天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網>教案大全>數(shù)學教案>高二數(shù)學教案>高二優(yōu)秀數(shù)學教案

高二優(yōu)秀數(shù)學教案

時間:2022-11-16 15:07:48 高二數(shù)學教案 我要投稿

高二優(yōu)秀數(shù)學教案(5篇)

  作為一位不辭辛勞的人民教師,通常會被要求編寫教案,通過教案準備可以更好地根據具體情況對教學進程做適當?shù)谋匾恼{整。教案要怎么寫呢?下面是小編為大家整理的高二優(yōu)秀數(shù)學教案,僅供參考,希望能夠幫助到大家。

高二優(yōu)秀數(shù)學教案(5篇)

高二優(yōu)秀數(shù)學教案1

  一、說教材:

  1、地位、作用和特點:

  《xxx》是高中數(shù)學課本第xx冊(x修)的第xx章“xxx”的第xx節(jié)內容。

  本節(jié)是在學習了之后編排的。通過本節(jié)課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《xx》的知識與我們日常生活、生產、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是xx;特點之二是:xxx。

  教學目標:

  根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

  (1)知識目標:A、B、C

  (2)能力目標:A、B、C

  (3)德育目標:A、B

  教學的重點和難點:

  (1)教學重點:

  (2)教學難點:

  二、說教法:

  基于上面的教材分析,我根據自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學xx真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:

  導入新課新課教學反饋發(fā)展

  三、說學法:

  學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。

  1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

  本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。

  2、讓學生親自經歷運用科學方法探索的過程。主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創(chuàng)設探索規(guī)律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規(guī)律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

  3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

  4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的'好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內在本質的能力。

  四、教學過程:

  (一)、課題引入:

  教師創(chuàng)設問題情景(創(chuàng)設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數(shù)學科學的有關情況。)激發(fā)學生的探究xx,引導學生提出接下去要研究的問題。

  (二)、新課教學:

  1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

  2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

  (三)、實施反饋:

  1、課堂反饋,遷移知識(遷移到與生活有關的例子)。讓學生分析有關的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。

  2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

  五、板書設計:

  在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

  六、說課綜述:

  以上是我對《xxx》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

  總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

高二優(yōu)秀數(shù)學教案2

  一、教學內容分析

  圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數(shù)次實踐后的高度抽象、恰當?shù)乩枚xxx題,許多時候能以簡馭繁、因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

  二、學生學習情況分析

  我所任教班級的.學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率、

  四、教學目標

  1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用xx解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

  2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

  3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣、

  五、教學重點與難點:

  教學重點

  1、對圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學難點:

  巧用圓錐曲線定義xx

高二優(yōu)秀數(shù)學教案3

  一、學情分析

  本節(jié)課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發(fā)展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節(jié)課的鞏固性復習。而本節(jié)課學生會遇到的困難有:數(shù)軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。

  二、考綱要求

  1.會用坐標表示平面向量的加法、減法與數(shù)乘運算.

  2.理解用坐標表示的平面向量共線的條件.

  3.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.

  4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.

  三、教學過程

  (一)知識梳理:

  1.向量坐標的求法

  (1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.

  (2)設A(x1,y1),B(x2,y2),則

  =xxxxxxxxxxxxxxxx_

  ||=xxxxxxxxxxxxxx_

  (二)平面向量坐標運算

  1.向量加法、減法、數(shù)乘向量

  設=(x1,y1),=(x2,y2),則

  +=-=λ=.

  2.向量平行的坐標表示

  設=(x1,y1),=(x2,y2),則∥?xxxxxxxxxxxxxxxx.

  (三)核心考點·習題演練

  考點1.平面向量的坐標運算

  例1.已知A(-2,4),B(3,-1),C(-3,-4).設(1)求3+-3;

  (2)求滿足=m+n的實數(shù)m,n;

  練:(20xx江蘇,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

  (m,n∈R),則m-n的值為

  考點2平面向量共線的坐標表示

  例2:平面內給定三個向量=(3,2),=(-1,2),=(4,1)

  若(+k)∥(2-),求實數(shù)k的值;

  練:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ為實數(shù),(+λ)∥,則λ=(  )

  思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

  方法總結:

  1.向量共線的兩種表示形式

  設a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應視題目的具體條件而定,一般情況涉及坐標的應用②.

  2.兩向量共線的充要條件的作用

  判斷兩向量是否共線(平行的`問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.

  考點3平面向量數(shù)量積的坐標運算

  例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,

  則的值為;的值為.

  【提示】解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.

  練:(20xx,安徽,13)設=(1,2),=(1,1),=+k.若⊥,則實數(shù)k的值等于(  )

  【思考】兩非零向量⊥的充要條件:·=0?     .

  解題心得:

  (1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.

  (2)解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.

  (3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.

  考點4:平面向量模的坐標表示

  例4:(20xx湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則的值為(  )

  A.6B.7C.8D.9

  練:(20xx,上海,12)

  在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則的取值范圍是?

  解題心得:

  求向量的模的方法:

  (1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉化為數(shù)量積運算;

  (2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..

  五、課后作業(yè)(課后習題1、2題)

高二優(yōu)秀數(shù)學教案4

  一、教學目標

  1.把握菱形的判定.

  2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

  3.通過教具的演示培養(yǎng)學生的學習愛好.

  4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

  二、教法設計

  觀察分析討論相結合的方法

  三、重點·難點·疑點及解決辦法

  1.教學重點:菱形的判定方法.

  2.教學難點:菱形判定方法的綜合應用.

  四、課時安排

  1課時

  五、教具學具預備

  教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

  六、師生互動活動設計

  教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

  七、教學步驟

  復習提問

  1.敘述菱形的定義與性質.

  2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為xxxxxxxx.

  引入新課

  師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

  生答:定義法.

  此外還有別的兩種判定方法,下面就來學習這兩種方法.

  講解新課

  菱形判定定理1:四邊都相等的四邊形是菱形.

  菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1

  分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

  分析判定2:

  師問:本定理有幾個條件?

  生答:兩個.

  師問:哪兩個?

  生答:(1)是平行四邊形(2)兩條對角線互相垂直.

  師問:再需要什么條件可證該平行四邊形是菱形?

  生答:再證兩鄰邊相等.

  (由學生口述證實)

  證實時讓學生注重線段垂直平分線在這里的應用,

  師問:對角線互相垂直的四邊形是菱形嗎?為什么?

  可畫出圖,顯然對角線,但都不是菱形.

  菱形常用的'判定方法歸納為(學生討論歸納后,由教師板書):

  注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

  例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.

  求證:四邊形是菱形(按教材講解).

  總結、擴展

  1.小結:

  (1)歸納判定菱形的四種常用方法.

  (2)說明矩形、菱形之間的區(qū)別與聯(lián)系.

  2.思考題:已知:如圖4△中,,平分,,,交于.

  求證:四邊形為菱形.

  八、布置作業(yè)

  教材P159中9、10、11、13

高二優(yōu)秀數(shù)學教案5

  一、教材分析

  教材的地位和作用

  期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊。同時,它在市場預測,經濟統(tǒng)計,風險與決策等領域有著廣泛的應用,為今后學習數(shù)學及相關學科產生深遠的影響。

  教學重點與難點

  重點:離散型隨機變量期望的概念及其實際含義。

  難點:離散型隨機變量期望的實際應用。

  [理論依據]本課是一節(jié)概念新授課,而概念本身具有一定的.抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節(jié)課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學難點。

  二、教學目標

  [知識與技能目標]

  通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

  會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

  [過程與方法目標]

  經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養(yǎng)學生歸納、概括等合情推理能力。

  通過實際應用,培養(yǎng)學生把實際問題抽象成數(shù)學問題的能力和學以致用的數(shù)學應用意識。

  [情感與態(tài)度目標]

  通過創(chuàng)設情境激發(fā)學生學習數(shù)學的情感,培養(yǎng)其嚴謹治學的態(tài)度。在學生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。

  三、教法選擇

  引導發(fā)現(xiàn)法

  四、學法指導

  “授之以魚,不如授之以漁”,注重發(fā)揮學生的主體性,讓學生在學習中學會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

【高二優(yōu)秀數(shù)學教案】相關文章:

高二優(yōu)秀數(shù)學教案11-14

高二優(yōu)秀數(shù)學教案5篇11-15

高二數(shù)學教案08-27

高二數(shù)學教案12-04

關于高二數(shù)學教案12-01

中職高二數(shù)學教案11-07

最新高二數(shù)學教案09-29

高二數(shù)學教案15篇12-05

高二數(shù)學教案(15篇)12-06