【熱門】七年級數(shù)學(xué)教案13篇
作為一名為他人授業(yè)解惑的教育工作者,就有可能用到教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那么問題來了,教案應(yīng)該怎么寫?以下是小編收集整理的七年級數(shù)學(xué)教案,僅供參考,大家一起來看看吧。
七年級數(shù)學(xué)教案 1
一、 教學(xué)目標(biāo)
1、 在了解相反意義量的基礎(chǔ)上,使學(xué)生了解正負(fù)數(shù)的概念和學(xué)習(xí)正負(fù)數(shù)的意義。
2、 使學(xué)生能正確判斷一個數(shù)是正數(shù)還是負(fù)數(shù),明確零既不是正數(shù)也不是負(fù)數(shù)。
3、 學(xué)會用正負(fù)數(shù)表示實際問題中具有相反意義的量。
二、 教學(xué)重點和難點
重點:正負(fù)數(shù)的概念
難點:負(fù)數(shù)的概念
三、 教具
投影片、實物投影儀
四、 教學(xué)內(nèi)容
(一 )引入
師:我們知道,為了表示物體的個數(shù)和事物的順序,產(chǎn)生了1,2,3,4……這些數(shù),我們把它叫做什么數(shù)?
生:自然數(shù)
師:為了表示“沒有”,又引入了一個什么數(shù)?
生:自然數(shù)0
師:當(dāng)測量和計算的結(jié)果不是整數(shù)時,又引進(jìn)了什么數(shù)?
生:分?jǐn)?shù)(小數(shù))
師:可見數(shù)的概念是隨著生產(chǎn)和生活的需要而不斷發(fā)展的。請同學(xué)們想一想,在現(xiàn)實生活中是否還存在著別類型的數(shù)呢?如吐魯番盆地最低處低于海平面155米,世界最高峰珠穆朗瑪高出海平面8848.13米,我市某天最高氣溫是零上8攝氏度。
請學(xué)生用數(shù)表示這些量,遭遇表示困難。
師:為了能表示這些量,我們需要引入一種新數(shù)這就是本節(jié)課所要學(xué)習(xí)的.內(nèi)容。[板書:1、1正數(shù)與負(fù)數(shù)]
(二)新課教學(xué)
1、 相反意義的量
師:在現(xiàn)實生活中,我們常常遇到一些具有相反意義的量,比如:(投影片顯示)
(1) 汽車向東行駛2.5千米和向西行駛1.5千米;
(2) 氣溫從零上6攝氏度下降到零下6攝氏度;
(3) 風(fēng)箏上升10米或下降5米。
引導(dǎo)學(xué)生明確具有相反意義的量的特征:(1)有兩個量 (2)有相反的意義
請學(xué)生舉出一些相反意義的量的實例。
教師歸結(jié):相反意義中的一些常用詞有:盈利與虧損,存入與支出,增加與減少,運進(jìn)與運出,上升與下降等。
2、 正數(shù)與負(fù)數(shù)
師:用小學(xué)里學(xué)過的數(shù)能表示這些具有相反意義的量嗎?如何來表示具有相反意義的量呢?
由師生討論后得出:我們把一種意義的量規(guī)定為正的,用“+”(讀作正)號來表示,同時把另一種與它相反意義的量規(guī)定為負(fù)的,用“-”(讀作負(fù))號來表示。
師:例如,如果零上6℃記作+6℃(讀作正6攝氏度),那么零下6℃記作-6℃(讀作負(fù)6攝氏度),請同學(xué)們用同樣的方法表示(1)、(2)兩題。
生:(1)如果向東行駛2.5千米記作+2.5千米(讀作正2.5千米),那么向西行駛1.5千米記作-1.5千米(讀作負(fù)1.5千米);(2)如果上升10米記作+10米(讀作正10米),那么下降5米記作-5米(讀作負(fù)5米)。
師:像+6,+10,+2.5等前面放有“+”號的數(shù)叫做正數(shù),像-6,-5,-1.5等前面放有“-”號的數(shù)叫做負(fù)數(shù)。正號可以省略不寫,如+5可以寫成5,但負(fù)數(shù)的負(fù)號能省略不寫嗎?
生:(討論后得出)不能。
師:(以溫度計為例)溫度計中的0不是表示沒有溫度,它通常表示水結(jié)成冰時的溫度,是零上溫度與零下溫度的分界點,因此得出:零既不是正數(shù)也不是負(fù)數(shù)。
(三)、練習(xí)
1、 學(xué)生完成課本第4頁練習(xí)1,2,3
2、 補(bǔ)充練習(xí)
(1)在-2,+2.5,0, ,-0.35,11中,正數(shù)是 ,負(fù)數(shù)是 ;
(2)如果向東為正,那么走-50米表示什么意思?如果向南為正,那么走-50米又表示什么意思?
(3)歐洲人以地面一層記為0,那么1樓、2樓、3樓……就表示為0,1,2……那么地下第二層表示為 。
(四)小結(jié)
1、 引入負(fù)數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負(fù)數(shù)表示。
2、 在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定。
3、 要特別注意零既不是正數(shù)也不是負(fù)數(shù),建立正負(fù)數(shù)概念后,當(dāng)考慮一個數(shù)時,一定要考慮它的符號,這與小學(xué)里學(xué)過的數(shù)有很大的區(qū)別。
(五)作業(yè)
見作業(yè)1.1節(jié)作業(yè)。
七年級數(shù)學(xué)教案 2
【教學(xué)目標(biāo)】
引導(dǎo)學(xué)生通過常規(guī)分析,得出解題思路,經(jīng)歷提出問題,自探問題,應(yīng)用知識的過程,自主總結(jié)出解題辦法;
【教學(xué)難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認(rèn)為
【教學(xué)過程】
問:以前學(xué)過的有關(guān)路程,時間,和速度之間的關(guān)系是怎么樣的?你能寫出它們之間的關(guān)系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍,F(xiàn)在汽車從甲地到乙地需要多少小時?
分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時,可以求出汽車原來的速度。
學(xué)生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)
現(xiàn)在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的2.5倍,所以原來的時間是現(xiàn)在的.2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結(jié)】
在解答應(yīng)用題時要善于應(yīng)用不同的思路和技巧,巧解問題
【作業(yè)】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
七年級數(shù)學(xué)教案 3
教學(xué)目標(biāo):
1、掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應(yīng)關(guān)系;
2、會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);
3、感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學(xué)。
教學(xué)難點:
數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)
知識重點
教學(xué)過程(師生活動) 設(shè)計理念
設(shè)置情境
引入課題
教師通過實例、課件演示得到溫度計讀數(shù).
問題1:溫度計是我們?nèi)粘I钪杏脕頊y量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作) 創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,發(fā)現(xiàn)生活中的數(shù)學(xué)。
探究新知
教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
讓學(xué)生在討論的基礎(chǔ)上動手操作,在操作的基礎(chǔ)上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?
從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強(qiáng)調(diào)數(shù)軸三要求。
從游戲中學(xué)數(shù)學(xué) 做游戲:教師準(zhǔn)備一根繩子,請8個同學(xué)走上來,把位置調(diào)整為等距離,規(guī)定第4個同學(xué)為原點,由西向東為正方向,每個同學(xué)都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學(xué)依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應(yīng)的同學(xué)要回答“到”;口令為該同學(xué)的名字時,該同學(xué)要報出他對應(yīng)的“數(shù)字”,如果規(guī)定第3個同學(xué)為原點,游戲還能進(jìn)行嗎? 學(xué)生游戲體驗,對數(shù)軸概念的理解
尋找規(guī)律
歸納結(jié)論
問題3:
1、你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
2、如果給你一些數(shù),你能相應(yīng)地在數(shù)軸上找出它們的準(zhǔn)確位置嗎?如果給你數(shù)軸上的點,你能讀出它所表示的數(shù)嗎?
3、 哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4、每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
(小組討論,交流歸納)
歸納出一般結(jié)論,教科書第12的歸納。 這些問題是本節(jié)課要求學(xué)會的技能,教學(xué)中要以學(xué)生探究學(xué)習(xí)為主來完成,教師可結(jié)合教科書給學(xué)生適當(dāng)指導(dǎo)。
鞏固練習(xí)
教科書第12頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié)
請學(xué)生總結(jié):
1、數(shù)軸的三個要素;
2、數(shù)軸的`作以及數(shù)與點的轉(zhuǎn)化方法。
本課作業(yè)
1、 必做題:教科書第18頁習(xí)題1.2第2題
2、選做題:教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1、 數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。
2、 教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。
3、注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。
七年級數(shù)學(xué)教案 4
一、教學(xué)目標(biāo)
1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。
二、教學(xué)重難點
教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。
三、教法
主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境激活思維
1.學(xué)生觀看鐘祥二中相關(guān)背景視頻
意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。
2.聯(lián)系實際,提出問題。
問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。
學(xué)生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關(guān)地點用什么代表?(直線上的點)
3.學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?
師生活動:
學(xué)生思考后回答解決方法,學(xué)生代表畫圖。
學(xué)生畫圖后提問:
1.0代表什么?
2.數(shù)的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。
問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?
設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負(fù)數(shù)的作用,引導(dǎo)學(xué)生用三要素表達(dá),為定義數(shù)軸的概念提供直觀基礎(chǔ)。
問題4:你能說說上述2個實例的共同點嗎?
設(shè)計意圖:進(jìn)一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。
(二)自主學(xué)習(xí)探究新知
學(xué)生活動:帶著以下問題自學(xué)課本第8頁:
1.什么樣的直線叫數(shù)軸?它具備什么條件。
2.如何畫數(shù)軸?
3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
師生活動:
學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的`定義。
至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)
、贁(shù)軸的定義。
、跀(shù)軸三要素。
練習(xí):(媒體展示)
1.判斷下列圖形是否是數(shù)軸。
2.口答:數(shù)軸上各點表示的數(shù)。
3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和-a的點進(jìn)行同樣的討論。
設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。
(四)歸納總結(jié)反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:
1.什么是數(shù)軸?
2.數(shù)軸的“三要素”各指什么?
3.數(shù)軸的畫法。
設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
(五)目標(biāo)檢測設(shè)計
1.下列命題正確的是()
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。
4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
五、板書
1.數(shù)軸的定義。
2.數(shù)軸的三要素(圖)。
3.數(shù)軸的畫法。
4.性質(zhì)。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數(shù)軸?
定義:規(guī)定了_______、_______、_______的直線叫數(shù)軸。
數(shù)軸的三要素:_______、_______、_______。
2.畫數(shù)軸的步驟是什么?
3.“原點”起什么作用?_______
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
練習(xí):
1.畫一條數(shù)軸
2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的_______邊,與原點的距離是_______個單位長度;表示數(shù)-a的點在原點的_______邊,與原點的距離是_______個單位長度.
練習(xí):
1.數(shù)軸上表示-3的點在原點的_______側(cè),距原點的距離是_______;表示6的點在原點的_______側(cè),距原點的距離是_______;兩點之間的距離為_______個單位長度。
2.距離原點距離為5個單位的點表示的數(shù)是_______。
3.在數(shù)軸上,把表示3的點沿著數(shù)軸負(fù)方向移動5個單位長度,到達(dá)點B,則點B表示的數(shù)是_______。
附:目標(biāo)檢測
1.下列命題正確的是( )
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
七年級數(shù)學(xué)教案 5
教學(xué)目標(biāo)
1、通過對數(shù)“零”的意義的探討,進(jìn)一步理解正數(shù)和負(fù)數(shù)的概念;
2、利用正負(fù)數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)
3、進(jìn)一步體驗正負(fù)數(shù)在生產(chǎn)生活實際中的廣泛應(yīng)用,提高解決實際問題的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點
深化對正負(fù)數(shù)概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學(xué)過程(師生活動)
設(shè)計理念
知識回顧與深化
回顧:上一節(jié)課我們知道了在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負(fù)數(shù)來表示.這就是說:數(shù)的范圍擴(kuò)大了(數(shù)有正數(shù)和負(fù)數(shù)之分).那么,有沒有一種既不是正數(shù)又不是負(fù)數(shù)的數(shù)呢?
問題1:有沒有一種既不是正數(shù)又不是負(fù)數(shù)的數(shù)呢?學(xué)生思考并討論.(數(shù)0既不是正數(shù)又不是負(fù)數(shù),是正數(shù)和負(fù)數(shù)的分界,是基準(zhǔn).這個道理學(xué)生并不容易理解,可視學(xué)生的討論情況作些啟發(fā)和引導(dǎo),下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來表示,零下溫度用負(fù)數(shù)來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應(yīng)該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負(fù)數(shù).那么當(dāng)溫度是零度時,我們應(yīng)該怎樣表示呢?(表示為0℃),它是正數(shù)還是負(fù)數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負(fù)數(shù)?
問題2:引入負(fù)數(shù)后,數(shù)按照“兩種相反意義的量”來分,可以分成幾類? “數(shù)0耽不是正數(shù),也不是負(fù)數(shù)”也應(yīng)看作是負(fù)數(shù)定義的一部分.在引入負(fù)數(shù)后,0除了表示一個也沒有以外,還是正數(shù)和負(fù)數(shù)的分界.了解。的這一層意義,也有助于對正負(fù)數(shù)的理解;且對數(shù)的順利擴(kuò)張和有理毅概念的建立都有幫助。所舉的例子,要考慮學(xué)生的可接受性.“數(shù)0既不是正數(shù),也不是負(fù)數(shù)”應(yīng)從相反意義的1這個角度來說明.這個問題只要初步認(rèn)識即可,不必深究.
問題3:教科書第6頁例題
說明:這是一個用正負(fù)數(shù)描述向指定方向變化情況的例子,通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負(fù)數(shù)表示。這種描述在實際生活中有廣泛的應(yīng)用,應(yīng)予以重視。教學(xué)中,應(yīng)讓學(xué)生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進(jìn)出口額的增長率”,就暗示著用正數(shù)來表示增長的量。
歸納:在同一個問題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等。可視教學(xué)中的實際情況進(jìn)行補(bǔ)充.
這種用正負(fù)數(shù)描述向指定方向變化情況的例子,在實際生活中有廣泛的應(yīng)用,按題意找準(zhǔn)哪種意義的量應(yīng)該用正數(shù)表示是解題的關(guān)健.這種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現(xiàn)在不必向?qū)W生提出.
鞏固練習(xí)教科書第6頁練習(xí)
閱讀思考
教科書第8頁閱讀與思考是正負(fù)數(shù)應(yīng)用的很好例子,要花時間讓學(xué)生討論交流
小結(jié)與作業(yè)
課堂小結(jié)以問題的形式,要求學(xué)生思考交流:
1、引人負(fù)數(shù)后,你是怎樣認(rèn)識數(shù)0的,數(shù)0的意義有哪些變化?
2、怎樣用正負(fù)數(shù)表示具有相反意義的量?(用正數(shù)表示其中一種意義的量,另一種量用負(fù)數(shù)表示;特別地,在用正負(fù)數(shù)表示向指定方向變化的量時,通常把向指定方向變化的量規(guī)定為正數(shù),而把向指定方向的相反方向變化的量規(guī)定為負(fù)數(shù).)
本課作業(yè)1,必做題:教科書第7頁習(xí)題1.1第3,6,7,8題
3、選做題:教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1、本課主要目的是加深對正負(fù)數(shù)概念的理解和用正負(fù)數(shù)表示實際生產(chǎn)生活中的向指定方向變化的量。
2、“數(shù)0既不是正數(shù),也不是負(fù)數(shù),’(要從0不屬于兩種相反意義的`量中的任何一種上來理解)也應(yīng)看作是負(fù)數(shù)定義的一部分.在引人負(fù)數(shù)后,除了表示一個也沒有以外,還是正數(shù)和負(fù)數(shù)的分界。了解0的這一層意義,也有助于對正負(fù)數(shù)的理解,且對數(shù)的順利擴(kuò)張和有理數(shù)概念的建立都有幫助.由于上節(jié)課的重點是建立兩種相反意義量的概念,考慮到學(xué)生的可接受性,所以作為知識的回顧和深化而放到本課.
3、教科書的例子是用正負(fù)數(shù)表示(向指定方向變化的)量的實際應(yīng)用,用這種方式描述的例子很多,要盡量使學(xué)生理解.
4、本設(shè)計體現(xiàn)了學(xué)生自主學(xué)習(xí)、交流討論的教學(xué)理念,教學(xué)中要讓學(xué)生體驗數(shù)學(xué)知識在實際中的合理應(yīng)用,在體驗中感悟和深化知識.通過實際例子的學(xué)習(xí)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
七年級數(shù)學(xué)教案 6
教學(xué)目標(biāo)
知識與能力
從簡單的轉(zhuǎn)盤游戲開始,使學(xué)生在生活經(jīng)驗和試驗的基礎(chǔ)上,進(jìn)一步體驗不確定事件的特點及事件發(fā)生的可能性大小。
教學(xué)思考
能用實驗對數(shù)學(xué)猜想做出檢驗,從而增加猜想的可信度。
解決問題
在轉(zhuǎn)盤游戲過程中,經(jīng)歷猜測結(jié)果,實驗驗證,分析試驗結(jié)果等數(shù)學(xué)活動,增加數(shù)學(xué)活動經(jīng)驗。
情感態(tài)度與價值觀
在合作與交流過程中,體驗小組合作更有利于探究數(shù)學(xué)知識,敢于發(fā)表自己觀點,提高個人認(rèn)識。
教學(xué)重點難點:
在實驗中,體會不確定事件的特點及事件發(fā)生可能性大。皇姑總學(xué)生都能積極認(rèn)真參與課堂設(shè)計中的實驗,真正在實驗中獲得知識上的認(rèn)識。
教學(xué)過程
創(chuàng)設(shè)情境,切入標(biāo)題
同學(xué)們,商場經(jīng)常利用轉(zhuǎn)盤游戲進(jìn)行抽獎,你認(rèn)為顧客們的中獎可能性有多大呢?這節(jié)課我們就來探究一下有關(guān)轉(zhuǎn)盤游戲的問題。 新課探究
請同學(xué)們猜測,當(dāng)我自由轉(zhuǎn)動轉(zhuǎn)盤時,指針會落在什么顏域呢?
請各小組分別派一名代表,看哪組能轉(zhuǎn)出紅色。
結(jié)果,8小組有6組轉(zhuǎn)出了紅色。
為什么會出現(xiàn)這樣的結(jié)果呢?
因為,在這個轉(zhuǎn)盤中,紅域的.面積大,白域的面積小,因此,當(dāng)轉(zhuǎn)盤停上轉(zhuǎn)動時,指針落到紅域的可能性大。
大家同意這種看法嗎?下面我們親自動手感受一下。
學(xué)生按照題目要求進(jìn)行實驗。
請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結(jié)果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。
請同學(xué)們對我們的實驗結(jié)果進(jìn)行分析交流,談?wù)勀阍谠囼炛杏心男┬牡谩?/p>
根據(jù)觀察,轉(zhuǎn)盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應(yīng)該是一半。通過對我們?nèi)嗟膶嶒灲Y(jié)果分析,指針落在紅域的比例是50∶96,結(jié)果接近百分之五十。
在小組內(nèi)實驗結(jié)果不明顯,實驗次數(shù)越多越能說明問題。
通過實驗,我們確定感受到,轉(zhuǎn)盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關(guān)系。以后在生活中再遇到轉(zhuǎn)盤游戲問題可要想想今天的實驗結(jié)論。
游戲與交流
下面我們利用轉(zhuǎn)盤做一下數(shù)學(xué)游戲(出示幻燈片),學(xué)生按教學(xué)設(shè)計中要求進(jìn)行游戲,教師巡回指導(dǎo)。
每組每人游戲一次,全班共游戲48次。其游戲結(jié)果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。
請同學(xué)們對下列問題進(jìn)行交流(幻燈片出示教材206頁4個問題)。 這個轉(zhuǎn)盤轉(zhuǎn)到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。
如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。
同學(xué)們說出很多種方法,不一一列舉。
“平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。
如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。
同學(xué)們說的都很好,課后能不能自己也利用轉(zhuǎn)盤設(shè)計一個新的游戲,感興趣的同學(xué)可以在課下與我交流。
以下過程同教學(xué)設(shè)計,略去。
隨堂練習(xí)
指導(dǎo)學(xué)生完成教材第206頁習(xí)題。
課時小結(jié)
學(xué)生可從各個方面加以小結(jié)。 布置作業(yè)
仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設(shè)計本節(jié)轉(zhuǎn)盤游戲。
七年級數(shù)學(xué)教案 7
教學(xué)目標(biāo):
(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;
(2)培養(yǎng)學(xué)生數(shù)學(xué)的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學(xué)會主動探求問題和尋找解決問題的方法。
教學(xué)重點:
一元二次不等式的解法(圖象法)
教學(xué)難點:
(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;
(2)數(shù)形結(jié)合思想的滲透
教學(xué)方法與教學(xué)手段:
嘗試探索教學(xué)法、歸納概括。
教學(xué)過程:
一、復(fù)習(xí)引入
1.復(fù)習(xí)一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系
[師]前面我們已經(jīng)學(xué)習(xí)了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學(xué)習(xí)了一元一次不等式的解法,還記得是用什么方法解的嗎?
學(xué)生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學(xué)習(xí)了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學(xué)們畫出 y=2x-7
[師]請同學(xué)們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當(dāng)x 時,y = 0,即 2x-7 0;
當(dāng)x 時,y < 0,即 2x-7 0;
當(dāng)x 時,y > 0,即 2x-7 0;
注:(1)引導(dǎo)學(xué)生由圖象得出結(jié)論(數(shù)形結(jié)合)
(2)由學(xué)生填空(一邊演示y<0,y>0部分圖象)
從上例的特殊情形,你能得出什么結(jié)論?
注:教師引導(dǎo)下學(xué)生發(fā)現(xiàn)其結(jié)論,并由學(xué)生嘗試敘述:一元一次方程ax+b=0的根實質(zhì)上就是直線y=ax+b與x軸交點的橫坐標(biāo);一元一次不等式ax+b>0(或ax+b<0)的解集實質(zhì)上就是使得函數(shù)的圖象在x軸上方還是下方時x的取值范圍。
2.新課導(dǎo)入
[師]我們可以利用一次函數(shù)的圖象快速準(zhǔn)確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
二、講解新課
1、一元二次不等式解法的探索
[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3<0(即y<0)的解集是
注:學(xué)生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點,確定對應(yīng)的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y<0部分圖象)
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?
注:引導(dǎo)學(xué)生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應(yīng)的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,<0來確定的。
2、講解例題
[師]接下來請同學(xué)們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2) -3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學(xué)生共同詳細(xì)分析(1),強(qiáng)調(diào)解題規(guī)范性,其余(2)(3)(4)由學(xué)生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)
所以原不等式的解集是{x| x<- x="">2 }
注:問題要順利求解,應(yīng)先考慮對應(yīng)方程
的根的情況,然后畫出草圖,結(jié)合不等式寫出解集。
(以下學(xué)生試著解決,并回答)
(2)分析一:結(jié)合開口向下的拋物線求解。
分析二:引導(dǎo)學(xué)生能否轉(zhuǎn)化為熟知類型,與(1)中二次項系數(shù)作比較,只要不等式兩邊同乘以-1,并注意不等式要改變方向。
解:原不等式可變?yōu)?3x2-6x+2<0
方程3x2-6x+2=0的兩根為 x1=1- , x2=1+
原不等式解集為: {x | 1- (3)方程 4x2-4x+1=0有兩等根 x1=x2= 所以原不等式的解集是{x |x } 變式訓(xùn)練:改成4x2-4x+1 0,請學(xué)生回答(使學(xué)生知道不等式的解也可能是一個值)。 (4)將原不等式變形為:x2-2x+3<0 方程x2-2x+3=0無實根 原不等式的解集是 變式訓(xùn)練: -x2+2x-3<0呢?(說明:判別式 <0時,不等式的解集未必是 ) [師]上述幾例都有各自的特點,反映在哪兩方面呢?注:引導(dǎo)學(xué)生總結(jié):一是二次項系數(shù),二是判別式 ,一般要先將二次項系數(shù)轉(zhuǎn)化為正數(shù)。 三、師生共同小結(jié) [師] 請同學(xué)們說說用圖象法解一元二次不等式的步驟是什么?(學(xué)生嘗試敘述,老師適當(dāng)補(bǔ)充并板書) (1)首先將二次項系數(shù)化為正數(shù) (2)其次考慮相應(yīng)的二次方程的根的情況 (3)再畫出相應(yīng)的二次函數(shù)的'草圖,寫出解集。 --體會"數(shù)形結(jié)合"思想 [師]那么對于一般的一元二次不等式ax2+bx+c>0與ax2+bx+c<0 a="">0)的解集情況又如何呢?(請學(xué)生結(jié)合上述具體例子的圖象來嘗試總結(jié),必須分三種情況,投影空白的表格,學(xué)生總結(jié)一個,就填上一個)。 四、課后作業(yè):書P21/習(xí)題1.5/1.3.5.6 五、教學(xué)設(shè)計說明: 1、本節(jié)課教學(xué)設(shè)計力圖體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)循序漸進(jìn)的教學(xué)原則,通過對原有知識的復(fù)習(xí),引導(dǎo)學(xué)生類比探索新的知識,激發(fā)學(xué)生的求知欲望,調(diào)動學(xué)生的積極性。 2、本節(jié)課采用在教師引導(dǎo)下啟發(fā)學(xué)生探索發(fā)現(xiàn),體會解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。 3、本節(jié)課的重點是利用圖象解一元二次不等式,讓學(xué)生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓(xùn)練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。 4、本節(jié)課的例題及課堂練習(xí)是課本上的習(xí)題,其目的在于落實基礎(chǔ),提高運算能力。 一、教學(xué)目標(biāo) 【知識與技能】 了解數(shù)軸的概念,能用數(shù)軸上的點準(zhǔn)確地表示有理數(shù)。 【過程與方法】 通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系,體會數(shù)形結(jié)合的思想。 【情感、態(tài)度與價值觀】 在數(shù)與形結(jié)合的過程中,體會數(shù)學(xué)學(xué)習(xí)的'樂趣。 二、教學(xué)重難點 【教學(xué)重點】 數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。 【教學(xué)難點】 數(shù)形結(jié)合的思想方法。 三、教學(xué)過程 (一)引入新課 提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學(xué)習(xí)的數(shù)軸。 (二)探索新知 學(xué)生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關(guān)系: 提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢? 學(xué)生活動:畫圖表示后提問。 提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進(jìn)行解答。 教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負(fù)方向;選取合適的長度為單位長度。 提問3:你是如何理解數(shù)軸三要素的? 師生共同總結(jié):“原點”是數(shù)軸的“基準(zhǔn)”,表示0,是表示正數(shù)和負(fù)數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。 (三)課堂練習(xí) 如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。 (四)小結(jié)作業(yè) 提問:今天有什么收獲? 引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。 課后作業(yè): 課后練習(xí)題第二題;思考:到原點距離相等的兩個點有什么特點? 學(xué)習(xí)目標(biāo) 1. 理解有序數(shù)對的應(yīng)用意義,了解平面上確定點的常用方法 2. 培養(yǎng)用數(shù)學(xué)的意識,激發(fā)學(xué)習(xí)興趣. 學(xué)習(xí)重點: 理解有序數(shù)對的意義和作用 學(xué)習(xí)難點: 用有序數(shù)對表示點的位置 學(xué)習(xí)過程 一.問題導(dǎo)入 1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學(xué)們欣賞下面圖案. 2.地質(zhì)部門在某地埋下一個標(biāo)志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。 3.某人買了一張8排6號的電影票,很快找到了自己的座位。 分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。 你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎? 二.概念確定 有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的.數(shù)對,叫做有序數(shù)對,記作(a,b) 利用有序數(shù)對,可以很準(zhǔn)確地表示出一個位置。 1.在教室里,根據(jù)座位圖,確定數(shù)學(xué)課代表的位置 2.教材40頁練習(xí) 三.方法歸類 常見的確定平面上的點位置常用的方法 。1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。 。2)以某一點為觀察點,用方位角、目標(biāo)到這個點的距離這兩個數(shù)來確定目標(biāo)所在的位置。 1.如圖,A點為原點(0,0),則B點記為(3,1) 2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。 例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說: 。1)北偏東方向上有哪些目標(biāo)?要想確定敵艦B的位置,還需要什么數(shù)據(jù)? (2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘? 。3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)? [鞏固練習(xí)] 1. 如圖是某城市市區(qū)的一部分示意圖,對市政府來說: 北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學(xué)校分別位于市政府的什么方向,怎樣確定他們的位置? 結(jié)合實際問題歸納方法 學(xué)生嘗試描述位置 2. 如圖,馬所處的位置為(2,3). (1) 你能表示出象的位置嗎? 。2) 寫出馬的下一步可以到達(dá)的位置。 [小結(jié)] 1. 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎? 2. 幾種常用的表示點位置的方法. [作業(yè)] 必做題:教科書44頁:1題 教學(xué)目標(biāo) 1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題; 2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力; 3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。 教學(xué)建議 一、教學(xué)重點、難點 重點:通過具體例子了解公式、應(yīng)用公式. 難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。 二、重點、難點分析 人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認(rèn)識和改造世界帶來很多方便。 三、知識結(jié)構(gòu) 本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。 四、教法建議 1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對公式的'靈活應(yīng)用。 2.在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。 3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識過程,有助于提高學(xué)生分析問題、解決問題的能力。 教學(xué)設(shè)計示例 公式 五、教具學(xué)具準(zhǔn)備 投影儀,自制膠片。 六、師生互動活動設(shè)計 教者投影顯示推導(dǎo)梯形面積計算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式. 教學(xué)過程: 一、復(fù)習(xí) 1、一輛汽車行駛的速度不變,行駛的時間和路程。 2、一輛汽車從甲地開往乙地,行駛的時間和速度。 看上面的題,回答下面的問題: 。1)各有哪三種量? 。2)其中哪一種量是固定不變的? 。3)哪兩種量是變化的?這兩種量是按怎樣的規(guī)律變化的?他們成是什么關(guān)系? 3、這節(jié)課,我們就應(yīng)用比例的知識解決一些實際問題。 二、新授 1、教學(xué)例5 。1)出示例5:張大媽家上個月用了8噸水,水費是2.8元。李奶奶家上個月用了10噸水,李奶奶家上個月的水費是多少錢? (2)學(xué)生讀題后,思考和討論下面的問題: ①問題中有哪兩種量? ②它們成什么比例關(guān)系?你是根據(jù)什么判斷的? 、鄹鶕(jù)這樣的比例關(guān)系,你能列出等式嗎? 。3)根據(jù)上面三個問題,概括:因為水價一定,所以水費和用水的噸數(shù)成正比例。也就是說,兩家的水費和用水的噸數(shù)的比值是相等的。 。4)根據(jù)正比例的意義列出方程: 解:設(shè)李奶奶家上個月的水費是χ元。 12.8/8=χ/10 8χ= 12.8×10 χ=128÷8 χ= 16答:李奶奶家上個月的水費是16元。 (5)將答案代入到比例式中進(jìn)行檢驗。 2、修改題目:王大爺上個月的水費是19.2元,他們家上個月用多少噸水?(學(xué)生獨立應(yīng)用比例的知識來解答,并交流訂正,使學(xué)生明確例5的條件和問題改變后,題目中水費和用水的.噸數(shù)的正比例關(guān)系沒變,只是未知量變了) 3、教學(xué)例6 。1)出示例6:書店運來一批書,如果每包20本,要捆18包。如果每包30本,要捆多少包? (2)學(xué)生根據(jù)例5的解題思路,思考:題中已知兩個量?什么是一定的?已知的兩個量成什么關(guān)系?思考后獨立解答。 。3)指名板演,全班評講。 4、做一做:教科書P59“做一做”1、2題,讓學(xué)生先判斷兩個量的關(guān)系,再進(jìn)行解答。 三、鞏固練習(xí) 1、教科書P61練習(xí)九第3、4題。學(xué)生讀題后,先說說題中哪個量是一定的,再獨立進(jìn)行解答。 2、完成練習(xí)九第5、6、7題。 四、總結(jié) 用比例知識解決問題的步驟是什么? 教學(xué)目標(biāo): 1、使學(xué)生掌握用比例知識解答以前學(xué)過的用歸一、歸總方法解答的應(yīng)用題的解題思路,能進(jìn)一步熟練地判斷成正、反比例的量,加深對正、反比例概念的理解,溝通知識間的聯(lián)系。 2、提高學(xué)生對應(yīng)用題數(shù)量關(guān)系的分析能力和對正、反比例的判斷能力。 3、培養(yǎng)學(xué)生良好的解答應(yīng)用題的習(xí)慣。 教學(xué)重點: 用比例知識解答比較容易的歸一、歸總應(yīng)用題。 教學(xué)難點: 正分析題中的比例關(guān)系,列出方程。 【教學(xué)目標(biāo)】 知識與技能:了解并掌握數(shù)據(jù)收集的基本方法。 過程與方法:在調(diào)查的過程中,要有認(rèn)真的態(tài)度,積極參與。 情感、態(tài)度與價值觀:體會統(tǒng)計調(diào)查在解決實際問題中的作用,逐步養(yǎng)成用數(shù)據(jù)說話的良好習(xí)慣。 【教學(xué)重難點】 重點:掌握統(tǒng)計調(diào)查的基本方法。 難點:能根據(jù)實際情況合理地選擇調(diào)查方法。 【教學(xué)過程】 講授新課 像前面提到的收集數(shù)據(jù)的活動中,全班同學(xué)是我們要考察的對象,我們采用問卷對全體同學(xué)作了逐一調(diào)查,像這樣對全體對象進(jìn)行的調(diào)查叫做全面調(diào)查。 調(diào)查、試驗如采用普查可以收集到較全面、準(zhǔn)確的數(shù)據(jù),但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進(jìn)行,有時由于調(diào)查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調(diào)查,即從被考察的全體對象中抽出一部分對象進(jìn)行考察的調(diào)查方式。 在一個統(tǒng)計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數(shù)目叫做樣本容量。 例如,在通過試驗考察500只新工藝生產(chǎn)的'燈泡的使用壽命時,從中抽取50只進(jìn)行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。 為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進(jìn)行編號,再把編號寫在小紙片上,將小紙片揉成團(tuán),放在一個不透明的容器內(nèi),充分?jǐn)嚢韬,從中一個個地抽取50個號簽。 上面抽取樣本的過程中,總體中的各個個體都有相等的機(jī)會被抽到,像這樣的抽樣方法是一種簡單隨機(jī)抽樣。 師:以“你知道父母的生日嗎?”為題在班級進(jìn)行調(diào)查,請設(shè)計一張問卷調(diào)查表。 學(xué)生小組合作、討論,學(xué)生代表展示結(jié)果。 教師指導(dǎo)、評論。 師:除了問卷調(diào)查外,我們還有哪些方法收集到數(shù)據(jù)呢? 學(xué)生小組討論、交流,學(xué)生代表回答。 師:收集數(shù)據(jù)的直接方法有訪問、調(diào)查、觀察、測量、試驗等,間接方法有查閱資料、上網(wǎng)查詢等。就以下統(tǒng)計的數(shù)據(jù),你認(rèn)為選擇何種方法去收集比較合適? 。1)你班中的同學(xué)是如何安排周末時間的? 。2)我國瀕臨滅絕的植物數(shù)量; 。3)某種玉米種子的發(fā)芽率; 。4)學(xué)校門口十字路口每天7:00~7:10時的車流量。 教學(xué)目標(biāo) 。ㄒ唬┙虒W(xué)知識點 1、了解近似數(shù)的概念,并按要求取近似數(shù) 2、體會近似數(shù)的意義及在生活中的作用 (二)能力訓(xùn)練要求 能根據(jù)實際問題的需要選取近似數(shù),收集數(shù)據(jù) (三)情感與價值觀要求 進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展“用數(shù)學(xué)”的信心和能力 教學(xué)重點 1、體會和感受生活中的近似數(shù)和精確數(shù),明白測量的結(jié)果都是近似數(shù) 2、能按要求對一個數(shù)四舍五入取近似數(shù) 教學(xué)難點 合理地對一個數(shù)四舍五入取近似值 教學(xué)方法 實驗——講——練相結(jié)合 通過測量實驗體會生活中存在著近似數(shù)和精確數(shù),經(jīng)過講解和練習(xí)能將一個數(shù)按要求取近似值 教具準(zhǔn)備 1、收集不同形狀的樹葉制成標(biāo)本 2、最小單位是厘米的刻度尺和最小單位是毫米的刻度尺 教學(xué)過程 Ⅰ、創(chuàng)設(shè)情景,引入新課 。蹘煟菰谖覀儗W(xué)習(xí)和生活中,經(jīng)常會遇到一些數(shù)據(jù)。例如: 。1)小明班上有45人; 。2)吐魯番盆地低于海平面155米; 。3)某次地震中,傷亡10萬人; (4)小紅測得數(shù)學(xué)書的長度為21.0厘米 而這些數(shù)據(jù)在收集的過程中,有些是精確的,而有些由于客觀條件無法或難以得到精確數(shù)據(jù)或無需要得到精確數(shù)據(jù)而取了近似數(shù) 憑你生活的經(jīng)驗,你能判斷一下,哪些是精確數(shù)?哪些是近似數(shù)嗎? 。凵菸艺J(rèn)為第(1)個中的數(shù)據(jù)是精確的,而第(2)、(3)、(4)中的數(shù)據(jù)都是近似的 [師]很好,下面我們接著來做一個實驗,進(jìn)一步體驗近似數(shù)的意義和在生活中的作用、 、颉⒁胄抡n,獲得直觀的體驗 1、實驗——測得樹葉的長度 。蹘煟萃瑢W(xué)們在下面收集了不少的樹葉,把這些樹葉制成標(biāo)本的時候,要求必須在標(biāo)本中注明每片樹葉的長度,下面我們就以同桌為一小組,用你準(zhǔn)備好的最小刻度是厘米和最小刻度是毫米的刻度尺測量你收集到的樹葉的長度,并讀取數(shù)據(jù) 。ń處熆梢宰寣W(xué)生交流,討論讀取數(shù)據(jù)的方法,同時給予指導(dǎo),讓同學(xué)們體驗到測量讀取的數(shù)據(jù)是有誤差的) 。蹘煟菰谕瑢W(xué)們測量的過程中,同桌的小明和小穎用最小單位不同的刻度尺測量了同一片樹葉的長度,如圖3-1所示: 圖3-1 。1)根據(jù)小明的測量方法,你能知道他用的刻度尺最小刻度是什么嗎?這片樹葉的長度約為多少?根據(jù)小穎的測量呢? 。2)誰的測量結(jié)果更精確一些?說說你的理由 。凵菪∶饔玫目潭瘸咦钚挝皇抢迕,這片樹葉的長度約為6.8厘米,其中6是精確的,8是估計的,即是近似的;小穎用的刻度尺最小單位是毫米,她測量的結(jié)果可以讀成6.78厘米,其6和7都是精確的,而8是估計的,即是近似的 。凵輳膭偛胚@位同學(xué)的分析,很容易看出小穎測量的結(jié)果要比小明的更精確一些 。蹘煟萃瑢W(xué)們分析得很精細(xì),同桌的小明和小穎共收集了12片樹葉,測得剛才那片樹葉的長度的值分別約為6.8厘米和6.78厘米、在這一收集數(shù)據(jù)的過程中,哪些數(shù)據(jù)是精確的,哪些數(shù)據(jù)是近似的呢? 。凵菟麄円还彩占12片樹葉,這個數(shù)據(jù)是精確的,而測量的樹葉的長度的值是近似的 。蹘煟荽蠹疫可以用你的刻度尺測量一下桌子的長度、厚度,數(shù)學(xué)課本的長度、厚度,又可以讀出一些數(shù)據(jù),它們是精確的還是近似的? 。凵菸覝y得我的課桌的長度是80.5厘米,它是近似的 。凵菸覝y得課桌的長度是80.45厘米,它也是近似數(shù) [師]由此,我們可知測量得出的結(jié)果都是近似的,例如珠峰的高度是8848米,是測量得出的,它是近似數(shù) 在生活中,除了測量的結(jié)果是近似數(shù)以外,還有沒有其他數(shù)據(jù)也是近似的? 。凵萦,例如方便面袋子上寫著:總凈含量110克,數(shù)據(jù)110克是近似的 。凵蒿嬃贤皹(biāo)注的凈含量是350 mL也是近似數(shù) [生]天氣預(yù)報中報到今天的最高氣溫是28℃,“28℃”這個數(shù)據(jù)也是近似數(shù) 。凵菰蹅冞@本教科書字?jǐn)?shù)是202千字,“202千字”這個數(shù)據(jù)也是近似的 [師]真棒,同學(xué)們能列舉生活中這么多的近似數(shù)據(jù),說明同學(xué)們平時很留心觀察一些事物,這一點很值得肯定 2、議一議 圖3-2 。1)上面的數(shù)據(jù),哪些是精確的?哪些是近似的? (2)舉例說明生活中哪些數(shù)據(jù)是精確的?哪些數(shù)據(jù)是近似的? 。凵荩1)2000年第五次人口普查表明,我國人口總數(shù)為12.9533億,人口總數(shù)為12.9533億這個數(shù)據(jù)是近似數(shù) [師]為什么呢?(Why?) 。凵菀驗槲覈赜蜻|闊,客觀條件就決定了在人口普查的.過程中是無法或難以得到精確數(shù)據(jù)的 [師]的確如此,在測量過程中,我們難以得到精確數(shù)據(jù),盡管現(xiàn)在科技的發(fā)展,有了更為精密的儀器、在人口普查中,由于客觀條件等的限制,也難以或無法取到精確值 [生]第二幅圖是精確值 。凵莸谌鶊D中,年級共有97人是精確值,而買門票大約需要800元是近似值、 [師]回答正確、這里的“800元”也是近似值,但這個近似值不是無法或難以得到精確數(shù)據(jù),而是根據(jù)實際情況要估算一下大約需多少錢,無需得到精確值 你還能舉出生活中一些例子說明哪些數(shù)據(jù)是精確的?哪些數(shù)據(jù)是近似的嗎? 。凵菪∶鞯纳砀呤1.58米,體重40公斤,年齡14歲,這些數(shù)據(jù)都是近似數(shù) [生]小明今天上了6節(jié)課,是精確的 。凵菀粭l草魚重2.854千克,這個數(shù)據(jù)也是近似數(shù) [生]我們班有25個女生,這個數(shù)據(jù)是精確數(shù) 。蹘煟菸覀兞私饬松钪写嬖谥@么多的近似數(shù)和精確數(shù),下面我們來看一看如何根據(jù)具體情況和要求采用四舍五入法求一個數(shù)的近似數(shù)、 3、做一做 例1小明量得課桌長為1.025米,請按下列要求取這個數(shù)的近似數(shù): 。1)四舍五入到百分位; 。2)四舍五入到十分位; 。3)四舍五入到個位、 。鄯治觯萦盟纳嵛迦敕ㄇ笠粋數(shù)的近似數(shù),關(guān)鍵是看四舍五入到哪一位,看這一位后面一位的數(shù)夠五不夠五,來決定取舍,特別注意近似數(shù)1.0,末尾的0不能隨意去掉、 解:(1)四舍五入到百分位為1.03米; 。2)四舍五入到十分位為1.0米; 。3)四舍五入到個位為1米 例2小麗與小明在討論問題 小麗:如果你把7498近似到千位數(shù),你就會得到7000 小明:不,我有另外一種解答方法,可以得到不同的答案、首先,將7498近似到百位,得到7500,接著把7500近似到千位,就得到了8000 小麗:…… 你怎樣評價小麗和小明的說法呢? 。凵菪←惖恼f法是正確的因為一個數(shù)近似到千位,要一次做完,看百位上的數(shù)決定四舍五入,而不能先近似到百位,再近似到千位 例3中國國土面積約為9596960千米2,美國和羅馬尼亞的國土面積約為9364000千米2(四舍五入到千位)和240000千米2(四舍五入到萬位)如果要將中國國土面積與它們相比較,那么中國國土面積分別四舍五入到哪一位時,比較起來的誤差可能會小些? 。鄯治觯輰(shù)據(jù)進(jìn)行比較是培養(yǎng)數(shù)感的一個重要方面、在對數(shù)據(jù)進(jìn)行比較時,有時可以根據(jù)需要選擇各自的近似數(shù)進(jìn)行比較、在選擇近似數(shù)時,一般數(shù)據(jù)要四舍五入到同一數(shù)位,這樣出現(xiàn)較大誤差的可能性會小一些 解:當(dāng)與美國的國土面積比較時,可將中國國土面積四舍五入到千位,得到9597000千米2,因為它們同時四舍五入到了千位,這樣比較起來誤差會小一些類似地,當(dāng)與羅馬尼亞國土面積相比較時,可以將中國國土面積四舍五入到萬位,得到9600000千米2、 、、課時小結(jié) 。蹘煟萃ㄟ^這節(jié)課的學(xué)習(xí),你有何體會和收獲呢? 。凵菸覀冎懒藴y量所得的數(shù)據(jù)都是近似數(shù) [生]生活中既有精確的數(shù)據(jù),也有近似的數(shù)據(jù),因此我們的生活豐富多彩、 。凵菽芨鶕(jù)具體情況和要求求一個數(shù)的近似數(shù) 。凵萦盟纳嵛迦敕ㄈ〗茢(shù)時,不能隨便將小數(shù)末尾的零去掉、例如2.03取近似數(shù),四舍五入到十分位,得到近似數(shù)2.0,不能把零去掉、 板書設(shè)計 一、生活中的數(shù)據(jù)——近似數(shù)和精確數(shù) 1、實驗測量所得的結(jié)果都是近似的(測量樹葉的長度) 2、議一議 二、根據(jù)具體情況,采用四舍五入求一個數(shù)的近似數(shù)、(師生共析,由學(xué)生板演) 【七年級數(shù)學(xué)教案】相關(guān)文章: 七年級上數(shù)學(xué)教案02-07 七年級人教版數(shù)學(xué)教案11-03 【經(jīng)典】七年級數(shù)學(xué)教案06-10 七年級數(shù)學(xué)教案11-09 七年級下數(shù)學(xué)教案10-18 【薦】七年級數(shù)學(xué)教案12-19 七年級數(shù)學(xué)教案【熱】12-20 七年級數(shù)學(xué)教案【精】01-06 【精】七年級數(shù)學(xué)教案01-08 七年級數(shù)學(xué)教案 8
七年級數(shù)學(xué)教案 9
七年級數(shù)學(xué)教案 10
七年級數(shù)學(xué)教案 11
七年級數(shù)學(xué)教案 12
七年級數(shù)學(xué)教案 13