八年級(jí)的數(shù)學(xué)教案合集15篇
作為一名教師,往往需要進(jìn)行教案編寫(xiě)工作,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。那么大家知道正規(guī)的教案是怎么寫(xiě)的嗎?以下是小編整理的八年級(jí)的數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
八年級(jí)的數(shù)學(xué)教案1
一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過(guò)一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過(guò)4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡(jiǎn)化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問(wèn)題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱(chēng)為韋達(dá)定理(韋達(dá)是法國(guó)數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^(guò)韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問(wèn)題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過(guò)近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來(lái),形成難度系數(shù)較大的壓軸題。
通過(guò)韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問(wèn)題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點(diǎn)、難點(diǎn)
一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語(yǔ)言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的`方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
(三)教學(xué)目標(biāo)
1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。
八年級(jí)的數(shù)學(xué)教案2
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問(wèn)題情境,引入新課
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的.形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請(qǐng)看乘法公式
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
。1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
。1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
。1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書(shū)練習(xí)。
六、作業(yè)
1、教科書(shū)習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級(jí)的數(shù)學(xué)教案3
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的`目的
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【問(wèn)題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識(shí)遷移】
2.計(jì)算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.
三、隨堂練習(xí),鞏固深化
課本P170練習(xí)第1、2題.
【探研時(shí)空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過(guò)來(lái)寫(xiě),就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運(yùn)用公式因式分解時(shí),要注意:
(1)每個(gè)公式的形式與特點(diǎn),通過(guò)對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來(lái)確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.
五、布置作業(yè),專(zhuān)題突破
八年級(jí)的數(shù)學(xué)教案4
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握已知三邊畫(huà)三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;
(3)會(huì)添加較明顯的輔助線.
2、能力目標(biāo):
(1)通過(guò)尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過(guò)公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過(guò)程中滲透:實(shí)驗(yàn)、觀察、歸納;
(2)通過(guò)變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.
教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過(guò)的各種判定方法判定三角形全等。
教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚(gè)三角形全等。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過(guò)程:
1、新課引入
投影顯示
問(wèn)題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對(duì)窗框測(cè)量哪幾個(gè)數(shù)據(jù)?如果你手頭沒(méi)有測(cè)量角度的儀器,只有尺子,你能保證新配的`玻璃恰好不大不小嗎?
這個(gè)問(wèn)題讓學(xué)生議論后回答,他們的答案或許只是一種感覺(jué)。于是教師要引導(dǎo)學(xué)生,抓住問(wèn)題的本質(zhì):三角形的三個(gè)元素――三條邊。
2、公理的獲得
問(wèn):通過(guò)上面問(wèn)題的分析,滿足什么條件的兩個(gè)三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫(huà)圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫(huà)圖法)
公理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
應(yīng)用格式: (略)
強(qiáng)調(diào)說(shuō)明:
(1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫(xiě)出結(jié)論。
(2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過(guò)的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。
(5)說(shuō)明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。
例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架
求證:AD⊥BC
分析:(設(shè)問(wèn)程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1= 只要證什么?
(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
(2)講解例2(投影例2 )
例2已知:如圖AB=DC,AD=BC
求證:∠A=∠C
(1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。
(2)找學(xué)生代表口述證明思路。
思路1:連接BD(如圖)
證△ABD≌△CDB(SSS)先得∠A=∠C
思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教師共同討論后,說(shuō)明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫(xiě)出證明,一名學(xué)生板書(shū),教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫(xiě)出,再證明。
例3如圖,已知AB=AC,DB=DC
(1)若E、F、G、H分別是各邊的中點(diǎn),求證:EH=FG
(2)若AD、BC連接交于點(diǎn)P,問(wèn)AD、BC有何關(guān)系?證明你的結(jié)論。
學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路
讓學(xué)生在練習(xí)本上寫(xiě)出證明,然后選擇投影顯示。
證明:(略)
說(shuō)明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補(bǔ)角相等證兩直線的夾角等于 ,又是很重要的一種方法。
例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,
求證:AC=2AE.
證明:(略)
學(xué)生口述證明思路,教師強(qiáng)調(diào)說(shuō)明:“中線”條件下的常規(guī)作輔助線法。
5、課堂小結(jié):
(1)判定三角形全等的方法:3個(gè)公理1個(gè)推論(SAS、ASA、AAS、SSS)
在這些方法中,每一個(gè)都需要3個(gè)條件,3個(gè)條件中都至少包含條邊。
(2)三種方法的綜合運(yùn)用
讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。
6、布置作業(yè):
a、書(shū)面作業(yè)P70#11、12
b、上交作業(yè)P70#14 P71B組3
八年級(jí)的數(shù)學(xué)教案5
一、課堂導(dǎo)入
回顧平行四邊的性質(zhì)定理及定義
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來(lái)。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來(lái)判定一個(gè)四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
二、新課講解
平行四邊形的判定:
(定義法):兩組對(duì)邊分別平行的四邊形的平邊形。
幾何語(yǔ)言表達(dá)定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個(gè)四邊形只要其兩組對(duì)邊分別互相平行,則可判定這個(gè)四邊形是一個(gè)平行四邊形。
活動(dòng):用做好的紙條拼成一個(gè)四邊形,其中強(qiáng)調(diào)兩組對(duì)邊分別相等。
(平行四邊形判定定理):
(一)兩組對(duì)邊分別相等的四邊形是平行四邊形。
設(shè)問(wèn):這個(gè)命題的前提和結(jié)論是什么?
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對(duì)邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。
板書(shū)證明過(guò)程。
小結(jié):用幾何語(yǔ)言表達(dá)用定義法和剛才證明為正確的方法證明一個(gè)四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對(duì)邊分別相等的`四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
(二)設(shè)問(wèn):若一個(gè)四邊形有一組對(duì)邊平行且相等,能否判定這個(gè)四邊形也是平行四邊形呢?
活動(dòng):課本探究?jī)?nèi)容,并用事準(zhǔn)備好的紙條(紙條的長(zhǎng)度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的端點(diǎn)為四邊形的頂點(diǎn),則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點(diǎn)為頂點(diǎn)組成的四邊形是不是平行四邊形?
設(shè)問(wèn):我們能否用推理的方法證明這個(gè)命題是正確的呢?(讓學(xué)生找出題設(shè)、結(jié)論,然后寫(xiě)出已知、求證及證明過(guò)程。)
八年級(jí)的數(shù)學(xué)教案6
課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。
【典型例題】
例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯(cuò)答: B
正解: C
錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯(cuò)解 :B
正解:D
錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。
錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。
錯(cuò)解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
。絒-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無(wú)實(shí)數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。
錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯(cuò)因剖析:此題只說(shuō)(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。
正解:m的`取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。
錯(cuò)解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。
(1)求k的取值范圍;
(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
。2)存在。
如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。
∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過(guò)程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫(xiě)出正確答案。
解:上面解法錯(cuò)在如下兩個(gè)方面:
。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
(2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?
解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=
。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。
又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。
【小結(jié)】
以上數(shù)例,說(shuō)明我們?cè)谇蠼庥嘘P(guān)二次方程的問(wèn)題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。
1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。
2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。
3、條件多面時(shí)(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒(méi)有實(shí)數(shù)根。
求證:關(guān)于x的方程
。╩-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
。1)若方程的一個(gè)根為1,求m的值。
。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒(méi)有,請(qǐng)說(shuō)明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級(jí)的數(shù)學(xué)教案7
一.教學(xué)目標(biāo):
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過(guò)程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問(wèn)題。
2.難點(diǎn):理解方差公式
3.難點(diǎn)的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過(guò)程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過(guò)什么方式表現(xiàn)出來(lái)?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法。可以畫(huà)折線圖方法來(lái)反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫(huà)折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來(lái)描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋?zhuān)▌?dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過(guò)對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問(wèn)題的意圖:
(1).創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生的`學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫(huà)折線法。
(4).客觀上反映了在解決某些實(shí)際問(wèn)題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類(lèi)似的實(shí)際問(wèn)題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過(guò)學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問(wèn)題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過(guò)程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說(shuō)明在這個(gè)問(wèn)題中要研究一組數(shù)據(jù)的什么?學(xué)生通過(guò)思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問(wèn)題可以使學(xué)生明確利用方差計(jì)算步驟。
3.方差怎樣去體現(xiàn)波動(dòng)大小?
這一問(wèn)題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問(wèn):(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?
(2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?
2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭,誰(shuí)的成績(jī)比較穩(wěn)定?為什么?
測(cè)試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強(qiáng)10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過(guò)計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰(shuí)呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級(jí)的數(shù)學(xué)教案8
一、教材的地位和作用
現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對(duì)稱(chēng)”的知識(shí),進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識(shí)儲(chǔ)備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個(gè)底角相等”是幾何論證過(guò)程中,證明“兩個(gè)角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個(gè)角相等”等結(jié)論的重要理論依據(jù)、
教學(xué)重點(diǎn):
1、讓學(xué)生主動(dòng)經(jīng)歷思考和探索的過(guò)程、
2、掌握等腰三角形性質(zhì)及其應(yīng)用、
教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過(guò)程、
二、學(xué)情分析
本年級(jí)的學(xué)生已經(jīng)研究過(guò)一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動(dòng)手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識(shí)、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會(huì)出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過(guò)程中著重關(guān)注的一點(diǎn)、
三、目標(biāo)分析
知識(shí)與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運(yùn)用等腰三角形的性質(zhì)解決問(wèn)題
過(guò)程與方法
1、通過(guò)觀察等腰三角形的對(duì)稱(chēng)性,發(fā)展學(xué)生的形象思維、
2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類(lèi)比遷移的能力、在與他人交流的過(guò)程中,能運(yùn)用數(shù)學(xué)語(yǔ)言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語(yǔ)言表達(dá)能力、
情感態(tài)度價(jià)值觀:
1、通過(guò)情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識(shí)到學(xué)習(xí)等腰三角形的必要性、
2、通過(guò)等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識(shí)到科學(xué)結(jié)論的發(fā)現(xiàn),是一個(gè)不斷完善的`過(guò)程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的意志品質(zhì)、
3、通過(guò)小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂(lè)趣和成就感、
四、教法分析
根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、
設(shè)計(jì)意圖
同學(xué)們,我們?cè)谄吣昙?jí)已研究了一般三角形的性質(zhì),今天我們一起來(lái)探究特殊的三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問(wèn)題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的
通過(guò)學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個(gè)矩形紙片剪出一個(gè)等腰三角形嗎?注意安全呦!
學(xué)情分析:
大部分學(xué)生會(huì)有自己的想法,根據(jù)軸對(duì)稱(chēng)圖形的性質(zhì),利用對(duì)折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學(xué)會(huì)利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學(xué)先畫(huà)圖,再依線條剪得、
在這個(gè)過(guò)程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過(guò)程中更好的認(rèn)識(shí)自我,建立自信、我不失時(shí)機(jī)的對(duì)學(xué)生給予鼓勵(lì)和表?yè)P(yáng),使活動(dòng)更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、
我設(shè)計(jì)了問(wèn)題:你是如何想到的?為的是剖析學(xué)生的思維過(guò)程:“折疊”就是為了得到“對(duì)稱(chēng)軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問(wèn)題:
等腰三角形還有什么性質(zhì)?請(qǐng)?zhí)岢瞿愕牟孪,?yàn)證你的猜想?并填寫(xiě)在學(xué)案上、
合作小組活動(dòng)規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);
3、小組探究出的結(jié)論是什么?
4、說(shuō)明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng)“等邊對(duì)等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡(jiǎn)稱(chēng)“三線合一”)、
學(xué)情分析:這個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過(guò)程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會(huì)立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識(shí)的形成過(guò)程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、
通過(guò)設(shè)置恰當(dāng)?shù)膭?dòng)手實(shí)踐活動(dòng),引導(dǎo)學(xué)生經(jīng)歷觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動(dòng),這種探究的學(xué)習(xí)過(guò)程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、
這種教學(xué)方式,把學(xué)習(xí)的過(guò)程真正還給學(xué)生,不怕學(xué)生說(shuō)不好,不怕學(xué)生出問(wèn)題,其實(shí)學(xué)生說(shuō)不好的地方、學(xué)生出問(wèn)題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長(zhǎng)點(diǎn)、
(2)教師在這個(gè)過(guò)程中,充分聽(tīng)取和參與學(xué)生的小組討論,對(duì)有困難的學(xué)生,及時(shí)指導(dǎo)、
鞏固知識(shí)
1、等腰三角形頂角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)_______;
2、等腰三角形一個(gè)角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)____;
3、等腰三角形一個(gè)角為100°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)____、
內(nèi)化知識(shí)
1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識(shí)遷移
等邊三角形有什么特殊的性質(zhì)?簡(jiǎn)單地?cái)⑹隼碛伞?/p>
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個(gè)角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說(shuō)明BD=EC?
由于學(xué)生之間存在知識(shí)基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡(jiǎn)到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識(shí),使學(xué)困生達(dá)到簡(jiǎn)單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、
暢談收獲
總結(jié)活動(dòng)情況,重在肯定與鼓勵(lì)、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識(shí),運(yùn)用的數(shù)學(xué)思想方法,新舊知識(shí)的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識(shí)網(wǎng)絡(luò)、分析解決問(wèn)題的能力、
幫助學(xué)生梳理知識(shí),回顧探究過(guò)程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、
反思過(guò)程不僅是學(xué)生學(xué)習(xí)過(guò)程的繼續(xù),更重要的是一種提高和發(fā)展自己的過(guò)程、
基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4
八年級(jí)的數(shù)學(xué)教案9
《正方形》教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容分析:
⑴學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類(lèi)比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。
、菍(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類(lèi)研究的思想,并且建立新舊知識(shí)的聯(lián)系,類(lèi)比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
、艑W(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。
、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
、胖R(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說(shuō)理。
、七^(guò)程與方法:通過(guò)類(lèi)比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過(guò)運(yùn)用提高學(xué)生的推理能力。
、乔楦袘B(tài)度與價(jià)值觀:在學(xué)習(xí)中體會(huì)正方形的完美性,通過(guò)活動(dòng)獲得成功的喜悅與自信。
重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。
難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類(lèi)比與探究
教具準(zhǔn)備:可以活動(dòng)的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》九年級(jí)上冊(cè)(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識(shí)的前后聯(lián)系
《中心對(duì)稱(chēng)圖形》是新人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對(duì)稱(chēng)和軸對(duì)稱(chēng)圖形”、“旋轉(zhuǎn)和中心對(duì)稱(chēng)”后的一種對(duì)稱(chēng)圖形,因此涉及歸納、類(lèi)比等思想方法,對(duì)激發(fā)學(xué)生探索精神和創(chuàng)新意識(shí)等方面都有重要意義。
3.本課教學(xué)內(nèi)容的特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn)
本節(jié)課主要介紹中心對(duì)稱(chēng)圖形的概念、中心對(duì)稱(chēng)圖形的識(shí)別、中心對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)的比較、中心對(duì)稱(chēng)圖形的性質(zhì)。為使學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展過(guò)程,培養(yǎng)學(xué)生的抽象思維,我將通過(guò):(1)例舉日常生活中的一些旋轉(zhuǎn)對(duì)稱(chēng)圖形引出中心對(duì)稱(chēng)圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實(shí)驗(yàn)、歸納、類(lèi)比等方法探究中心對(duì)稱(chēng)圖形的性質(zhì),(3)通過(guò)多媒體演示使學(xué)生對(duì)中心對(duì)稱(chēng)圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動(dòng)過(guò)程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識(shí)的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對(duì)象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級(jí)的特色
我授課的班級(jí)是西安市閻良區(qū)振興中學(xué)九年級(jí)一班,作為九年級(jí)的學(xué)生,在圖形的對(duì)稱(chēng)方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀察、猜想、實(shí)驗(yàn)、歸納、類(lèi)比等研究圖形對(duì)稱(chēng)變換的能力;班級(jí)學(xué)生具有個(gè)性活潑,思維活躍,對(duì)各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動(dòng),學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個(gè)體差異較大,并且班級(jí)中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn)
班級(jí)學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問(wèn)題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個(gè)人見(jiàn)解并且具有一定的合作交流、共同探討的意識(shí)與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問(wèn)題,加強(qiáng)學(xué)生在學(xué)習(xí)過(guò)程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過(guò)程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂(lè)趣。
教學(xué)過(guò)程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動(dòng)】
問(wèn)題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動(dòng)】
學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說(shuō)出更多的答案。
【教師活動(dòng)】
評(píng)析學(xué)生的結(jié)果,給予表?yè)P(yáng)。
總結(jié)性質(zhì)從邊角對(duì)角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^(guò)程。
二:動(dòng)手操作,探索發(fā)現(xiàn)。
活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所示,沿著B(niǎo)′E剪下,能得到什么圖形?
【學(xué)生活動(dòng)】
學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問(wèn)題:①什么是正方形?
觀察發(fā)現(xiàn),從活動(dòng)中體會(huì)。
【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^(guò)程,菱形變?yōu)檎叫蔚倪^(guò)程。
【學(xué)生活動(dòng)】認(rèn)真觀察變化過(guò)程,思考之間的聯(lián)系,舉手回答設(shè)置問(wèn)題。
設(shè)置問(wèn)題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動(dòng)】
小組討論,分組回答。
【教師活動(dòng)】
總結(jié)板書(shū):㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。
設(shè)置問(wèn)題③正方形有那些性質(zhì)?
【學(xué)生活動(dòng)】
小組討論,舉手搶答。
【教師活動(dòng)】
表?yè)P(yáng)學(xué)生發(fā)言,板書(shū)學(xué)生發(fā)現(xiàn),㈡正方形每一條對(duì)角線平分一組對(duì)角
活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱(chēng)圖形嗎?有幾條對(duì)稱(chēng)軸?
學(xué)生活動(dòng)
折紙發(fā)現(xiàn),說(shuō)出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱(chēng)圖形。
教師活動(dòng)
演示從平行四邊形變?yōu)檎叫蔚倪^(guò)程,擦去板書(shū)㈠中的括號(hào)內(nèi)容,出示一下問(wèn)題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動(dòng)
小組充分交流,表達(dá)不同的意見(jiàn)。
教師活動(dòng)
評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對(duì)角線互相平分的矩形是正方形;
有一個(gè)角是直角的菱形是正方形,對(duì)角線相等的菱形是正方形,;
有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對(duì)角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個(gè)多么完美的平行四邊形呀?大家互相說(shuō)一說(shuō),它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗(yàn),推理證明。
出示例一:正方形ABCD的兩條對(duì)角線AC,BD交與O,AB長(zhǎng)4cm,求AC,AO長(zhǎng),及的`度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個(gè)角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對(duì)角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動(dòng)
獨(dú)立思考,寫(xiě)出推理過(guò)程,再進(jìn)行小組討論,并且各小組指派代表寫(xiě)在黑板上,共同交流。
教師活動(dòng)
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表?yè)P(yáng)突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動(dòng)
小組交流,分析題意,整理思路,指名口答。
教師活動(dòng)
說(shuō)明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識(shí)。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫(xiě)在下圖的ABCDC處,說(shuō)明它們的關(guān)系。
發(fā)表評(píng)論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂(lè)趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問(wèn)題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類(lèi);掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:?jiǎn)l(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過(guò)程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說(shuō)出每輛汽車(chē)車(chē)窗形狀(投影)
2、板書(shū)課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱(chēng):上底、下底、腰、高、對(duì)角線。(投影)
6、特殊梯形的分類(lèi):(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。
【探究性質(zhì)三】
問(wèn)題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸呢?(學(xué)生操作、作答)
問(wèn)題二:等腰梯是否軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問(wèn)題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱(chēng)性等角度總結(jié))、解題方法(化梯形問(wèn)題為三角形及平行四邊形問(wèn)題)、梯形中輔助線的添加方法。
八年級(jí)的數(shù)學(xué)教案10
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).
對(duì)于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;
。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);
(2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問(wèn)題診斷分析
二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問(wèn)題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過(guò)程設(shè)計(jì)
1.探究性質(zhì)1
問(wèn)題1 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.
問(wèn)題2 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問(wèn)題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計(jì)算
(1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.
2.探究性質(zhì)2
問(wèn)題4 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.
問(wèn)題5 根據(jù)算術(shù)平方根的`意義填空,并說(shuō)出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問(wèn)題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計(jì)算
(1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.
3.歸納代數(shù)式的概念
問(wèn)題7 回顧我們學(xué)過(guò)的式子,如, ( ≥0),這些式子有哪些共同特征?
師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.
【設(shè)計(jì)意圖】學(xué)生通過(guò)觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
。1)算一算:
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).
(2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?
【設(shè)計(jì)意圖】通過(guò)此問(wèn)題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
(3)談一談你對(duì) 與 的認(rèn)識(shí).
【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.
5.總結(jié)反思
。1)你知道了二次根式的哪些性質(zhì)?
(2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?
。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過(guò)程?
。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類(lèi)字母表示數(shù)得到的式子?說(shuō)說(shuō)你對(duì)代數(shù)式的認(rèn)識(shí).
6.布置作業(yè):教科書(shū)習(xí)題16.1第2,4題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1. ; ; .
【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.
2.下列運(yùn)算正確的是( )
A. B. C. D.
【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.
3.若 ,則 的取值范圍是 .
【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.
4.計(jì)算: .
【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.
八年級(jí)的數(shù)學(xué)教案11
第11章平面直角坐標(biāo)系
11。1平面上點(diǎn)的坐標(biāo)
第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)
教學(xué)目標(biāo)
【知識(shí)與技能】
1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。
2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫(xiě)出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。
3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來(lái)描述點(diǎn)的位置。
【過(guò)程與方法】
1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。
2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來(lái)描述物體的位置。
【情感、態(tài)度與價(jià)值觀】
通過(guò)引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問(wèn)題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
認(rèn)識(shí)平面直角坐標(biāo)系,寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。
【難點(diǎn)】
理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境、導(dǎo)入新知
師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說(shuō)?
生甲:我在第3排第5個(gè)座位。
生乙:我在第4行第7列。
師:很好!我們買(mǎi)的電影票上寫(xiě)著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來(lái)。
二、合作探究,獲取新知
師:在以上幾個(gè)問(wèn)題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來(lái)表示這個(gè)物體
的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來(lái)表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢?
生:3排5號(hào)。
師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰(shuí)來(lái)說(shuō)說(shuō)我們應(yīng)該怎樣表示一個(gè)物體的位置呢?
生:用一個(gè)有序的實(shí)數(shù)對(duì)來(lái)表示。
師:對(duì)。我們學(xué)過(guò)實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來(lái)呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為
正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。
師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來(lái)表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫(huà)一個(gè)平面直角坐標(biāo)系。
學(xué)生操作,教師巡視。教師指正學(xué)生易犯的'錯(cuò)誤。
教師邊操作邊講解:
如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說(shuō)P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫(xiě)在前,縱坐標(biāo)寫(xiě)在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過(guò)這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過(guò)這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。
教師多媒體出示:
師:如圖,請(qǐng)同學(xué)們寫(xiě)出A、B、C、D這四點(diǎn)的坐標(biāo)。
生甲:A點(diǎn)的坐標(biāo)是(—5,4)。
生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。
生丙:C點(diǎn)的坐標(biāo)是(4,0)。
生。篋點(diǎn)的坐標(biāo)是(0,—6)。
師:很好!我們已經(jīng)知道了怎樣寫(xiě)出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?
教師邊操作邊講解:
在x軸上找出橫坐標(biāo)是3的點(diǎn),過(guò)這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過(guò)這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。
學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。
三、深入探究,層層推進(jìn)
師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開(kāi)始,按逆時(shí)針?lè)较颍堰@四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?
生:都一樣。
師:對(duì),由作垂線求坐標(biāo)的過(guò)程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說(shuō)出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎?
生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。
師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?
生:能,在第二象限。
四、練習(xí)新知
師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。
教師寫(xiě)出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點(diǎn)在第三象限。
生乙:B點(diǎn)在第四象限。
生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。
生。篋點(diǎn)不屬于任何一個(gè)象限,它在x軸上。
師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。
學(xué)生作圖,教師巡視,并予以指導(dǎo)。
五、課堂小結(jié)
師:本節(jié)課你學(xué)到了哪些新的知識(shí)?
生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫(xiě)出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。
教師補(bǔ)充完善。
教學(xué)反思
物體位置的說(shuō)法和表述物體的位置等問(wèn)題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒(méi)有想到這些問(wèn)題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來(lái)表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)
教學(xué)目標(biāo)
【知識(shí)與技能】
進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。
【過(guò)程與方法】
通過(guò)探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。
【情感、態(tài)度與價(jià)值觀】
培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過(guò)二維坐標(biāo)來(lái)描述圖形頂點(diǎn),從而描述圖形的方法。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。
【難點(diǎn)】
不規(guī)則圖形面積的求法。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情境,導(dǎo)入新知
師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來(lái)。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。
學(xué)生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來(lái),看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計(jì)算出它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎樣算的呢?
生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來(lái)看看形成的是什么
圖形?
學(xué)生完成操作后回答:平行四邊形。
師:你能計(jì)算它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎么計(jì)算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來(lái)看這樣一個(gè)連接成的圖形:
教師多媒體出示下圖:
八年級(jí)的數(shù)學(xué)教案12
【教學(xué)目標(biāo)】
知識(shí)目標(biāo):
解單項(xiàng)式乘以多項(xiàng)式的意義,理解單項(xiàng)式與多項(xiàng)式的乘法法則,會(huì)進(jìn)行單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算。
能力目標(biāo):
。1)經(jīng)歷探索乘法運(yùn)算法則的過(guò)程,發(fā)展觀察、歸納、猜測(cè)、驗(yàn)證等能力;
。2)體會(huì)乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。
情感目標(biāo):
充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、主動(dòng)性
【教學(xué)重點(diǎn)】
單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算
【教學(xué)難點(diǎn)】
推測(cè)整式乘法的運(yùn)算法則。
【教學(xué)過(guò)程】
一、復(fù)習(xí)引入
通過(guò)對(duì)已學(xué)知識(shí)的復(fù)習(xí)引入課題(學(xué)生作答)
1.請(qǐng)說(shuō)出單項(xiàng)式與單項(xiàng)式相乘的法則:
單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個(gè)因式。
。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨(dú)的冪
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2.說(shuō)出多項(xiàng)式2x2-3x-1的`項(xiàng)和各項(xiàng)的系數(shù)項(xiàng)分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1
問(wèn):如何計(jì)算單項(xiàng)式與多項(xiàng)式相乘?例如:2a2· (3a2 - 5b)該怎樣計(jì)算?
這便是我們今天要研究的問(wèn)題。
二、新知探究
已知一長(zhǎng)方形長(zhǎng)為(a+b+c),寬為m,則面積為:m(a+b+c)
現(xiàn)將這個(gè)長(zhǎng)方形分割為寬為m,長(zhǎng)分別為a、b、c的三個(gè)小長(zhǎng)方形,其面積之和為ma+mb+mc因?yàn)榉指钋昂箝L(zhǎng)方形沒(méi)變所以m(a+b+c)=ma+mb+mc
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個(gè)別同學(xué)作答,教師作評(píng))
結(jié)論單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則:
用單項(xiàng)式分別去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運(yùn)算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計(jì)算:(1)(-2a2)· (3ab2– 5ab3)
(2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年級(jí)的數(shù)學(xué)教案13
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中
可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
● 知識(shí)與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過(guò)程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過(guò)實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;
(2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程;
(3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過(guò)程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過(guò)情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。
意圖:
通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形
內(nèi)容2:說(shuō)理
提問(wèn):有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說(shuō)服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形
滿足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說(shuō)理,有條件的班級(jí),還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。
活動(dòng)3:反思總結(jié)
提問(wèn):
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過(guò)今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過(guò)程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說(shuō)明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的`倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過(guò)練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫(huà)出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語(yǔ)言表達(dá)清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問(wèn)題。
效果:
學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。
意圖:
鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。
4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書(shū)設(shè)計(jì)
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
八年級(jí)的數(shù)學(xué)教案14
教學(xué)目標(biāo):
1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會(huì)求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。
2、在加權(quán)平均數(shù)中,知道權(quán)的差異對(duì)平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡(jiǎn)單的現(xiàn)象。
3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會(huì)它們?cè)诓煌榫持械膽?yīng)用。
4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。
教學(xué)重點(diǎn):
體會(huì)平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。
教學(xué)難點(diǎn):
對(duì)于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。
教學(xué)方法:
歸納教學(xué)法。
教學(xué)過(guò)程:
一、知識(shí)回顧與思考
1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。
一般地對(duì)于n個(gè)數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡(jiǎn)稱(chēng)平均數(shù)。
如某公司要招工,測(cè)試內(nèi)容為數(shù)學(xué)、語(yǔ)文、外語(yǔ)三門(mén)文化課的綜合成績(jī),滿分都為100分,且這三門(mén)課分別按25%、25%、50%的比例計(jì)入總成績(jī),這樣計(jì)算出的成績(jī)?yōu)閿?shù)學(xué),語(yǔ)文、外語(yǔ)成績(jī)的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語(yǔ)文、外語(yǔ)三項(xiàng)測(cè)試成績(jī)的權(quán)。
中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。
眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)。
如3,2,3,5,3,4中3是眾數(shù)。
2、平均數(shù)、中位數(shù)和眾數(shù)的特征:
(1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的`平均數(shù)。
(2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。
(3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。
(4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡(jiǎn)便,當(dāng)一組數(shù)據(jù)中個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),適宜選擇眾數(shù)來(lái)表示這組數(shù)據(jù)的“集中趨勢(shì)”。
3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:
算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。
4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。
利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。
二、例題講解:
某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績(jī)分別按40%、20%、40%的比例計(jì)入學(xué)期總評(píng)成績(jī),小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績(jī)依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評(píng)成績(jī)是多少?
三、課堂練習(xí):
復(fù)習(xí)題A組
四、小結(jié):
1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。
2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。
五、作業(yè):
復(fù)習(xí)題B組、C組(選做)
八年級(jí)的數(shù)學(xué)教案15
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來(lái)反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
2、會(huì)求一組數(shù)據(jù)的極差.
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法
1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對(duì)這兩段時(shí)間的氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計(jì)算可以看出,對(duì)于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說(shuō),兩個(gè)時(shí)段的氣溫情況沒(méi)有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的`折線圖.
觀察一下,它們有區(qū)別嗎?說(shuō)說(shuō)你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來(lái)反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱(chēng)為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒(méi)有相應(yīng)的例題,教材P152習(xí)題分析
問(wèn)題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說(shuō)明該村貧富差距較大.問(wèn)題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí).問(wèn)題3答案并不唯一,合理即可。
【八年級(jí)的數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)的數(shù)學(xué)教案15篇12-14
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01
【推薦】八年級(jí)數(shù)學(xué)教案12-05