天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

數(shù)學初二教案

時間:2022-11-27 18:35:21 八年級數(shù)學教案 我要投稿

數(shù)學初二教案(集合15篇)

  作為一名老師,通常需要準備好一份教案,借助教案可以提高教學質量,收到預期的教學效果。我們應該怎么寫教案呢?以下是小編幫大家整理的數(shù)學初二教案,僅供參考,大家一起來看看吧。

數(shù)學初二教案(集合15篇)

數(shù)學初二教案1

  一、教學目標

  1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

  3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

  二、教學重點和難點

  1。重點:能夠把所給的二次根式,化成最簡二次根式。

  2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

  三、教學方法

  通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結歸納化簡二次根式的方法。

  四、教學手段

  利用投影儀。

  五、教學過程

  (一)引入新課

  提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實際問題帶來方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向學生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的'運算結果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結這類題化簡的方法,先利用商的算術平方根的性質把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學生

  問題,通過這個小題使學生明確如何使用化簡中的條件。

  通過例2、例3總結把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結應該注意的問題。

  注意:

 、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

 、诋斠粋式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

 。ㄈ┬〗Y

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習題11。4;A組1;B組1。

  七、板書設計

數(shù)學初二教案2

  一、學生起點分析

  《平面直角坐標系》是八年級上冊第五章《位置與坐標》第二節(jié)內容。本章是“圖形與坐標”的主體內容,不僅呈現(xiàn)了“確定位置的多種方法、平面直角坐標系”等內容,而且也從坐標的角度使學生進一步體會圖形平移、軸對稱的數(shù)學內涵,同時又是一次函數(shù)的重要基礎。《平面直角坐標系》反映平面直角坐標系與現(xiàn)實世界的密切聯(lián)系,讓學生認識數(shù)學與人類生活的密切聯(lián)系和對人類歷史發(fā)展的作用,提高學生參加數(shù)學學習活動的積極性和好奇心。因此,教學過程中創(chuàng)設生動活潑、直觀形象、且貼近他們生活的問題情境,會引起學生的極大關注,會有利于學生對內容的較深層次的理解;另一方面,學生已經(jīng)具備了一定的學習能力,可多為學生創(chuàng)造自主學習、合作交流的機會,促使他們主動參與、積極探究。

  二、教學任務分析

  教學目標設計:

  知識目標:

  1、理解平面直角坐標系以及橫軸、縱軸、原點、坐標等概念;

  2、認識并能畫出平面直角坐標系;

  3、能在給定的直角坐標系中,由點的位置寫出它的坐標。

  能力目標:

  1、通過畫坐標系、由點找坐標等過程,發(fā)展學生的數(shù)形結合意識、合作交流意識;

  2、通過對一些點的坐標進行觀察,探索坐標軸上點的坐標有什么特點,縱坐標或橫坐標相同的點所連成的線段與兩坐標軸之間的關系,培養(yǎng)學生的'探索意識和能力。

  情感目標:

  由平面直角坐標系的有關內容,以及由點找坐標,反映平面直角坐標系與現(xiàn)實世界的密切聯(lián)系,讓學生認識數(shù)學與人類生活的密切聯(lián)系和對人類歷史發(fā)展的作用,提高學生參加數(shù)學學習活動的積極性和好奇心。

  教學重點:

  1、理解平面直角坐標系的有關知識;

  2、在給定的平面直角坐標系中,會根據(jù)點的位置寫出它的坐標;

  3、由觀察點的坐標、縱坐標或橫坐標相同的點所連成的線段與兩坐標軸之間的關系,說明坐標軸上點的坐標有什么特點。

  教學難點:

  1、橫(或縱)坐標相同的點的連線與坐標軸的關系的探究;

  2、坐標軸上點的坐標有什么特點的總結。

  三、教學過程設計

  第一環(huán)節(jié)感受生活中的情境,導入新課

  同學們,你們喜歡旅游嗎?假如你到了某一個城市旅游,那么你應怎樣確定旅游景點的位置呢?下面給出一張某市旅游景點的示意圖,根據(jù)示意圖(圖5— 6),回答以下問題:

 。1)你是怎樣確定各個景點位置的?

 。2)“大成殿”在“中心廣場”南、西各多少個格?“碑林”在“中心廣場”北、東各多少個格?

  (3)如果以“中心廣場”為原點作兩條互相垂直的數(shù)軸,分別取向右、向上的方向為數(shù)軸的正方向,一個方格的邊長看做一個單位長度,那么你能表示“碑林”的位置嗎?“大成殿”的位置呢?

  在上一節(jié)課,我們已經(jīng)學習了許多確定位置的方法,這個問題中,大家看用哪種方法比較合適?

  第二環(huán)節(jié)分類討論,探索新知

  1、平面直角坐標系、橫軸、縱軸、橫坐標、縱坐標、原點的定義和象限的劃分。

  學生自學課本,理解上述概念。

  2、例題講解

  (出示投影)例1

  例1寫出圖中的多邊形ABCDEF各頂點的坐標。

  3.2平面直角坐標系:課后練習

  一、選擇題(共9小題,每小題3分,滿分27分)

  1、若點A(﹣2,n)在x軸上,則點B(n﹣1,n+1)在()

  A、第四象限B、第三象限C、第二象限D、第一象限

  【考點】點的坐標。

  【專題】計算題。

  【分析】由點在x軸的條件是縱坐標為0,得出點A(﹣2,n)的n=0,再代入求出點B的坐標及象限。

  【解答】解:∵點A(﹣2,n)在x軸上,

  ∴n=0,

  ∴點B的坐標為(﹣1,1)。

  則點B(n﹣1,n+1)在第二象限。

  故選C。

  【點評】本題主要考查點的坐標問題,解決本題的關鍵是掌握好四個象限的點的坐標的特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負。

  2、已知點M到x軸的距離為3,到y(tǒng)軸的距離為2,且在第三象限。則M點的坐標為()

  A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)

  【考點】點的坐標。

  【分析】根據(jù)到坐標軸的距離判斷出橫坐標與縱坐標的長度,再根據(jù)第三象限的點的坐標特征解答。

  【解答】解:∵點M到x軸的距離為3,

  ∴縱坐標的長度為3,

  ∵到y(tǒng)軸的距離為2,

  ∴橫坐標的長度為2,

  ∵點M在第三象限,

  ∴點M的坐標為(﹣2,﹣3)。

  故選D。

  【點評】本題考查了點的坐標,難點在于到y(tǒng)軸的距離為橫坐標的長度,到x軸的距離為縱坐標的長度,這是同學們容易混淆而導致出錯的地方。

  3.2平面直角坐標系同步測試題

  1.點A(3,—1)其中橫坐標為XX,縱坐標為XX。

  2.過B點向x軸作垂線,垂足點坐標為—2,向y軸作垂線,垂足點坐標為5,則點B的坐標為。

  3.點P(—3,5)到x軸距離為XX,到y(tǒng)軸距離為XX。

數(shù)學初二教案3

重難點分析

  本節(jié)的重點是矩形的性質和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。矩形的這些性質和判定定理即是平行四邊形性質與判定的延續(xù),又是以后要學習的正方形的基礎。

  本節(jié)的難點是矩形性質的靈活應用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是矩形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。

  教法建議

  根據(jù)本節(jié)內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:

  1.矩形的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

  2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.

  3. 如果條件允許,教師在講授這節(jié)內容前,可指導學生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

  4. 在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的'測量,然后在組內進行整理、歸納.

  5. 由于矩形的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

  6.在矩形性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。

  矩形教學設計

  教學目標

  1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質;能推出直角三角形斜邊上的中線等于斜邊的一半的性質。

  2.能運用以上性質進行簡單的證明和計算。

  此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關系,滲透集合的思想,培養(yǎng)學生辨證唯物主義觀點。

  引導性材料

  想一想:一般四邊形與平行四邊形之間的相互關系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質;具有一些特殊的性質。

  小學里已學過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學里已學過)等特殊性質,那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應畫在哪里?

  (讓學生初步感知矩形與平行四邊形的從屬關系。)

  演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當平行四邊形的一個內角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。

  問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  說明與建議:教師的演示應充分展現(xiàn)變化過程,從而讓學生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學生能正確地給出矩形的定義。

  問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質呢?

  說明與建議:讓學生分組探索,有必要時,教師可引導學生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學生,這種探索的基礎是矩形有一個角是直角矩形的四個角都相等(矩形性質定理1),要學生給以證明(即課本例1后練習第1題)。

  學生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質上是一致的,所以不必另列為一個性質。

  學生探索矩形的四條對角線的大小關系時,如有困難,可引導學生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質定理2。

  問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質?

  說明與建議:(1)讓學生先觀察圖4.5-3,并議論猜想,如學生有困難,教師可引導學生觀察圖中的一個直角三角形(如Rt△ABC),讓學生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關系,然后讓學生自己給出如下證明:

  證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。

  ,AO=CO

  在Rt△ABC中,BO是斜邊AC上的中線,且 。

  直角三角形斜邊上的中線等于斜邊的一半。

  例題解析

  例1:(即課本例1)

  說明:本題難度不大,又有助于學生加深對性質定理的理解,教學中應引導學生探索解法:

  如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件AOD=120出發(fā),應用矩形的性質可知,ADB=30,另外,還可以引導學生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:

  ∵四邊形ABCD是矩形,

  AC=BD(矩形的對角線相等)。

  又 。

  OA=BO,△AOB是等腰三角形,

  ∵AOD=120,AOB=180- 120= 60

  AOB是等邊三角形。

  BO=AB=4cm,

  BD=2BO=244cm=8cm。

  例2:(補充例題)

  已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。

  (l)猜想:EF與BD具有怎樣的關系?

  (2)試證明你的猜想。

  解:(l)EF垂直平分BD。

  (2)證明:∵ABC=90,點E是AC的中點。

  (直角三角形的斜邊上的中線等于斜邊的一半)。

  同理: 。

  BE=DE。

  又∵EF平分BED。

  EFBD,BF=DF。

  說明:本例是一道不給出結論,需要學生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學生的推理(包括合情推理和邏輯推理)能力。如果學生不適應,或有困難,教師可根據(jù)實際情況加以引導,這種訓練,重要的不是猜對了沒有?證明了沒有?而是讓學生經(jīng)歷這樣一種自己研究圖形性質的過程,順便指出:求解本題的重要基礎是識圖技能----能從復雜圖形中分解出如圖4.5-6所示的三個基本圖形。

  課堂練習

  1.課本例1后練習題第2題。

  2.課本例1后練習題第4題。

  小結

  1.矩形的定義:

  2.歸納總結矩形的性質:

  對邊平行且相等

  四個角都是直角

  對角線平行且相等

  3.直角三角形斜邊上的中線等于斜邊的一半。

  4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。

  作業(yè)

  l.課本習題4.3A組第2題。

  2.課本復習題四A組第6、7題。

數(shù)學初二教案4

  教學設計思想:

  本節(jié)主要學習了平行四邊形的幾種判定方法,以及平行四邊形性質、判定的應用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學生的主觀能動性。

  教學目標

  知識與技能:

  1.總結出平行四邊形的三種判定方法;

  2.應用平行四邊形的判定解決實際問題;

  3.應用平行四邊形的性質與判定得出三角形中位線定理;

  4.總結三角形與平行四邊形的相互轉化,學會基本的添輔助線法。

  過程與方法:

  1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。

  2.經(jīng)歷探究三角形中位線定理的過程,體會轉化思想在數(shù)學中的重要性。

  情感態(tài)度價值觀:

  1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習慣;

  2.通過探索式證明法開拓思路,發(fā)展思維能力;

  3.在解決平行四邊形問題的過程中,不斷滲透轉化思想。

  教學重難點

  重點:1.平行四邊形的判別條件;2.應用平行四邊形的.性質和判定得出三角形中位線定理。

  難點:1.靈活應用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉化。

  教學方法

  小組討論、合作探究

  課時安排

  3課時

  教學媒體

  課件、

  教學過程

  第一課時

  (一)引入

  師:上節(jié)課我們已經(jīng)知道了平行四邊形的邊、角及對角線所具有的性質,請同學們回憶一下都有哪些?

數(shù)學初二教案5

  一、復習引入

  1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程

  (1)2x2=4 (2)(x-2)2=7

  提問1 這種解法的(理論)依據(jù)是什么?

  提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數(shù)”的特殊二次方程有效,不能實施于一般形式的二次方程.)

  2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

  (學生活動)用配方法解方程 2x2+3=7x

  (老師點評)略

  總結用配方法解一元二次方程的步驟(學生總結,老師點評).

  (1)先將已知方程化為一般形式;

  (2)化二次項系數(shù)為1;

  (3)常數(shù)項移到右邊;

  (4)方程兩邊都加上一次項系數(shù)的'一半的平方,使左邊配成一個完全平方式;

  (5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

  二、探索新知

  用配方法解方程:

  (1)ax2-7x+3=0 (2)ax2+bx+3=0

  如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.

  問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

  分析:因為前面具體數(shù)字已做得很多,我們現(xiàn)在不妨把a,b,c也當成一個具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.

  解:移項,得:ax2+bx=-c

  二次項系數(shù)化為1,得x2+bax=-ca

  配方,得:x2+bax+(b2a)2=-ca+(b2a)2

  即(x+b2a)2=b2-4ac4a2

  ∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0

  ∴(x+b2a)2=(b2-4ac2a)2

  直接開平方,得:x+b2a=±b2-4ac2a

  即x=-b±b2-4ac2a

  ∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

  由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:

  (1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

  (2)這個式子叫做一元二次方程的求根公式.

  (3)利用求根公式解一元二次方程的方法叫公式法.

  公式的理解

  (4)由求根公式可知,一元二次方程最多有兩個實數(shù)根.

  例1 用公式法解下列方程:

  (1)2x2-x-1=0 (2)x2+1.5=-3x

  (3)x2-2x+12=0 (4)4x2-3x+2=0

  分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.

  補:(5)(x-2)(3x-5)=0

  三、鞏固練習

  教材第12頁 練習1.(1)(3)(5)或(2)(4)(6).

  四、課堂小結

  本節(jié)課應掌握:

  (1)求根公式的概念及其推導過程;

  (2)公式法的概念;

  (3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數(shù)a,b,c,注意各項的系數(shù)包括符號;3)計算b2-4ac,若結果為負數(shù),方程無解;4)若結果為非負數(shù),代入求根公式,算出結果.

  (4)初步了解一元二次方程根的情況.

  五、作業(yè)布置

  教材第17頁習題4

數(shù)學初二教案6

  1、教材分析

 。1)知識結構:

 。2)重點和難點分析:

  重點:四邊形的有關概念及內角和定理。因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。

  難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內這個條件,這幾個字的意思學生不好理解,所以是難點。

  2、教法建議

 。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數(shù)學的興趣。

 。2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的`邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

  (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決。結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

 。4)本節(jié)用到的數(shù)學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數(shù)學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。

  一、素質教育目標

  (一)知識教學點

  1、使學生掌握四邊形的有關概念及四邊形的內角和外角和定理。

  2、了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用。

 。ǘ┠芰τ柧汓c

  1、通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力。

  2、通過推導四邊形內角和定理,對學生滲透化歸思想。

  3、會根據(jù)比較簡單的條件畫出指定的四邊形。

  4、講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關概念對學生滲透類比思想。

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣。

 。ㄋ模┟烙凉B透點

  通過四邊形內角和定理數(shù)學,滲透統(tǒng)一美,應用美。

  二、學法引導

  類比、觀察、引導、講解

  三、重點難點疑點及解決辦法

  1、教學重點:四邊形及其有關概念;熟練推導四邊形外角和這一結論,并用此結論解決與四邊形內外角有關計算問題。

  2、教學難點:理解四邊形的有關概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用。

  3、疑點及解決辦法:四邊形的定義中為什么要有在平面內,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關鍵是要分析好作圖的順序,一般先作一個角。

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關概念;師生共同推導四邊形內角和的定理,學生鞏固內角和定理和應用;共同分析探索外角和定理,學生閱讀相關材料。

  第一課時

  七、教學步驟

  【復習引入】

  在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關知識有所了解,但還很膚淺,這一

  章我們將比較系統(tǒng)地學習各種四邊形的性質和判定分析它們之間的關系,并運用有關四邊形的知識解決一些新問題。

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖。

  師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形)。

  【講解新課】

  1、四邊形的有關概念

  結合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:

 。1)要結合圖形。

 。2)要與三角形類比。

 。3)講清定義中的關鍵詞語。如四邊形定義中要說明為什么加上同一平面內而三角形的定義中為什么不加同一平面內(三角形的三個頂點一定在同一平面內,而四個點有可能不在同一平面內,如圖42中的點。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內的限制)。

  (4)強調四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關系。

 。5)強調四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。

 。6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結論如圖4—4,圖4—5。

  2、四邊形內角和定理

  教師問:

 。1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?

 。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?

 。3)若在四邊形ABCD如圖4—7內任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。

  我們知道,三角形內角和等于180,那么四邊形的內角和就等于:

 、2180=360如圖4

  ②4180—360=360如圖4—7。

  例1已知:如圖48,直線于B、于C。

  求證:(1)(2)。

  本例題是四邊形內角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出。

  【總結、擴展】

  1、四邊形的有關概念。

  2、四邊形對角線的作用。

  3、四邊形內角和定理。

  八、布置作業(yè)

  教材P128中1(1)、2、 3。

  九、板書設計

數(shù)學初二教案7

  一、學習目標:

  1.多項式除以單項式的運算法則及其應用.

  2.多項式除以單項式的運算算理.

  二、重點難點:

  重點:多項式除以單項式的運算法則及其應用

  難點:探索多項式與單項式相除的運算法則的過程

  三、合作學習:

  (一)回顧單項式除以單項式法則

  (二)學生動手,探究新課

  1.計算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2.提問:①說說你是怎樣計算的②還有什么發(fā)現(xiàn)嗎?

  (三) 總結法則

  1.多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

  2.本質:把多項式除以單項式轉化成______________

  四、精講精練

  例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  隨堂練習:教科書練習

  五、小結

  1、單項式的'除法法則

  2、應用單項式除法法則應注意:

  A、系數(shù)先相除,把所得的結果作為商的系數(shù),運算過程中注意單項式的系數(shù)飽含它前面的符號

  B、把同底數(shù)冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

  C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏;

  D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

  E、多項式除以單項式法則

  第三十四學時:14.2.1平方差公式

  一、學習目標:

  1.經(jīng)歷探索平方差公式的過程.

  2.會推導平方差公式,并能運用公式進行簡單的運算.

  二、重點難點

  重點:平方差公式的推導和應用

  難點:理解平方差公式的結構特征,靈活應用平方差公式.

  三、合作學習

  你能用簡便方法計算下列各題嗎?

  (1)20xx×1999 (2)998×1002

  導入新課:計算下列多項式的積.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  結論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精講精練

  例1:運用平方差公式計算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:計算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  隨堂練習

數(shù)學初二教案8

  通過學生的討論,使學生更清楚以下事實:

  (1)分解因式與整式的乘法是一種互逆關系;

  (2)分解因式的結果要以積的形式表示;

  (3)每個因式必須是整式,且每個因式的`次數(shù)都必須低于原來的多項式 的次數(shù);

  (4)必須分解到每個多項式不能再分解為止。

  活動5:應用新知

  例題學習:

  P166例1、例2(略)

  在教師的引導下,學生應用提公因式法共同完成例題。

  讓學生進一步理解提公因式法進行因式分解。

  活動6:課堂練習

  1.P167練習;

  2. 看誰連得準

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些變形是因式分解,為什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  學生自主完成練習。

  通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

  活動7:課堂小結

  從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?

  學生發(fā)言。

  通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數(shù)學思想的理解。

  活動8:課后作業(yè)

  課本P170習題的第1、4大題。

  學生自主完成

  通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。

  板書設計(需要一直留在黑板上主板書)

  15.4.1提公因式法 例題

  1.因式分解的定義

  2.提公因式法

數(shù)學初二教案9

  教學內容:平移的妙用

  教學目標:

  一、知識與能力目標

  1、要求學生掌握平移的基本特征

  2、能在理解平移性質的基礎上巧妙運用的平移的知識來解決日常生活中的數(shù)學問題。

  二 、過程與方法目標:

  1、引導學生概括平移的基本特征。

  2、引導學生平移實例中的圖形,探索運用平移知識解決實際問題。

  3、引導學生親自動手嘗試對平移的再探索,發(fā)現(xiàn)平移的妙用!

  三、情感與態(tài)度目標:

  1、 通過學生自己觀察發(fā)現(xiàn),培養(yǎng)學生對數(shù)學的興趣。

  2、通過學生親自操作并解決問題,讓學生了解學習探索中的艱辛與成功的樂趣。從而幫助他們樹立學習數(shù)學的正確態(tài)度。

  3、讓學生在生活中觀察應用例子,從而讓他們體會到數(shù)學中的圖形美。

  教學重點、難點及教學突破

  重點:平移特征---------平移中的不變量

  難點:對圖形進行理解和平移

  教學突破:從實例入手,讓學生思考小學解答方法,從而引導學生觀察:能否進行平移。引導學生進行平移,從而讓學生多平移角度來解決問題;引導學生再探索,讓學生的妙用得到升發(fā)。

  教學準備:學生復習平移特征,準備紙筆和畫圖工具。

  教師用小黑板準備例題。

  教師活動

  學生活動

  活動說明

  一、復習平移的概念及特征;

  教師:同學們,本期11.1學習了平移,同學們想想:什么叫平移?平移的二要素是什么?平移的特征是什么?

  1. 學生思考后,教師抽學生回答

  學生:圖形的平行移動叫平移

  平移的二要素是:方向和距離

  平移的特征:

  平移后的`圖形與原來的圖形的對應線段平行且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化

  如圖:線段AB以如圖所示的方向平移2cm.

  通過復習平移的概念及特征,讓學生更進一步加深對平移理解,為后面的探索作準備

數(shù)學初二教案10

  教學目標

  1.知道梯形、等腰梯形、直角梯形的有關概念;能說出并證明等腰梯形的兩個性質;等腰梯形同一底上的兩個角相等;兩條對角線相等。

  2.會運用梯形的有關概念和性質進行有關問題的論證和計算。

  3.通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想。

  教學模式問題解決教學

  教學過程

  想一想:

  什么樣的四邊形是平行四邊形?平行四邊形有哪些性質?學生回答后,教師板書以下關系圖中的有關部分:

  畫一畫:

  畫一個梯形,并指出梯形的上、下底,畫出梯形的高。

  問題教學

  問題1:根據(jù)剛才的畫圖,請給梯形下一個定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學生自己給梯形下定義,有助于訓練學生觀察、概括和語言表述的能力。如果學生定義時,遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學生討論以下問題:一組對邊平行且這組對邊不相等的'四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關系圖,并結合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的公垂線段,在計算面積時高即為上下兩底(平行線)間的距離,也就是夾在兩底間的公垂線段的長度。畫高時可以從上底任一點向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構造直角三角形,便于計算。)

  問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會有困難;教師應進一步引導學生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當CD⊥BC時,另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)

  練一練:課本例1后練習第l、2題。

  問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質。并能證明你的猜想嗎?

  說明與建議:(l)教師要用微笑、點頭、贊嘆、激勵的表情和話語來鼓勵學生大膽猜想。(2)學生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導學生關注等腰梯形特有的性質---等腰梯形的底角相等。(3)如何證明這個猜想,可讓學生自己思考、探索、交流,教師給以引導,鼓勵證明多樣化,如課本第174頁的證法。教師可提醒學生證明過程中用到了"夾在平行線間的平行線段相等"這一性質。并指出:這種證法的實質是把一腰平移,從而構造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構造出兩個全等的直三角形等。

  問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學生用折紙的方法,確認等腰梯形是軸對稱圖形;教學中,還可引導學生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點的直線。)

  例題解析(課本例1)說明:本例的結論,為學生在討論"問題3"時已提及,則可由學生自已完成證明,并概括成為一個文字命題。如學生討論問題3時未提及,則可由教師引導學生猜想,然后再完成證明。

  課堂練習1.課本例1后練習第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)

數(shù)學初二教案11

  一、學情分析

  在七年級數(shù)學教學中發(fā)現(xiàn),本班學生興趣保持的還是比較好,絕大多數(shù)學生學習能夠認真聽講,積極思考,反復練習。特別上學期,大部分學生通過自己的努力,基本掌握了學習數(shù)學的方法和思維模式,成績有較大的進步。在上學期期末考試中,圓滿完成了我期初制定的教學任務。優(yōu)秀率突破了兩位數(shù),有12人,達到20%,合格率也上升到55%。但也有小部分學生因為基礎較差,正在喪失學習數(shù)學的信心。

  二、指導思想

  以《初中數(shù)學新課程標準》為準繩,進一步將新課程改革推向更深層次,進一步提高學生的基礎知識和基本技能。結合學生的實際情況和教材內容,制定切實可行的教學計劃,進一步培養(yǎng)學生創(chuàng)新思維和應用數(shù)學的能力。通過本學期的數(shù)學教學,激發(fā)學生學習數(shù)學的興趣,逐步提高學生的數(shù)學成績,完成八年級上冊數(shù)學教學任務。

  三、教學目標

  知識技能目標:認識實數(shù),掌握實數(shù)有關的運算方法;學習一次函數(shù)的圖像、性質與應用;掌握全等三角形的性質與判定、軸對稱及軸對稱圖形的特點;掌握整式的乘除運算、乘法公式和因式分解。

  過程方法目標:初步建立數(shù)形結合的表示數(shù)學關系。

  態(tài)度情感目標:從生活入手認識數(shù)學,探索數(shù)學規(guī)律,并將數(shù)學知識回歸到生活之中。班級教學目標:優(yōu)秀率:20%;合格率:60%。

  四、教材分析

  第十一章:全等三角形

  本章主要學習全等三角形的性質與判定方法及其應用。本章重點內容是全等三角形性質與判定方法及其應用;掌握綜合法證明的格式。教學難點是領會證明的分析思路、學會運用綜合法證明的格式。

  第十二章:軸對稱

  本章主要學習軸對稱及其基本性質,同時利用軸對稱變換,探究等腰三角形和正三角形的性質。本章重點內容是軸對稱性質與應用,等腰三角形、正三角形的性質與判定。教學難點是軸對稱在生活中的應用。

  第十三章:實數(shù)

  本章通過對平方根、立方根的探究引出無限不循環(huán)小數(shù),進而導出無理數(shù)和實數(shù)。本章重點內容是平方根、立方根、無理數(shù)和實數(shù)的概念與性質。教學難點是平方根及其性質;有理數(shù)、無理數(shù)的區(qū)別。

  第十四章:一次函數(shù)

  本章主要學習一次函數(shù)及其三種表達方式,包括正比例函數(shù)、一次函數(shù)的概念、圖象、性質和應用。學會用函數(shù)的觀點認識一元一次方程、一元一次不等式及二元一次方程組。本章重點內容是正比例函數(shù)、一次函數(shù)的概念、圖象和性質。教學難點是培養(yǎng)學生初步形成數(shù)形結合的.思維模式。

  第十五章:整式的乘除與因式分解

  本章主要學習整式的乘除運算和乘法公式、多項式的因式分解。本章重點內容是整式的乘除運算與因式分解。教學難點是對多項式的因式分解及其思路。

  五、方法措施

  1、精心設置教學情境,激發(fā)學生學習數(shù)學的興趣,從生活入手,總結數(shù)學規(guī)律,立足于用數(shù)學知識解決生活中存在的實際問題。

  2、加強對學生的課后輔導,發(fā)展優(yōu)等生應用數(shù)學知識的能力,鞏固中等學生的基礎知識和學習成績,促進后進生的進步。

  3、成立互助學習小組,以優(yōu)帶良,以優(yōu)促后,實現(xiàn)全體學生共同進步的目標。

  六、課時安排

  請根據(jù)自己的教學實際情況和學生學習的實際情況制定適當?shù)恼n時計劃。

數(shù)學初二教案12

  教學目標:

  經(jīng)歷探索兩個圓之間位置關系的過程;了解圓與圓之間的幾種位置關系;了解兩圓外切、內切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系

  教學重點和難點

  重點:圓與圓之間的幾種位置關系

  難點:兩圓外切、內切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系

  教學過程設計

  一、從學生原有的認知結構提出問題

  1)復習點與圓的位置關系;2)復習直線與圓的位置關系。

  二、師生共同研究形成概念

  1.書本引例

  ☆ 想一想 P 125 平移兩個圓

  利用平移實驗直觀地探索圓和圓的位置關系。

  2.圓與圓的位置關系

  每一種位置關系都可以先讓學生想想應該用什么名稱表達。在講解兩圓外切、內切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系時,可先讓學生探索,老師不要生硬地把答案說出來

  ☆ 鞏固練習 若兩圓沒有交點,則這兩個圓的位置關系是 相離 ;

  若兩圓有一個交點,則這兩個圓的位置關系是 相切 ;

  若兩圓有兩個交點,則這兩個圓的位置關系是 相交 ;

  ☆ 想一想 書本P 126 想一想

  通過實際例子讓學生理解圓與圓的位置關系。

  3.圓與圓相切的性質

  ☆ 想一想 書本P 127 想一想

  旨在引導學生思考兩圓相切的性質:如果兩圓相切,那么兩圓的連心線經(jīng)過切點,這一性質是下面議一議的基礎。學生容易看出兩圓相切圖形的軸對稱性及對稱軸,但要說明切點在連心線上則有一定困難。

  如果兩圓相切,那么兩圓的連心線經(jīng)過切點

  4.講解例題

  例1.已知⊙ 、⊙ 相交于點A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度數(shù);2)⊙ 的半徑 和⊙ 的`半徑 。

  5.講解例題

  例2.兩個同樣大小的肥皂泡粘在一起,其剖面如圖所示,分隔兩個肥皂泡的肥皂膜PQ成一條直線,TP、NP分別為兩圓的切線,求∠TPN的大小。

  三、隨堂練習

  1.書本 P 128 隨堂練習

  2.《練習冊》 P 59

  四、小結

  圓與圓的位置關系;圓心距與兩圓半徑和兩圓的關系。

  五、作業(yè)

  書本 P 130 習題3.9 1

數(shù)學初二教案13

  ●過程與方法目標

  在探究、合作活動中,發(fā)展學生探究能力和合作意識.

  ●情感與價值觀要求

  通過對公式的逆運用,感受數(shù)學的嚴謹性以及數(shù)學結論的確定性.

  教學重點

  兩個公式的逆運用.

  教學難點

  靈活地運用公式進行實數(shù)運算.

  教學準備:教材、課件、電腦.電腦軟件:Word,Powerpoint.

  教學過程

  第一環(huán)節(jié):復習引入(2分鐘,引導學生復習舊知,導入新課,學生思考解答)

  內容:復習算術平方根的概念,并提出問題:下面正方形的邊長分別是多少?

  2.6實數(shù):同步測試

  1.與數(shù)軸上的點一一對應的數(shù)是( ).

  A.整數(shù)B.有理數(shù)C.無理數(shù)D.實數(shù)

  2.下列敘述中,不正確的是( ).

  A.絕對值最小的.實數(shù)是零

  B.算術平方根最小的實數(shù)是零

  C.平方最小的實數(shù)是零

  D.立方根最小的實數(shù)是零

  3.下列說法中①有理數(shù)包括整數(shù)、分數(shù)和零; ②無理數(shù)都是開方開不盡的數(shù);③不帶根號的數(shù)都是有理數(shù);④帶根號的數(shù)都是無理數(shù);⑤無理數(shù)都是無限小數(shù);⑥無限小數(shù)都是無理數(shù).正確的個數(shù)是( ).

  A.0個B.1個C.2個D.3個

  4.下列說法中,正確的是( ).

  A.任何實數(shù)的平方都是正數(shù)

  B.正數(shù)的倒數(shù)必小于這個正數(shù)

  C.絕對值等于它本身的數(shù)必是非負數(shù)

  D.零除以任何一個實數(shù)都等于零

  《2.6實數(shù)》課時練習含答案

  4.如果一個實數(shù)的平方根與它的立方根相等,則這個數(shù)是( )

  A.0 B.正整數(shù)C.0和1 D.1

  答案:A

  解析:解答:0的平方根是0,0的立方根還是0,故只有0的平方根和它的立方根相等

  分析:考察特殊數(shù)的平方根和立方根,注意0的平方根和立方根.

  5.有下列說法正確的是:( )

  A無理數(shù)就是開方開不盡的數(shù);B無理數(shù)是無限不循環(huán)小數(shù);

  C帶根號的數(shù)都是無理數(shù)D無限小數(shù)都是無理數(shù)

  答案:B

  解析:解答:根據(jù)無理數(shù)的定義可以判斷,無理數(shù)是無限不循環(huán)小數(shù);A選項中無理數(shù)不僅僅包含開方開不盡的數(shù),還包括如等的數(shù);C選項帶根號的數(shù)不一定都是無理數(shù);D選項中無限循環(huán)小數(shù)不是無理數(shù);故答案選B

  分析:考察算術平方根的計算.

數(shù)學初二教案14

  一、復習引入

  (學生活動)解下列方程:

  (1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

  老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.

  二、探索新知

  (學生活動)請同學們口答下面各題.

  (老師提問)(1)上面兩個方程中有沒有常數(shù)項?

  (2)等式左邊的各項有沒有共同因式?

  (學生先答,老師解答)上面兩個方程中都沒有常數(shù)項;左邊都可以因式分解.

  因此,上面兩個方程都可以寫成:

  (1)x(2x+1)=0 (2)3x(x+2)=0

  因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

  (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現(xiàn)降次的?)

  因此,我們可以發(fā)現(xiàn),上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的.乘積等于0的形式,再使這兩個一次式分別等于0,從而實現(xiàn)降次,這種解法叫做因式分解法.

  例1 解方程:

  (1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

  思考:使用因式分解法解一元二次方程的條件是什么?

  解:略 (方程一邊為0,另一邊可分解為兩個一次因式乘積.)

  練習:下面一元二次方程解法中,正確的是( )

  A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

  B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

  C.(x+2)2+4x=0,∴x1=2,x2=-2

  D.x2=x,兩邊同除以x,得x=1

  三、鞏固練習

  教材第14頁 練習1,2.

  四、課堂小結

  本節(jié)課要掌握:

  (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.

  (2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.

  五、作業(yè)布置

  教材第17頁習題6,8,10,11

數(shù)學初二教案15

  教學目標

  知識與技能目標

  1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

  2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

  3.逐步掌握說理的基本方法。

  過程與方法目標

  1.在探索平行四邊形的判別條件的過程中,發(fā)展學生的合情推理意識,主動探索的習慣。

  2.鼓勵學生用多種方法進行說理。

  情感與態(tài)度目標

  1.培養(yǎng)學生探索創(chuàng)新的能力,開拓學生思路,發(fā)展學生的思維能力。

  2.培養(yǎng)學生合作學習,增強學生的自我評價意識。

  教材分析

  教材通過創(chuàng)設“釘制平行四邊形框架”這一情境,便于學生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學生自己準備,由學生自我操作。也可由教師演示。

  教學重點:平行四邊形的判別方法。

  教學難點:利用平行四邊形的`判別方法進行正確的說理。

  學情分析

  初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內容的學習,要引導學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質定理。

  教學流程

  一、創(chuàng)設情境,引入新課

  師:請同學們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

  學生活動:學生按小組進行探索。

【數(shù)學初二教案】相關文章:

數(shù)學初二教案11-24

最新數(shù)學初二教案09-28

初二數(shù)學優(yōu)秀教案11-21

初二數(shù)學教案11-02

【推薦】初二數(shù)學教案12-23

初二數(shù)學教案【熱】12-24

【薦】初二數(shù)學教案12-19

數(shù)學初二教案15篇11-25

《矩形》初二的數(shù)學教案12-02

數(shù)學初二教案(15篇)11-26