天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

高一數(shù)學(xué)教案

時間:2022-12-02 15:27:56 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)教案【薦】

  作為一位不辭辛勞的人民教師,通常會被要求編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編幫大家整理的高一數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

高一數(shù)學(xué)教案【薦】

高一數(shù)學(xué)教案1

  1、知識與技能

  (1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);

  (2)理解任意角的三角函數(shù)不同的定義方法;

  (3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;

  (4)掌握并能初步運用公式一;

  (5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).

  2、過程與方法

  初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的'函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).

  3、情態(tài)與價值

  任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.

  本節(jié)利用單位圓上點的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.

  教學(xué)重難點

  重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

  難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.

高一數(shù)學(xué)教案2

  教學(xué)目標(biāo)

  (1)正確理解充分條件、必要條件和充要條件的概念;

 。2)能正確判斷是充分條件、必要條件還是充要條件;

  (3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

 。4)在充要條件的教學(xué)中,培養(yǎng)等價轉(zhuǎn)化思想.

  教學(xué)建議

  (一)教材分析

  1.知識結(jié)構(gòu)

  首先給出推斷符號“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識.

  2.重點難點分析

  本節(jié)的重點與難點是關(guān)于充要條件的判斷.

 。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.

 。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:

 、偈紫确智鍡l件是什么,結(jié)論是什么;

 、谌缓髧L試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;

  ③最后再指出條件是結(jié)論的什么條件.

 。3)在討論條件和條件的關(guān)系時,要注意:

 、偃,但,則是的充分但不必要條件;

 、谌簦,則是的必要但不充分條件;

 、廴簦,則是的充要條件;

  ④若,且,則是的充要條件;

 、萑,且,則是的既不充分也不必要條件.

 。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識,有助于充要條件的理解和判斷.

  ①若,則是的充分條件;

  顯然,要使元素,只需就夠了.類似地還有:

 、谌簦瑒t是的必要條件;

  ③若,則是的充要條件;

 、苋簦,則是的既不必要也不充分條件.

 。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.

 。ǘ┙谭ńㄗh

  1.學(xué)習(xí)充分條件、必要條件和充要條件知識,要注意與前面有關(guān)邏輯初步知識內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.

  2.由于這節(jié)課概念性、理論性較強,一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會概念的本質(zhì)屬性.

  3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時可以從判斷命題的真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.

  4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來認(rèn)識“充分條件”的概念,從互為逆否命題的等價性來引出“必要條件”的概念.

  教學(xué)設(shè)計示例

  充要條件

  教學(xué)目標(biāo)

 。1)正確理解充分條件、必要條件和充要條件的概念;

 。2)能正確判斷是充分條件、必要條件還是充要條件;

  (3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

  (4)在充要條件的教學(xué)中,培養(yǎng)等價轉(zhuǎn)化思想.

  教學(xué)重點難點:

  關(guān)于充要條件的判斷

  教學(xué)用具:

  幻燈機或?qū)嵨锿队皟x

  教學(xué)過程設(shè)計

  1.復(fù)習(xí)引入

  練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):

  (1)若,則;

 。2)若,則;

  (3)全等三角形的面積相等;

 。4)對角線互相垂直的四邊形是菱形;

 。5)若,則;

 。6)若方程有兩個不等的實數(shù)解,則.

  (學(xué)生口答,教師板書.)

  (1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

  置疑:對于命題“若,則”,有時是真命題,有時是假命題.如何判斷其真假的?

  答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

  對于命題“若,則”,如果由經(jīng)過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結(jié)論的成立,這時我們稱條件是成立的充分條件,記作.

  2.講授新課

  (板書充分條件的定義.)

  一般地,如果已知,那么我們就說是成立的充分條件.

  提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.

 。▽W(xué)生口答)

  (1)“,”是“”成立的.充分條件;

  (2)“三角形全等”是“三角形面積相等”成立的充分條件;

  (3)“方程的有兩個不等的實數(shù)解”是“”成立的充分條件.

  從另一個角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.

 。ò鍟匾獥l件的定義.)

  提出問題:用“充分條件”和“必要條件”來敘述上述6個命題.

  (學(xué)生口答).

 。1)因為,所以是的充分條件,是的必要條件;

 。2)因為,所以是的必要條件,是的充分條件;

 。3)因為“兩三角形全等”“兩三角形面積相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

 。4)因為“四邊形的對角線互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;

 。5)因為,所以是的必要條件,是的充分條件;

 。6)因為“方程的有兩個不等的實根”“”,而且“方程的有兩個不等的實根”“”,所以“方程的有兩個不等的實根”是“”充分條件,而且是必要條件.

  總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.

 。ò鍟湟獥l件的定義.)

  3.鞏固新課

  例1(用投影儀投影.)

 。▽W(xué)生活動,教師引導(dǎo)學(xué)生作出下面回答.)

 、僖驗橛欣頂(shù)一定是實數(shù),但實數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;

  ②一定能推出,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;

 、邸⑹瞧鏀(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;

 、鼙硎净,所以是成立的必要非充分條件;

 、萦山患亩x可知且是成立的充要條件;

  ⑥由知且,所以是成立的充分非必要條件;

 、哂芍颍允,成立的必要非充分條件;

 、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;

 。ㄍㄟ^對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認(rèn)識.)

  例2已知是的充要條件,是的必要條件同時又是的充分條件,試與的關(guān)系.(投影)

  解:由已知得,

  所以是的充分條件,或是的必要條件.

  4.小結(jié)回授

  今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問題打下了等價轉(zhuǎn)化的基礎(chǔ).

  課內(nèi)練習(xí):課本(人教版,試驗修訂本,第一冊(上))第35頁練習(xí)l、2;第36頁練習(xí)l、2.

 。ㄍㄟ^練習(xí),檢查學(xué)生掌握情況,有針對性的進(jìn)行講評.)

  5.課外作業(yè):教材第36頁 習(xí)題1.8 1、2、3.

高一數(shù)學(xué)教案3

  第一節(jié) 集合的含義與表示

  學(xué)時:1學(xué)時

  [學(xué)習(xí)引導(dǎo)]

  一、自主學(xué)習(xí)

  1.閱讀課本 .

  2.回答問題:

  ⑴本節(jié)內(nèi)容有哪些概念和知識點?

 、茋L試說出相關(guān)概念的含義?

  3完成 練習(xí)

  4小結(jié)

  二、方法指導(dǎo)

  1、要結(jié)合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。

  2、理解集合元素的特性,并會判斷元素與集合的關(guān)系

  3、掌握集合的`表示方法,并會正確運用它們表示一些簡單集合。

  4、在學(xué)習(xí)中要特別注意理解空集的意義和記法

  [思考引導(dǎo)]

  一、提問題

  1.集合中的元素有什么特點?

  2、集合的常用表示法有哪些?

  3、集合如何分類?

  4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語言表述?

  5集合 和 是否相同?

  二、變題目

  1.下列各組對象不能構(gòu)成集合的是( )

  A.北京大學(xué)2008級新生

  B.26個英文字母

  C.著名的藝術(shù)家

  D.2008年北京奧運會中所設(shè)定的比賽項目

  2.下列語句:①0與 表示同一個集合;

 、谟1,2,3組成的集合可表示為 或 ;

  ③方程 的解集可表示為 ;

 、芗 可以用列舉法表示。

  其中正確的是( )

  A.①和④ B.②和③

  C.② D.以上語句都不對

  [總結(jié)引導(dǎo)]

  1.集合中元素的三特性:

  2.集合、元素、及其相互關(guān)系的數(shù)學(xué)符號語言的表示和理解:

  3.空集的含義:

  [拓展引導(dǎo)]

  1.課外作業(yè): 習(xí)題11第 題;

  2.若集合 ,求實數(shù) 的值;

  3.若集合 只有一個元素,則實數(shù) 的值為 ;若 為空集,則 的取值范圍是 .

  撰稿:程曉杰 審稿:宋慶

高一數(shù)學(xué)教案4

  一、教材

  首先談?wù)勎覍滩牡睦斫,《兩條直線平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。

  二、學(xué)情

  教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。

  三、教學(xué)目標(biāo)

  根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

  (一)知識與技能

  掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。

  (二)過程與方法

  在經(jīng)歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。

  (三)情感態(tài)度價值觀

  在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。

  四、教學(xué)重難點

  我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的.。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:兩條直線平行與垂直的判定。本節(jié)課的教學(xué)難點是:兩條直線平行與垂直的判定的推導(dǎo)。

  五、教法和學(xué)法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。

  六、教學(xué)過程

  下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。

  (一)新課導(dǎo)入

  首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關(guān)系呢?

  利用上節(jié)課所學(xué)的知識進(jìn)行導(dǎo)入,很好的克服學(xué)生的畏難情緒。

  (二)新知探索

  接下來是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。

高一數(shù)學(xué)教案5

  教材:邏輯聯(lián)結(jié)詞

  目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。

  過程

  一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞

  二、命題的概念:

  例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③

  定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。

  如:①②是真命題,③是假命題

  反例:3是12的約數(shù)嗎? x5 都不是命題

  不涉及真假(問題) 無法判斷真假

  上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。

  三、復(fù)合命題:

  1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的對角線互相 菱形的對角線互相垂直且菱形的`

  垂直且平分⑤ 對角線互相平分

  (3)0.5非整數(shù)⑥ 非0.5是整數(shù)

  觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。

  3.其實,有些概念前面已遇到過

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、復(fù)合命題的構(gòu)成形式

  如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過的有以下三種:

  即: p或q (如 ④) 記作 pq

  p且q (如 ⑤) 記作 pq

  非p (命題的否定) (如 ⑥) 記作 p

  小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式

高一數(shù)學(xué)教案6

  本文題目:高一數(shù)學(xué)教案:函數(shù)的奇偶性

  課題:1.3.2函數(shù)的奇偶性

  一、三維目標(biāo):

  知識與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會運用定義判斷函數(shù)的奇偶性。

  過程與方法:通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推斷的能力。

  情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學(xué)生的情操. 通過組織學(xué)生分組討論,培養(yǎng)學(xué)生主動交流的合作精神,使學(xué)生學(xué)會認(rèn)識事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

  二、學(xué)習(xí)重、難點:

  重點:函數(shù)的奇偶性的概念。

  難點:函數(shù)奇偶性的判斷。

  三、學(xué)法指導(dǎo):

  學(xué)生在獨立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時鞏固。

  四、知識鏈接:

  1.復(fù)習(xí)在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義:

  2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。

  五、學(xué)習(xí)過程:

  函數(shù)的奇偶性:

  (1)對于函數(shù) ,其定義域關(guān)于原點對稱:

  如果______________________________________,那么函數(shù) 為奇函數(shù);

  如果______________________________________,那么函數(shù) 為偶函數(shù)。

  (2)奇函數(shù)的`圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。

  (3)奇函數(shù)在對稱區(qū)間的增減性 ;偶函數(shù)在對稱區(qū)間的增減性 。

  六、達(dá)標(biāo)訓(xùn)練:

  A1、判斷下列函數(shù)的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .

  B3、已知 ,其中 為常數(shù),若 ,則

  _______ .

  B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )

  (A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對

  B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .

  C6、若函數(shù) 是定義在R上的奇函數(shù),且當(dāng) 時, ,那么當(dāng)

  時, =_______ .

  D7、設(shè) 是 上的奇函數(shù), ,當(dāng) 時, ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .

  七、學(xué)習(xí)小結(jié):

  本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。

  八、課后反思:

高一數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  1、掌握平面向量的數(shù)量積及其幾何意義;

  2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;

  3、了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;

  4、掌握向量垂直的條件、

  教學(xué)重難點:

  教學(xué)重點:平面向量的數(shù)量積定義

  教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用

  教學(xué)工具:

  投影儀

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1、向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ

  五,課堂小結(jié)

  (1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

  (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

  (3)你在這節(jié)課中的表現(xiàn)怎樣?你的`體會是什么?

  六、課后作業(yè)

  P107習(xí)題2、4A組2、7題

  課后小結(jié)

  (1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

  (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

  (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

  課后習(xí)題

高一數(shù)學(xué)教案8

  教學(xué)目的:

  (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

 。2)使學(xué)生初步了解“屬于”關(guān)系的意義

  (3)使學(xué)生初步了解有限集、無限集、空集的意義

  教學(xué)重點:集合的基本概念及表示方法

  教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

  授課類型:新授課

  課時安排:1課時

  教 具:多媒體、實物投影儀

  內(nèi)容分析:

  集合是中學(xué)數(shù)學(xué)的一個重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

  這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認(rèn)識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2、教材中的章頭引言;

  3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

  4.“物以類聚”,“人以群分”;

  5.教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問題如下:

  (1)有那些概念?是如何定義的?

 。2)有那些符號?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有關(guān)概念:

  由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。

  定義:一般地,某些指定的對象集在一起就成為一個集合.

  1、集合的概念

 。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

  (2)元素:集合中每個對象叫做這個集合的元素

  2、常用數(shù)集及記法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

  (2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+

 。3)整數(shù)集:全體整數(shù)的集合 記作Z ,

 。4)有理數(shù)集:全體有理數(shù)的.集合 記作Q ,

 。5)實數(shù)集:全體實數(shù)的集合 記作R

  注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

  (2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  3、元素對于集合的隸屬關(guān)系

  (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

  (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  4、集合中元素的特性

  (1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒有重復(fù)

  (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的開口方向,不能把a∈A顛倒過來寫

  三、練習(xí)題:

  1、教材P5練習(xí)1、2

  2、下列各組對象能確定一個集合嗎?

 。1)所有很大的實數(shù) (不確定)

  (2)好心的人 (不確定)

 。3)1,2,2,3,4,5.(有重復(fù))

  3、設(shè)a,b是非零實數(shù),那么 可能取的值組成集合的元素是_—2,0,2__

  4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )

 。ˋ)2個元素 (B)3個元素 (C)4個元素 (D)5個元素

  5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

 。1) 當(dāng)x∈N時, x∈G;

 。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

  證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

  證明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整數(shù),

  ∴ = 不一定屬于集合G

  四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無序性

  3、常用數(shù)集的定義及記法

高一數(shù)學(xué)教案9

  一、教學(xué)目標(biāo)

  (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

  (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

  (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

  (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

  (5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;

  (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

  二、教學(xué)重點難點:

  重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.

  三、教學(xué)過程

  1.新課導(dǎo)入

  在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點是邏輯性強,特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的`過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

  初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)

 。◤某踔薪佑|過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)

  學(xué)生舉例:平行四邊形的對角線互相平. ……(1)

  兩直線平行,同位角相等.…………(2)

  教師提問:“……相等的角是對頂角”是不是命題?……(3)

 。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)

  教師提問:什么是命題?

  (學(xué)生進(jìn)行回憶、思考.)

  概念總結(jié):對一件事情作出了判斷的語句叫做命題.

  (教師肯定了同學(xué)的回答,并作板書.)

  由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

  (教師利用投影片,和學(xué)生討論以下問題.)

  例1 判斷以下各語句是不是命題,若是,判斷其真假:

  命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.

  2.講授新課

  大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

  (片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)

  (1)什么叫做命題?

  可以判斷真假的語句叫做命題.

  判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0

  中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

  (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

  命題可分為簡單命題和復(fù)合命題.

  不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

  由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

 。4)命題的表示:用p ,q ,r ,s ,……來表示.

 。ń處煾鶕(jù)學(xué)生回答的情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)

  我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

  給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

  對于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .

  在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

  (1)5 ;

  (2)0.5非整數(shù);

  (3)內(nèi)錯角相等,兩直線平行;

 。4)菱形的對角線互相垂直且平分;

 。5)平行線不相交;

 。6)若ab=0 ,則a=0 .

 。ㄗ寣W(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)

高一數(shù)學(xué)教案10

  教學(xué)目標(biāo):

  1、理解對數(shù)的概念,能夠進(jìn)行對數(shù)式與指數(shù)式的互化;

  2、滲透應(yīng)用意識,培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學(xué)發(fā)現(xiàn)能力。

  教學(xué)重點:

  對數(shù)的概念

  教學(xué)過程:

  一、問題情境:

  1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?

 。2)假設(shè)20xx年我國國民生產(chǎn)總值為a億元,如果每年平均增長8%,那么經(jīng)過多少年國民生產(chǎn)總值是20xx年的.2倍?

  抽象出:1、=?,=0、125x=?2、=2x=?

  2、問題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來嗎?

  二、學(xué)生活動:

  1、討論問題,探究求法、

  2、概括內(nèi)容,總結(jié)對數(shù)概念、

  3、研究指數(shù)與對數(shù)的關(guān)系、

  三、建構(gòu)數(shù)學(xué):

  1)引導(dǎo)學(xué)生自己總結(jié)并給出對數(shù)的概念、

  2)介紹對數(shù)的表示方法,底數(shù)、真數(shù)的含義、

  3)指數(shù)式與對數(shù)式的關(guān)系、

  4)常用對數(shù)與自然對數(shù)、

  探究:

 、咆(fù)數(shù)與零沒有對數(shù)、

 、,、

  ⑶對數(shù)恒等式(教材P58練習(xí)6)

 、伲虎、

 、葍煞N對數(shù):

  ①常用對數(shù):;

  ②自然對數(shù):、

 。5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、

  四、數(shù)學(xué)運用:

  1、例題:

  例1、(教材P57例1)將下列指數(shù)式改寫成對數(shù)式:

  (1)=16;(2)=;(3)=20;(4)=0、45、

  例2、(教材P57例2)將下列對數(shù)式改寫成指數(shù)式:

 。1);(2)3=—2;(3);(4)(補充)ln10=2、303

  例3、(教材P57例3)求下列各式的值:

 、;⑵;⑶(補充)、

  2、練習(xí):

  P58(練習(xí))1,2,3,4,5、

  五、回顧小結(jié):

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

 、艑(shù)的定義;

⑵指數(shù)式與對數(shù)式互換;

⑶求對數(shù)式的值(利用計算器求對數(shù)值)、

  六、課外作業(yè):P63習(xí)題1,2,3,4、

高一數(shù)學(xué)教案11

  目標(biāo):

  1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù) ;

  2.讓學(xué)生了解函數(shù)的零點與方程根的聯(lián)系 ;

  3.讓學(xué)生認(rèn)識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點中的作用 ;

  4。培養(yǎng)學(xué)生動手操作的能力 。

  二、教學(xué)重點、難點

  重點:零點的概念及存在性的判定;

  難點:零點的確定。

  三、復(fù)習(xí)引入

  例1:判斷方程 x2-x-6=0 解的存在。

  分析:考察函數(shù)f(x)= x2-x-6, 其

  圖像為拋物線容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,

  點B (0,-6)與點C(4,6)之間的那部分曲線

  必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點

  X1 使f(X1)=0;同樣,在區(qū)間(-4,0) 內(nèi)也至

  少有點X2,使得f( X2)=0,而方程至多有兩

  個解,所以在(-4,0),(0,4)內(nèi)各有一解

  定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù) x叫函數(shù)y=f(x)的'零點

  抽象概括

  y=f(x)的圖像與x軸的交點的橫坐標(biāo)叫做該函數(shù)的零點,即f(x)=0的解。

  若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個零點,即f(x)=0在 (a,b)內(nèi)至少有一個實數(shù)解。

  f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點

  所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點

  注意:1、這里所說若f(a)f(b)0,則在區(qū)間(a,b)內(nèi)方程f(x)=0至少有一個實數(shù)解指出了方程f(x)=0的實數(shù)解的存在性,并不能判斷具體有多少個解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)內(nèi)是單調(diào)的,那么,方程f(x)=0在(a,b)內(nèi)有唯一實數(shù)解;

  3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;

  4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。

  四、知識應(yīng)用

  例2:已知f(x)=3x-x2 ,問方程f(x)=0在區(qū)間[-1,0]內(nèi)沒有實數(shù)解?為什么?

  解:f(x)=3x-x2的圖像是連續(xù)曲線, 因為

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在區(qū)間[-1,0]內(nèi)有零點,即f(x)=0在區(qū)間[-1,0]內(nèi)有實數(shù)解

  練習(xí):求函數(shù)f(x)=lnx+2x-6 有沒有零點?

  例3 判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。

  解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個交點,在( -,2)內(nèi)也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。

  練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內(nèi),求m的取值范圍。

  五、課后作業(yè)

  p133第2,3題

高一數(shù)學(xué)教案12

  教學(xué)目標(biāo)

  1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

  (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

  (2)能從數(shù)和形兩個角度認(rèn)識單調(diào)性和奇偶性.

  (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

  2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

  3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

  教學(xué)建議

  一、知識結(jié)構(gòu)

  (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

  (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

  二、重點難點分析

  (1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

  (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的`,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.

  三、教法建議

  (1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.

  (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

  函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高一數(shù)學(xué)教案13

  一、教材

  《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

  二、學(xué)情

  學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點的坐標(biāo)、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標(biāo)法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

  三、教學(xué)目標(biāo)

  (一)知識與技能目標(biāo)

  能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。

  (二)過程與方法目標(biāo)

  經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

  (三)情感態(tài)度價值觀目標(biāo)

  激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。

  四、教學(xué)重難點

  (一)重點

  用解析法研究直線與圓的位置關(guān)系。

  (二)難點

  體會用解析法解決問題的數(shù)學(xué)思想。

  五、教學(xué)方法

  根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。

  六、教學(xué)過程

  (一)導(dǎo)入新課

  教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

  教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。

  設(shè)計意圖:在已有的.知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  (二)新課教學(xué)——探究新知

  教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認(rèn)識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。

  判斷方法:

  (1)定義法:看直線與圓公共點個數(shù)

  即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

  (2)比較法:圓心到直線的距離d與圓的半徑r做比較,

  (三)合作探究——深化新知

  教師進(jìn)一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

  已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

  讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

  當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。

  (四)歸納總結(jié)——鞏固新知

  為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

  可由方程組的解的不同情況來判斷:

  當(dāng)方程組有兩組實數(shù)解時,直線l與圓C相交;

  當(dāng)方程組有一組實數(shù)解時,直線l與圓C相切;

  當(dāng)方程組沒有實數(shù)解時,直線l與圓C相離。

  活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。

  (五)小結(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會以口頭提問的方式:

  (1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  (2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?

  設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進(jìn)行主動建構(gòu)。

  作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報。

  七、板書設(shè)計

  我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。

高一數(shù)學(xué)教案14

  一、教材分析

  本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書—必修1》(人教A版)《1。2。1函數(shù)的概念》共3課時,本節(jié)課是第1課時。生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識世界和預(yù)測未來的重要工具。函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識和研究工具,教學(xué)內(nèi)容中蘊涵著極其豐富的辯證思想。

  二、學(xué)生學(xué)習(xí)情況分析

  函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認(rèn)識分三個階段:

  (一)初中從運動變化的角度來刻畫函數(shù),初步認(rèn)識正比例、反比例、一次和二次函數(shù);

 。ǘ└咧杏眉吓c對應(yīng)的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);

  (三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。

  1、有利條件

  現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點,引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。

  初中用運動變化的觀點對函數(shù)進(jìn)行定義的,它反映了歷人們對它的一種認(rèn)識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應(yīng)的觀點研究函數(shù)打下了一定的基礎(chǔ)。

  2、不利條件

  用集合與對應(yīng)的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學(xué)生的理解能力是一個挑戰(zhàn),是本節(jié)課教學(xué)的一個不利條件。

  三、教學(xué)目標(biāo)分析

  課標(biāo)要求:通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域。

  1、知識與能力目標(biāo):

 、拍軓募吓c對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;

  ⑵理解函數(shù)的三要素的含義及其相互關(guān)系;

  ⑶會求簡單函數(shù)的定義域和值域

  2、過程與方法目標(biāo):

  ⑴通過豐富實例,使學(xué)生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;

 、圃诤瘮(shù)實例中,通過對關(guān)鍵詞的強調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。

  3、情感、態(tài)度與價值觀目標(biāo):

  感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。

  四、教學(xué)重點、難點分析

  1、教學(xué)重點:對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);

  重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的'觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認(rèn)識,也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點。

  突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。

  2、教學(xué)難點:

  第一:從實際問題中提煉出抽象的概念;

  第二:符號“y=f(x)”的含義的理解。

  難點依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負(fù)遷移。

  突破難點:難點的突破要依托豐富的實例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。

  五、教法與學(xué)法分析

  1、教法分析

  本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實例出發(fā),關(guān)注學(xué)生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。

  2、學(xué)法分析

  在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識。

高一數(shù)學(xué)教案15

  一、教學(xué)目標(biāo)

  1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。

  2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式。

  二、能力目標(biāo)

  1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象思維能力。

  2、通過由已知信息寫一次函數(shù)表達(dá)式的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

  三、情感目標(biāo)

  1、通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

  2、經(jīng)歷利用一次函數(shù)解決實際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

  四、教學(xué)重難點

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、會根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

  五、教學(xué)過程

  1、新課導(dǎo)入

  有關(guān)函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長度相應(yīng)的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,

  請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的`質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。

 。1)計算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,

 。2)你能寫出x與y之間的關(guān)系式嗎?

  分析:當(dāng)不掛物體時,彈簧長度為3厘米,當(dāng)掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

  2、做一做

  某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關(guān)系嗎?(y=1000。18x或y=100 x)

  接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點嗎?上面的幾個函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。

  3、一次函數(shù),正比例函數(shù)的概念

  若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。

  4、例題講解

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

  ①y=x6;②y= ;③y= ;④y=7x

  A、①②③ B、①③④ C、①②③④ D、②③④

  分析:這道題考查的是一次函數(shù)的概念,特別要強調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

【高一數(shù)學(xué)教案】相關(guān)文章:

高一優(yōu)秀數(shù)學(xué)教案09-28

高一數(shù)學(xué)教案11-05

人教版高一數(shù)學(xué)教案06-10

【精】高一數(shù)學(xué)教案12-01

【熱門】高一數(shù)學(xué)教案11-26

【熱】高一數(shù)學(xué)教案12-05

高一數(shù)學(xué)教案【推薦】11-30

高一數(shù)學(xué)教案【熱】12-03

【推薦】高一數(shù)學(xué)教案12-04