(shù)的等式叫作方程. 注意:定義中含有兩層含義,即:方程必定是等式,即是用等號連接而成的式子;方程中必定有一個待確定的數(shù)即未知的字母.二者缺一不可.楷體五號
2.方程的次和元 方程中未知數(shù)的最高次數(shù)稱為方程的次,方程中不同未知數(shù)的個數(shù)稱為元.楷體五號
3.方程的已知數(shù)和未知數(shù)楷體五號
已知數(shù):一般是具體的數(shù)值,如 中( 的系數(shù)是1,是已知數(shù).但可以不說).5和0是已知數(shù),如果方程中的已知數(shù)需要用字母表示的話,習(xí)慣上有等表示.
未知數(shù):是指要求的數(shù),未知數(shù)通常用 、 、 等字母表示.如:關(guān)于 、 的方程 中, 、 、 是已知數(shù), 、 是未知數(shù).楷體五號
4.方程的解 使方程左、右兩邊相等的未知數(shù)的值,叫做方程的解.楷體五號
5.解方程 求得方程的解的過程.
注意:解方程與方程的解是兩個不同的概念,后者是求得的結(jié)果,前者是求出這個結(jié)果的過程.
6.方程解的檢驗楷體要驗證某個數(shù)是不是一個方程的解,只需將這個數(shù)分別代入方程的左邊和右邊,如果左、右兩邊數(shù)值相等,那么這個數(shù)就是方程的解,否則就不是.黑體小四
三、一元一次方程的定義體小四
1.一元一次方程的概念 只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,系數(shù)不等于0的方程叫做一元一次方程,這里的“元”是指未知數(shù),“次”是指含未知數(shù)的項的最高次數(shù).楷體五號
2.一元一次方程的形式楷體五號
標(biāo)準(zhǔn)形式: (其中 , , 是已知數(shù))的形式叫一元一次方程的標(biāo)準(zhǔn)形式.
最簡形式:方程 ( , , 為已知數(shù))叫一元一次方程的`最簡形式.
注意:(1)任何一元一次方程都可以轉(zhuǎn)化為最簡形式或標(biāo)準(zhǔn)形式,所以判斷一個方程是不是一元一次方程,可以通過變形為最簡形式或標(biāo)準(zhǔn)形式來驗證.如方程 是一元一次方程.如果不變形,直接判斷就出會現(xiàn)錯誤.
(2)方程 與方程 是不同的,方程 的解需要分類討論完成.黑體小四
四、一元一次方程的解法
1.解一元一次方程的一般步驟五號
(1)去分母:在方程的兩邊都乘以各分母的最小公倍數(shù). 注意:不要漏乘不含分母的項,分子是個整體,含有多項式時應(yīng)加上括號.
(2)去括號:一般地,先去小括號,再去中括號,最后去大括號. 注意:不要漏乘括號里的項,不要弄錯符號.
(3)移項:把含有未知數(shù)的項都移到方程的一邊,不含未知數(shù)的項移到方程的另一邊. 注意:①移項要變號;②不要丟項.
(4)合并同類項:把方程化成 的形式. 注意:字母和其指數(shù)不變.
(5)系數(shù)化為1:在方程的兩邊都除以未知數(shù)的系數(shù) ,得到方程的解 . 注意:不要把分子、分母搞顛倒.體五號
2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整體思想、換元法、裂項、拆添項以及運(yùn)用分式的恒等變形等.
3.關(guān)于x的方程 ax b 解的情況 ⑴當(dāng)a 0時,x ⑵當(dāng)a ,b 0時,方程有無數(shù)多個解 ⑶當(dāng)a 0,b 0時,方程無解
練習(xí)1、等式的概念和性質(zhì)
1.下列說法不正確的是
A.等式兩邊都加上一個數(shù)或一個等式,所得結(jié)果仍是等式.
B.等式兩邊都乘以一個數(shù),所得結(jié)果仍是等式. C.等式兩邊都除以一個數(shù),所得結(jié)果仍是等式.
D.一個等式的左、右兩邊與另一個等式的左、右兩邊分別相加,所得結(jié)果仍是等式.
2.根據(jù)等式的性質(zhì)填空.
(1) ,則 ; (2) ,則 ;
(3) ,則 ; (4) ,則 .
練習(xí)2、方程的相關(guān)概念
1.列各式中,哪些是等式?哪些是代數(shù)式,哪些是方程?
、 ;② ;③ ;④ ;⑤ ;⑥ ;
、 ;⑧ ;⑨ .
2.判斷題.
(1)所有的方程一定是等式.
(2)所有的等式一定是方程.
(3) 是方程.
(4) 不是方程.
(5) 不是等式,因為 與 不是相等關(guān)系.
(6) 是等式,也是方程.
(7)“某數(shù)的3倍與6的差”的含義是 ,它是一個代數(shù)式,而不是方程.
練習(xí)3、一元一次方程的定義
1.在下列方程中哪些是一元一次方程?哪些不是?說明理由:
(1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.
2.已知 是關(guān)于 的一元一次方程,求 的值.
3.已知方程 是關(guān)于x的一元一次方程,則m=_________
4.已知方程 是一元一次方程,則 ; .
練習(xí)4、一元一次方程的解與解法
1)一元一次方程的解 一)、根據(jù)方程解的具體數(shù)值來確定
1.若關(guān)于x的方程 的解是 ,則代數(shù)式 的值是_________。
2.若 是方程 的一個解,則 .
3.某同學(xué)在解方程 ,把 處的數(shù)字看錯了,解得 ,該同學(xué)把 看成了 .
二)、根據(jù)方程解的個數(shù)情況來確定楷體五號
1.關(guān)于 的方程 ,分別求 , 為何值時,原方程:
(1)有唯一解;(2)有無數(shù)多解;(3)無解.
2.已知關(guān)于 的方程 有無數(shù)多個解,那么 , .
3.已知方程 有兩個不同的解,試求 的值.
三)、根據(jù)方程定解的情況來確定楷體五號
1.若 , 為定值,關(guān)于 的一元一次方程 ,無論 為何值時,它的解總是 ,求 和 的值.
2.當(dāng) 取符合 的任意數(shù)時,式子 的值都是一個定值,其中 ,求 , 的值.
五號
四)、根據(jù)方程整數(shù)解的情況來確定楷體五號
1.已知 為整數(shù),關(guān)于 的方程 的解為正整數(shù),求 的值.
2.已知關(guān)于 的方程 有整數(shù)解,那么滿足條件的所有整數(shù) =
3.若方程 有一個正整數(shù)解,則 取的最小正數(shù)是多少?并求出相應(yīng)方程的解.
號
五)、根據(jù)方程公共解的情況來確定
1.若 和 是關(guān)于 的同解方程,則 的值是 .
2.已知關(guān)于 的方程 ,和方程 有相同的解,求這個相同的解.
3.已知關(guān)于 的方程 僅有正整數(shù)解,并且和關(guān)于 的方程 是同解方程.若 , ,求出這個方程可能的解.
2)一元一次方程的解法 一)、基本類型的一元一次方程的解法
1.解方程:(1) (2) - =1- (3)
二)、分式中含有小數(shù)的一元一次方程的解法楷體五號
1.解方程:(1) (2)
(3) (4)
三)、含有多層括號的一元一次方程的解法體五號
1.解方程:(1) (2) (3)
四)、一元一次方程的技巧解法
1.解方程:(1) (2)
(3) (4)
一、填空題.(每小題3分,共24分)
1.已知4x2n-5+5=0是關(guān)于x的一元一次方程,則n=_______.
2.若x=-1是方程2x-3a=7的解,則a=_______.
3.當(dāng)x=______時,代數(shù)式 x-1和 的值互為相反數(shù).
4.已知x的 與x的3倍的和比x的2倍少6,列出方程為________.
5.在方程4x+3y=1中,用x的代數(shù)式表示y,則y=________.
6.某商品的進(jìn)價為300元,按標(biāo)價的六折銷售時,利潤率為5%,則商品的標(biāo)價為____元.
7.已知三個連續(xù)的偶數(shù)的和為60,則這三個數(shù)是________.
8.一件工作,甲單獨(dú)做需6天完成,乙單獨(dú)做需12天完成,若甲、乙一起做,則需________天完成.
二、選擇題.(每小題3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,則m的值為.
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情況是.
A.有一個解是6 B.有兩個解,是±6
C.無解 D.有無數(shù)個解
11.若方程2ax-3=5x+b無解,則a,b應(yīng)滿足.
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.解方程 時,把分母化為整數(shù),得。
A、 B、 C、 D、
13.在800米跑道上有兩人練中長跑,甲每分鐘跑300米,乙每分鐘跑260米,兩人同地、同時、同向起跑,t分鐘后第一次相遇,t等于.
A.10分 B.15分 C.20分 D.30分
14.某商場在統(tǒng)計今年第一季度的銷售額時發(fā)現(xiàn),二月份比一月份增加了10%,三月份比二月份減少了10%,則三月份的銷售額比一月份的銷售額.
A.增加10% B.減少10% C.不增也不減 D.減少1%
15.在梯形面積公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,則b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲組有28人,乙組有20人,則下列調(diào)配方法中,能使一組人數(shù)為另一組人數(shù)的一半的是.
A.從甲組調(diào)12人去乙組 B.從乙組調(diào)4人去甲組
C.從乙組調(diào)12人去甲組 D.從甲組調(diào)12人去乙組,或從乙組調(diào)4人去甲組
17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負(fù)一場是0分,一個隊打了14場比賽,負(fù)了5場,共得19分,那么這個隊勝了場.
A.3 B.4 C.5 D.6
18.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?
A.3個 B.4個 C.5個 D.6個
三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)
19.解方程:2(x-3)+3(2x-1)=5(x+3)
20.解方程:
21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標(biāo)明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補(bǔ)空白,需要配多大尺寸的圖片.
22.一個三位數(shù),百位上的數(shù)字比十位上的數(shù)大1,個位上的數(shù)字比十位上數(shù)字的3倍少2.若將三個數(shù)字順序顛倒后,所得的三位數(shù)與原三位數(shù)的和是1171,求這個三位數(shù).
23.據(jù)了解,火車票價按“ ”的方法來確定.已知A站至H站總里程數(shù)為1500千米,全程參考價為180元.下表是沿途各站至H站的里程數(shù):
車站名 A B C D E F G H
各站至H站
里程數(shù)(米) 1500 1130 910 622 402 219 72 0
例如:要確定從B站至E站火車票價,其票價為 =87.36≈87(元).
(1)求A站至F站的火車票價(結(jié)果精確到1元).
(2)旅客王大媽乘火車去女兒家,上車過兩站后拿著車票問乘務(wù)員:“我快到站了嗎?”乘務(wù)員看到王大媽手中的票價是66元,馬上說下一站就到了.請問王大媽是在哪一站下的車(要求寫出解答過程).
24.某公園的門票價格規(guī)定如下表:
購票人數(shù) 1~50人 51~100人 100人以上
票 價 5元 4.5元 4元
某校初一甲、乙兩班共103人(其中甲班人數(shù)多于乙班人數(shù))去游該公園,如果兩班都以班為單位分別購票,則一共需付486元.
(1)如果兩班聯(lián)合起來,作為一個團(tuán)體購票,則可以節(jié)約多少錢?
(2)兩班各有多少名學(xué)生?(提示:本題應(yīng)分情況討論)
初一數(shù)學(xué)上冊教案9
一、教學(xué)目標(biāo):
1.知識目標(biāo):
使學(xué)生理解同類項的概念和合并同類項的意義,學(xué)會合并同類項。
2.能力目標(biāo):
培養(yǎng)學(xué)生觀察、分析、歸納和動手解決問題的能力,初步使學(xué)生了解數(shù)學(xué)的分類思想。
3.情感目標(biāo):
借助情感因素,營造親切和諧活潑的課堂氣氛,激勵全體學(xué)生積極參與教學(xué)活動。培養(yǎng)他們團(tuán)結(jié)協(xié)作,嚴(yán)謹(jǐn)求實的學(xué)習(xí)作風(fēng)和鍥而不舍,勇于創(chuàng)新的精神。
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):同類項的'概念和合并同類項的法則
難點(diǎn):合并同類項
三、教學(xué)過程:
(一)情景導(dǎo)入:
1、觀察下面的圖片,并將這些圖片分類:
你是依據(jù)什么來進(jìn)行分類的呢?
生活中,我們常常為了需要把具有相同特征的事物歸為一類。
2、對下列水果進(jìn)行分類:
(二)新知探究1:
1、對下列八個單項式進(jìn)行分類:
a,6_2,5,cd,-1,2_2,4a,-2cd
這些被歸為同一類的項有什么相同的特征?
2、揭示同類項的概念。
同類項:所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。另外,所有的常數(shù)項都是同類項。
《3.4合并同類項》同步練習(xí)
1.已知代數(shù)式2a3bn+1與-3am-2b2是同類項,則2m+3n=________.
2.若-4_ay+_2yb=-3_2y,則a+b=_______.
3.下面運(yùn)算正確的是( )
A.3a+2b=5ab B.3a2b-3ba2=0
C.3_2+2_3=5_5 D.3y2-2y2=1
4.已知一個多項式與3_2+9_的和等于3_2+4_-1,則這個多項式是( )
A.-5_-1 B.5_+1
C.-13_-1 D.13_+1
《3.4合并同類項》測試
1.下列說法中,正確的是( )
A.字母相同的項是同類項
B.指數(shù)相同的項是同類項
C.次數(shù)相同的項是同類項
D.只有系數(shù)不同的項是同類項
初一數(shù)學(xué)上冊教案10
《1.2有理數(shù)》教學(xué)設(shè)計
【學(xué)習(xí)目標(biāo)】:
1、掌握有理數(shù)的 概念,會對有理數(shù)按一定標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;
2、了解分類的標(biāo)準(zhǔn) 與集合的含義;
3、體驗分類是數(shù)學(xué)上常用的`處理問題方法;
【學(xué)習(xí)重點(diǎn)】:正確理解有理數(shù)的概念
【學(xué)習(xí)難點(diǎn)】:正確理解分類的標(biāo)準(zhǔn)和按照一定標(biāo)準(zhǔn)分類
《1.2.1有理數(shù)》同步練習(xí)含答案
5.對-3.14,下面說法正確的是(B)
A.是負(fù)數(shù),不是分?jǐn)?shù)
B.是負(fù)數(shù),也是分?jǐn)?shù)
C.是分?jǐn)?shù),不是有理數(shù)
D.不是分?jǐn)?shù),是有理數(shù)
《1.2有理數(shù)》同步練習(xí)含答案解析
8.如果a與1互為相反數(shù),則|a|=( )
A.2 B.﹣2 C.1 D.﹣1
【考點(diǎn)】絕對值;相反數(shù).
【分析】根據(jù)互為相反數(shù)的定義,知a=﹣1,從而求解.
互為相反數(shù)的定義:只有符號不同的兩個數(shù)叫互為相反數(shù).
【解答】解:根據(jù)a與1互為相反數(shù),得
a=﹣1.
所以|a|=1.
故選C.
【點(diǎn)評】此題主要是考查了相反數(shù)的概念和絕對值的性質(zhì).
9.若|1﹣a|=a﹣1,則a的取值范圍是( )
A.a>1 B.a≥1 C.a<1 D.a≤1
【考點(diǎn)】絕對值.
【分析】根據(jù)|1﹣a|=a﹣1得到1﹣a≤0,從而求得答案.
【解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故選B.
【點(diǎn)評】本題考查了絕對值的求法,解題的關(guān)鍵是了解非正數(shù)的絕對值是它的相反數(shù),難度不大.
初一數(shù)學(xué)上冊教案11
教學(xué)目標(biāo)
1、知道有理數(shù)混合運(yùn)算的運(yùn)算順序,能正確進(jìn)行有理數(shù)的混合運(yùn)算;
2、會用計算器進(jìn)行較繁雜的有理數(shù)混合運(yùn)算。
教學(xué)重點(diǎn)
1、有理數(shù)的混合運(yùn)算;
2、運(yùn)用運(yùn)算律進(jìn)行有理數(shù)的混合運(yùn)算的簡便計算。
教學(xué)難點(diǎn)
運(yùn)用運(yùn)算律進(jìn)行有理數(shù)的混合運(yùn)算的簡便計算。
有理數(shù)的`混合運(yùn)算的運(yùn)算順序
也就是說,在進(jìn)行含有加、減、乘、除的混合運(yùn)算時,應(yīng)按照運(yùn)算級別從高到低進(jìn)行,因為乘方是比乘除高一級的運(yùn)算,所以像這樣的有理數(shù)的混合運(yùn)算,有以下運(yùn)算順序:
先乘方,再乘除,最后加減。如果有括號,先進(jìn)行括號內(nèi)的運(yùn)算。
你會根據(jù)有理數(shù)的運(yùn)算順序計算上面的算式嗎?
2、8有理數(shù)的混合運(yùn)算:同步練習(xí)
1、有依次排列的3個數(shù):2,9,7,對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產(chǎn)生一個新數(shù)串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產(chǎn)生一個新數(shù)串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問:從數(shù)串2,9,7開始操作第一百次以后所產(chǎn)生的那個新數(shù)串的所有數(shù)之和是。
《2、8有理數(shù)的混合運(yùn)算》課后訓(xùn)練
1、興旺肉聯(lián)廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內(nèi)溫度上升4 ℃,現(xiàn)有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關(guān)上庫門4小時后,肉的溫度是多少攝氏度?
初一數(shù)學(xué)上冊教案12
教學(xué)目標(biāo)
1、會進(jìn)行簡單的整式加、減運(yùn)算、
2、能說明整式加、減中每一步運(yùn)算的算理,逐步發(fā)展有條理的思考和表述的能力、
重、難點(diǎn)
會進(jìn)行簡單的整式加、減運(yùn)算、
教學(xué)過程
一、情境創(chuàng)設(shè)
1、操作:
(1)準(zhǔn)備三張如下圖所示的卡片
(2)思考:
用它們拼成各種形狀不同的四邊形,并計算拼成的.四邊形的周長、
二、探索活動
活動一:
1、整式的加減運(yùn)算要進(jìn)行哪些步驟?
進(jìn)行整式的加減運(yùn)算時,____________________________________________
《3、6整式的加減》同步測試
1、三個小隊植樹,第一隊種_棵,第二隊種的樹比第一隊種的樹的2倍還多8棵,第三隊種的樹比第二隊種的樹的一半少6棵,三隊共種樹________棵、
2、甲倉庫有煤1500噸,乙倉庫有煤800噸,從甲倉庫每天運(yùn)出煤5噸,從乙倉庫每天運(yùn)出煤2噸,求m天后,甲、乙兩倉庫一共還有多少噸煤,并求出當(dāng)m=30時,甲、乙兩倉庫一共存煤的數(shù)量?
3、6整式的加減:測試
1、已知三角形的第一邊長為2a+b,第二邊比第一邊長a-b,第三邊比第二邊短a,求這個三角形的周長?
2、某同學(xué)做了一道數(shù)學(xué)題:“已知兩個多項式為A,B,B=3_-2y,求A-B的值、”他誤將“A-B”看成了“A+B”,結(jié)果求出的答案是_-y,那么原來的A-B的值應(yīng)該是( )
A、4_-3y B、-5_+3y C、-2_+y D、2_-y
初一數(shù)學(xué)上冊教案13
教學(xué)目標(biāo):
知識與技能:
1.進(jìn)一步熟練掌握有理數(shù)加法的法則。
2.掌握有理數(shù)加法的運(yùn)算律,并能運(yùn)用加法運(yùn)算律簡化運(yùn)算。
過程與方法:
啟發(fā)引導(dǎo)式教學(xué),能夠由特殊到一般、由一般到特殊,體會研究數(shù)學(xué)的一些基本方法。
情感、態(tài)度與價值觀:
1.培養(yǎng)學(xué)生的分類與歸納能力。
2.強(qiáng)化學(xué)生的數(shù)形結(jié)合思想。
3.提高學(xué)生的自學(xué)以及理解能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):
加法運(yùn)算律的靈活運(yùn)用,解決實際問題。
教學(xué)難點(diǎn):
能運(yùn)用加法運(yùn)算律簡化運(yùn)算,加法在實際中的應(yīng)用。
教學(xué)方法:
采取啟發(fā)式教學(xué)法及情感教學(xué),引導(dǎo)學(xué)生主動思考,主動探索。用大量的實例讓學(xué)生得出規(guī)律。
教學(xué)準(zhǔn)備:
1.復(fù)習(xí)有理數(shù)的加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)異號兩數(shù)相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的`絕對值。
(3)一個數(shù)同0相加,仍得這個數(shù)。
2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8
教學(xué)過程:
(一)情境引入,提出問題:
鼓勵學(xué)生通過自己的探索,交流、歸納,自主得出有理數(shù)加法的運(yùn)算律。
1.敘述有理數(shù)的加法法則.
2.小學(xué)學(xué)過的加法的運(yùn)算律是不是也可以擴(kuò)充到有理數(shù)范圍?
3.計算下列各組數(shù)的值,并觀察尋找規(guī)律。
(1) (-7)+(-5) (-5)+(-7)
(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]
(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]
結(jié)論:在有理數(shù)運(yùn)算中,加法交換律、結(jié)合律仍然成立。
(二)活動探究,猜想結(jié)論:
交換律——兩個有理數(shù)相加,交換加數(shù)的位置,和不變.
用代數(shù)式表示:a+b=b+a
運(yùn)算律式子中的字母a、b表示任意的一個有理數(shù),可以是正數(shù),也可以是負(fù)數(shù)或者零.
在同一個式子中,同一個字母表示同一個數(shù).
結(jié)合律——三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.
用代數(shù)式表示:(a+b)+c=a+(b+c)
這里a、b、c表示任意三個有理數(shù).
(三)驗證結(jié)論:
例1計算16+(-25)+24+(-32)
(引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把正數(shù)與負(fù)數(shù)分別結(jié)合在一起再相加,計算就比較簡便)
解:16+(-25)+24+(-32)
=[16+24]+[(-25)+(-32)] (加法結(jié)合律)
=40+(-57) (同號相加法則)
=-17 (異號相加法則)
例2計算:31+(-28)+28+69
(引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把互為相反數(shù)的兩個數(shù)相加得0,計算比較簡便)
解:31+(-28)+28+69
=31+69+[(-28)+28]
=100+0
=100
《2.4.1有理數(shù)的加法法則》同步練習(xí)
3.若兩個有理數(shù)的和為負(fù)數(shù),那么這兩個有理數(shù)( )
A.一定都是負(fù)數(shù)B.一正一負(fù),且負(fù)數(shù)的絕對值大
C.一個為零,另一個為負(fù)數(shù)D.至少有一個是負(fù)數(shù)
4.兩個有理數(shù)的和( )
A.一定大于其中的一個加數(shù)
B.一定小于其中的一個加數(shù)
C.和的大小由兩個加數(shù)的符號而定
D.和的大小由兩個加數(shù)的符號與絕對值而定
5.如果a,b是有理數(shù),那么下列各式中成立的是( )
A.如果a<0,b<0,那么a+b>0
B.如果a>0,b<0,那么a+b>0
C.如果a>0,b<0,那么a+b<0
D.如果a>0,b<0,且|a|>|b|,那么a+b>0
《2.4.2有理數(shù)的加法運(yùn)算律》測試
7.張大伯共有7塊麥田,今年的收成與去年相比(增產(chǎn)為正,減產(chǎn)為負(fù))情況如下(單位:kg):+320,-170,-320,+130,+150,+40,-150.則今年小麥的總產(chǎn)量與去年相比( )
A.增產(chǎn)20 kg B.減產(chǎn)20 kg C.增長120 kg D.持平
8.一口井水面比井口低3米,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,卻又下滑了0.15米;第三次往上爬了0.7米,卻又下滑了0.15米;第四次往上爬了0.75米,卻又下滑了0.2米;第五次往上爬了0.55米,沒有下滑;第六次往上爬了0.48米,此時蝸牛有沒有爬出井口?請通過列式計算加以說明
初一數(shù)學(xué)上冊教案14
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。
1、有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實際問題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
本節(jié)課學(xué)生主要采用“探究學(xué)習(xí)法”,學(xué)生通過多媒體的演示;主動探索,發(fā)現(xiàn)規(guī)律;并及時進(jìn)行歸納總結(jié),使學(xué)生的主體地位得以體現(xiàn)又讓學(xué)生充分感受探究有理數(shù)加法法則的`過程,符合學(xué)生的認(rèn)知過程。并且將單調(diào)的練習(xí)轉(zhuǎn)換成學(xué)生互相提問,互相比賽的方式,使學(xué)生的學(xué)習(xí)熱情得以調(diào)動。
采用這種學(xué)習(xí)方法的優(yōu)點(diǎn)是:學(xué)生主動參與知識的發(fā)生、發(fā)展過程,在解決問題的過程中學(xué)習(xí),在探究的過程中,激發(fā)學(xué)生學(xué)習(xí)興趣和創(chuàng)作新熱情。掌握這種學(xué)習(xí)方法后,對學(xué)生的終生學(xué)習(xí)、終生發(fā)展有積極的意義。
教學(xué)過程
《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人!睘槟芨嗟叵?qū)W生提供從事數(shù)學(xué)活動的機(jī)會,我將本節(jié)課的教學(xué)過程設(shè)為以下五個環(huán)節(jié):發(fā)現(xiàn)新知—再探新知—應(yīng)用新知—深化拓展—小結(jié)鞏固。
(二)探索規(guī)律,得出法則:
課件演示:(設(shè)置六個探究活動,以原點(diǎn)為起點(diǎn),一只小狗在數(shù)軸上左右走動來表示情況,規(guī)定向左為正,向右為負(fù))讓學(xué)生體會兩個數(shù)相加的規(guī)律。
(1)同向情況:
1.情景
探究1:一條狗先向右運(yùn)動5米,再向右運(yùn)動3米,那么兩次運(yùn)動后的總結(jié)果是什么?
探究2:一條狗先向左運(yùn)動5米,再向左運(yùn)動3米,那么兩次運(yùn)動后的總結(jié)果是什么?
2.探究問題:有理數(shù)兩個負(fù)數(shù)相加的和該怎么確定符號?怎么確定絕對值?(學(xué)生主動思考,展開討論)
3.猜一猜,說一說(分組概括兩個負(fù)數(shù)的加法法則):
①兩數(shù)相加,取相同的符號,并把絕對值相加;
、谪(fù)數(shù)加負(fù)數(shù),取負(fù)號,并把絕對值相加。
4.例:(-4)+(-5)
(2)異向情況:
1.情景:
探究3:一條狗先向右運(yùn)動5米,再向左運(yùn)動3米,那么兩次運(yùn)動后的總結(jié)果是什么?
初一數(shù)學(xué)上冊教案15
教學(xué)目標(biāo):
知識能力:
理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能把給出的有理數(shù)按要求分類。
過程與方法:
經(jīng)歷本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生分類討論的觀點(diǎn)和正確進(jìn)行分類的能力。
情感態(tài)度與價值觀:
通過本課的學(xué)習(xí),體驗成功的喜悅,保持學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn):
掌握有理數(shù)的兩種分類方法
教學(xué)難點(diǎn):
會把所給的`各數(shù)填入它所屬于的集合里
教學(xué)方法:
問題引導(dǎo)法
學(xué)習(xí)方法:
自主探究法
一、情境誘導(dǎo)
在小學(xué)我們學(xué)習(xí)了整數(shù)、分?jǐn)?shù),上一節(jié)課我們又學(xué)習(xí)了正數(shù)、負(fù)數(shù),誰能很快的做出下面的題目。
1.有下面這些數(shù):15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將上面的數(shù)填入下面兩個集合:正整數(shù)集合{ },負(fù)整數(shù)集合{ },填完了嗎?
(2)將上面的數(shù)填入下面兩個集合:整數(shù)集合{ },分?jǐn)?shù)集合{ },填完了嗎?
把整數(shù)和分?jǐn)?shù)起個名字叫有理數(shù)。(點(diǎn)題并板書課題)
二、自學(xué)指導(dǎo)
學(xué)生自學(xué)課本,對照課本找自學(xué)提綱中問題的答案;老師先做必要的板書準(zhǔn)備,再到學(xué)生中巡視指導(dǎo),并了解掌握學(xué)生自學(xué)情況,為展示歸納作準(zhǔn)備。
附:自學(xué)提綱:
1.___________、____、_______統(tǒng)稱為整數(shù)
2._______和_________統(tǒng)稱為分?jǐn)?shù)
3.__________統(tǒng)稱為有理數(shù)
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù):、分?jǐn)?shù):__________;正整數(shù):__________、負(fù)整數(shù):__________、正分?jǐn)?shù):__________、負(fù)分?jǐn)?shù):__________.
三、展示歸納
1、找有問題的學(xué)生逐題展示自學(xué)提綱中的問題答案,學(xué)生說,老師板書;
2、發(fā)動學(xué)生進(jìn)行評價、補(bǔ)充、完善,教師根據(jù)每個題目的展示情況進(jìn)行必要的講解和強(qiáng)調(diào);
3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關(guān)鍵點(diǎn)予以強(qiáng)調(diào)。
四、變式練習(xí)
逐題出示,先讓學(xué)生獨(dú)立完成,再請有問題的學(xué)生匯報結(jié)果,老師板書,并發(fā)動其他學(xué)生評價、補(bǔ)充并完善,最后老師根據(jù)需要進(jìn)行重點(diǎn)強(qiáng)調(diào)。
1.整數(shù)可分為:_____、______和_______,分?jǐn)?shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.b
2.判斷下列說法是否正確,并說明理由。
(1)有理數(shù)包括有整數(shù)和分?jǐn)?shù).
(2)0.3不是有理數(shù).
(3)0不是有理數(shù).
(4)一個有理數(shù)不是正數(shù)就是負(fù)數(shù).
(5)一個有理數(shù)不是整數(shù)就是分?jǐn)?shù)
3.所有的正整數(shù)組成正整集合,所有負(fù)整數(shù)組成負(fù)整數(shù)集合,依次類推有正數(shù)集合、負(fù)數(shù)集合、整數(shù)集合、分?jǐn)?shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內(nèi),將各數(shù)用逗號分開):
教學(xué)設(shè)計
正數(shù)集合:{ …}負(fù)數(shù)集合:{ …}
正整數(shù)集合:{ …}負(fù)分?jǐn)?shù)集合:{ …}
4.下列說法正確的是()
A.0是最小的正整數(shù)
B.0是最小的有理數(shù)
C.0既不是整數(shù)也不是分?jǐn)?shù)
D.0既不是正數(shù)也不是負(fù)數(shù)
5、下列說法正確的有()
(1)整數(shù)就是正整數(shù)和負(fù)整數(shù)
(2)零是整數(shù),但不是自然數(shù)
(3)分?jǐn)?shù)包括正分?jǐn)?shù)和負(fù)分?jǐn)?shù)
(4)正數(shù)和負(fù)數(shù)統(tǒng)稱為有理數(shù)
(5)一個有理數(shù),它不是整數(shù)就是分?jǐn)?shù)
五、總結(jié)與反思:
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
六、作業(yè):
必做題:課本14頁:1、9題
【初一數(shù)學(xué)上冊教案】相關(guān)文章:
初一的數(shù)學(xué)上冊教案11-09
初一數(shù)學(xué)上冊教案12-13
初一數(shù)學(xué)上冊的教案12-23
初一上冊的數(shù)學(xué)教案11-13
初一上冊數(shù)學(xué)教案01-04