初二數(shù)學(xué)上冊(cè)教案
作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來(lái)輔助教學(xué),借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。我們?cè)撛趺慈?xiě)教案呢?下面是小編精心整理的初二數(shù)學(xué)上冊(cè)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初二數(shù)學(xué)上冊(cè)教案1
教學(xué)目的
通過(guò)分析儲(chǔ)蓄中的數(shù)量關(guān)系、商品利潤(rùn)等有關(guān)知識(shí),經(jīng)歷運(yùn)用方程解決實(shí)際問(wèn)題的過(guò)程,進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):探索這些實(shí)際問(wèn)題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):找出能表示整個(gè)題意的等量關(guān)系。
教學(xué)過(guò)程
一、復(fù)習(xí)
1.儲(chǔ)蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤(rùn)等有關(guān)知識(shí)。
利潤(rùn)=售價(jià)—成本; =商品利潤(rùn)率
二、新授
問(wèn)題4.小明爸爸前年存了年利率為2.43%的二年期定期儲(chǔ)蓄,今年到期后,扣除利息稅,所得利息正好為小明買(mǎi)了一只價(jià)值48.6元的計(jì)算器,問(wèn)小明爸爸前年存了多少元?
利息—利息稅=48.6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6
問(wèn),扣除利息的20%,那么實(shí)際得到的'利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣(mài)出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤(rùn)是怎么來(lái)的?
標(biāo)價(jià)的80%(即售價(jià))-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標(biāo)價(jià)為:(1+40%)x
每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%
每件服裝的利潤(rùn)為:(1+40%)x·80%—x
由等量關(guān)系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書(shū)第15頁(yè),練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問(wèn)題時(shí),首先要弄清題意,從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題,然后分析數(shù)學(xué)問(wèn)題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問(wèn)題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書(shū)第16頁(yè),習(xí)題6.3.1,第4、5題。
初二數(shù)學(xué)上冊(cè)教案2
教學(xué)目標(biāo)
1.等腰三角形的概念. 2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用.
教學(xué)重點(diǎn):
1.等腰三角形的概念及性質(zhì).
2.等腰三角形性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
等腰三角形三線(xiàn)合一的性質(zhì)的理解及其應(yīng)用.
教學(xué)過(guò)程
、.提出問(wèn)題,創(chuàng)設(shè)情境
在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱(chēng)圖形,探究了軸對(duì)稱(chēng)的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線(xiàn)的軸對(duì)稱(chēng)圖形,還能夠通過(guò)軸對(duì)稱(chēng)變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱(chēng)的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱(chēng)圖形嗎?②什么樣的三角形是軸對(duì)稱(chēng)圖形?
有的三角形是軸對(duì)稱(chēng)圖形,有的三角形不是.
問(wèn)題:那什么樣的三角形是軸對(duì)稱(chēng)圖形?
滿(mǎn)足軸對(duì)稱(chēng)的條件的三角形就是軸對(duì)稱(chēng)圖形,也就是將三角形沿某一條直線(xiàn)對(duì)折后兩部分能夠完全重合的'就是軸對(duì)稱(chēng)圖形.
我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱(chēng)圖形的三角形──等腰三角形.
、.導(dǎo)入新課: 要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形.
作一條直線(xiàn)L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線(xiàn)L的對(duì)稱(chēng)點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃,注明它的腰、底邊、頂角和底?
思考:
1.等腰三角形是軸對(duì)稱(chēng)圖形嗎?請(qǐng)找出它的對(duì)稱(chēng)軸.
2.等腰三角形的兩底角有什么關(guān)系?
3.頂角的平分線(xiàn)所在的直線(xiàn)是等腰三角形的對(duì)稱(chēng)軸嗎?
4.底邊上的中線(xiàn)所在的直線(xiàn)是等腰三角形的對(duì)稱(chēng)軸嗎?底邊上的高所在的直線(xiàn)呢?
結(jié)論:等腰三角形是軸對(duì)稱(chēng)圖形.它的對(duì)稱(chēng)軸是頂角的平分線(xiàn)所在的直線(xiàn).因?yàn)榈妊切蔚膬裳嗟,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱(chēng)圖形,它的對(duì)稱(chēng)軸是頂角的平分線(xiàn)所在的直線(xiàn).
要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱(chēng)軸,并看它的兩個(gè)底角有什么關(guān)系.
沿等腰三角形的頂角的平分線(xiàn)對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線(xiàn)既是底邊上的中線(xiàn),也是底邊上的高.
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成等邊對(duì)等角).
2.等腰三角形的頂角平分線(xiàn),底邊上的中線(xiàn)、底邊上的高互相重合(通常稱(chēng)作三線(xiàn)合一).
由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱(chēng)軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程).
初二數(shù)學(xué)上冊(cè)教案3
初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié):等腰三角形
一、等腰三角形的性質(zhì):
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對(duì)等角)。
3、等腰三角形的頂角角平分線(xiàn)、底邊上的'中線(xiàn),底邊上的高相互重合.
4、等腰三角形是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是三線(xiàn)合一(1條)。
5、等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于60°
、鄣冗吶切蚊織l邊上都存在三線(xiàn)合一.
、艿冗吶切问禽S對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是三線(xiàn)合一(3條).
6.基本判定:
⑴等腰三角形的判定:
、儆袃蓷l邊相等的三角形是等腰三角形.
、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).
⑵等邊三角形的判定:
、偃龡l邊都相等的三角形是等邊三角形.
②三個(gè)角都相等的三角形是等邊三角形.
③有一個(gè)角是60°的等腰三角形是等邊三角形.
初二數(shù)學(xué)上冊(cè)教案4
1、教材分析
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2、教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類(lèi)比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類(lèi)比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線(xiàn),所以四邊形的對(duì)角線(xiàn)是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線(xiàn),通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的`一條對(duì)角線(xiàn),并觀察四邊形的一條對(duì)角線(xiàn)把它分成幾個(gè)三角形?兩條對(duì)角線(xiàn)呢?使學(xué)生加深對(duì)對(duì)角線(xiàn)的作用的認(rèn)識(shí)。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類(lèi)比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題。
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2、了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。
(二)能力訓(xùn)練點(diǎn)
1、通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。
2、通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想。
3、會(huì)根據(jù)比較簡(jiǎn)單的條件畫(huà)出指定的四邊形。
4、講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類(lèi)比思想。
(三)德育滲透點(diǎn)
使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣。
(四)美育滲透點(diǎn)
通過(guò)四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。
二、學(xué)法引導(dǎo)
類(lèi)比、觀察、引導(dǎo)、講解
三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法
1、教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問(wèn)題。
2、教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問(wèn)題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3、疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒(méi)有呢?根據(jù)指定條件畫(huà)四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角。
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師引入新課,學(xué)生觀察圖形,類(lèi)比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。
第一課時(shí)
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對(duì)四邊形、長(zhǎng)方形、平形四邊形的有關(guān)知識(shí)有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識(shí)解決一些新問(wèn)題。
【引入新課】
用投影儀打出課前畫(huà)好的教材中P119的圖。
師問(wèn):在上圖中你能把知道的長(zhǎng)方形、正方形、平行四邊形、梯形找出來(lái)嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形)。
【講解新課】
1、四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對(duì)角線(xiàn)(同時(shí)學(xué)生在書(shū)上畫(huà)出上述概念),講解這些概念時(shí):
(1)要結(jié)合圖形。
(2)要與三角形類(lèi)比。
(3)講清定義中的關(guān)鍵詞語(yǔ)。如四邊形定義中要說(shuō)明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn)。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
(4)強(qiáng)調(diào)四邊形對(duì)角線(xiàn)的作用,作為四邊形的一種常用的輔助線(xiàn),通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形來(lái)解(滲透化歸思想),并觀察圖4—3用對(duì)角線(xiàn)分成的這些三角形與原四邊形的關(guān)系。
(5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書(shū)寫(xiě)四邊形如圖41。
(6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4—4,圖4—5。
2、四邊形內(nèi)角和定理
教師問(wèn):
(1)在圖4—3中對(duì)角線(xiàn)AC把四邊形ABCD分成幾個(gè)三角形?
(2)在圖4—6中兩條對(duì)角線(xiàn)AC和BD把四邊形分成幾個(gè)三角形?
(3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線(xiàn),把四邊形分成幾個(gè)三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
①2180=360如圖4
、4180—360=360如圖4—7。
例1已知:如圖48,直線(xiàn)于B、于C。
求證:(1) (2) 。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴(kuò)展】
1、四邊形的有關(guān)概念。
2、四邊形對(duì)角線(xiàn)的作用。
3、四邊形內(nèi)角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書(shū)設(shè)計(jì)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習(xí)
教材P122中1、2、3。
初二數(shù)學(xué)上冊(cè)教案5
教學(xué)目標(biāo):
知識(shí)與技能
1、掌握直角三角形的判別條件,并能進(jìn)行簡(jiǎn)單應(yīng)用;
2、進(jìn)一步發(fā)展數(shù)感,增加對(duì)勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問(wèn)題抽象出數(shù)學(xué)問(wèn)題的能力,建立數(shù)學(xué)模型、
3、會(huì)通過(guò)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論、
情感態(tài)度與價(jià)值觀
敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)、
教學(xué)重點(diǎn)
運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過(guò)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論、
教學(xué)難點(diǎn)
會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論、
課前準(zhǔn)備
標(biāo)有單位長(zhǎng)度的細(xì)繩、三角板、量角器、題篇
教學(xué)過(guò)程:
復(fù)習(xí)引入:
請(qǐng)學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對(duì)嗎?
創(chuàng)設(shè)問(wèn)題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁(yè)古埃及造直角的方法、
這樣做得到的是一個(gè)直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
1、如何來(lái)判斷?(用直角三角板檢驗(yàn))
這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說(shuō),如果三角形的三邊為,,,請(qǐng)猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿(mǎn)足較小兩邊的平方和等于較大邊的平方時(shí))
2、繼續(xù)嘗試:下面的.三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:
5,12,13; 6,8,10; 8,15,17、
(1)這三組數(shù)都滿(mǎn)足a2 +b2=c2嗎?
(2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?
3、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2 +b2=c2,那么這個(gè)三角形是直角三角形、
滿(mǎn)足a2 +b2=c2的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)、
4、例1一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中∠A和∠DBC都應(yīng)為直角、工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?
隨堂練習(xí):
1、下列幾組數(shù)能否作為直角三角形的三邊長(zhǎng)?說(shuō)說(shuō)你的理由、
、9,12,15; ⑵15,36,39;
、12,35,36; ⑷12,18,22、
2、已知ABC中BC=41,AC=40,AB=9,則此三角形為xxxxxxx三角形,xxxxxx是角、
3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積、
4、習(xí)題1、3
課堂小結(jié):
1、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2 +b2=c2,那么這個(gè)三角形是直角三角形、
2、滿(mǎn)足a2 +b2=c2的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)、勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)、
初二數(shù)學(xué)上冊(cè)教案6
教學(xué)目標(biāo)
1.會(huì)解簡(jiǎn)易方程,并能用簡(jiǎn)易方程解簡(jiǎn)單的應(yīng)用題;
2.通過(guò)代數(shù)法解簡(jiǎn)易方程進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力,發(fā)展學(xué)生的應(yīng)用意識(shí);
3.通過(guò)解決問(wèn)題的實(shí)踐,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的鉆研精神。
教學(xué)建議
一、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):簡(jiǎn)易方程的解法;
難點(diǎn):根據(jù)實(shí)際問(wèn)題中的數(shù)量關(guān)系正確地列出方程并求解。
二、重點(diǎn)、難點(diǎn)分析
解簡(jiǎn)易方程的基本方法是:將方程兩邊同時(shí)加上(或減去)同一個(gè)適當(dāng)?shù)臄?shù);將方程兩邊同時(shí)乘以(或除以)同一個(gè)適當(dāng)?shù)臄?shù)。最終求出問(wèn)題的解。
判斷方程求解過(guò)程中兩邊加上(或減去)以及乘以(或除以)的同一個(gè)數(shù)是否“適當(dāng)”,關(guān)鍵是看運(yùn)算的第一步能否使方程的一邊只含有帶有未知數(shù)的那個(gè)數(shù),第二步能否使方程的一邊只剩下未知數(shù),即求出結(jié)果。
列簡(jiǎn)易方程解應(yīng)用題是以列代數(shù)式為基礎(chǔ)的,關(guān)鍵是在弄清楚題目語(yǔ)句中各種數(shù)量的意義及相互關(guān)系的基礎(chǔ)上,選取適當(dāng)?shù)奈粗獢?shù),然后把與數(shù)量有關(guān)的語(yǔ)句用代數(shù)式表示出來(lái),最后利用題中的相等關(guān)系列出方程并求解。
三、知識(shí)結(jié)構(gòu)
導(dǎo)入方程的概念解簡(jiǎn)易方程利用簡(jiǎn)易方程解應(yīng)用題。
四、教法建議
(1)在本節(jié)的導(dǎo)入部分,須使學(xué)生理解的是算術(shù)運(yùn)算只對(duì)已知數(shù)進(jìn)行加、減、乘、除,而代數(shù)運(yùn)算的優(yōu)越性體現(xiàn)在未知數(shù)獲得與已知數(shù)平等的地位,即同樣可以和已知數(shù)進(jìn)行加、減、乘、除運(yùn)算。對(duì)于方程、方程的解、解方程的概念讓學(xué)生了解即可。
(2)解簡(jiǎn)易方程,要在學(xué)生積極參與的基礎(chǔ)上,理解何種形式的方程在求解過(guò)程中方程兩邊選擇加上(或減去)同一個(gè)數(shù),以及何種形式的方程在求解過(guò)程中兩邊選擇乘以(或除以)同一個(gè)數(shù)。另一個(gè)重要的問(wèn)題就是“適當(dāng)?shù)臄?shù)”的選擇了。通常,整式方程并不需要檢驗(yàn),但為了學(xué)生從一開(kāi)始就養(yǎng)成自我檢查的好習(xí)慣,可以讓學(xué)生在草稿紙上檢驗(yàn),同時(shí)也是對(duì)前面學(xué)過(guò)的求代數(shù)式的值的.復(fù)習(xí)。
(3)教材給出了三道應(yīng)用題,其中例4是一道有關(guān)公式應(yīng)用的方程問(wèn)題。列簡(jiǎn)易方程解應(yīng)用題,關(guān)鍵在引導(dǎo)學(xué)生加深對(duì)代數(shù)式的理解基礎(chǔ)上,認(rèn)真讀懂題意,弄清楚題目中的關(guān)鍵語(yǔ)句所包含的各種數(shù)量的意義及相互關(guān)系。恰當(dāng)?shù)卦O(shè)未知數(shù),用代數(shù)式表示數(shù)學(xué)語(yǔ)句,依據(jù)相等關(guān)系正確的列出方程并求解。
(4)教學(xué)過(guò)程中,應(yīng)充分發(fā)揮多媒體技術(shù)的輔助教學(xué)作用,可以參考運(yùn)用相關(guān)課件提高學(xué)生的學(xué)習(xí)興趣,加深對(duì)列簡(jiǎn)易方程解簡(jiǎn)單的應(yīng)用題的整個(gè)分析、解決問(wèn)題過(guò)程的理解。此外,通過(guò)應(yīng)用投影儀、幻燈片可以提高課堂效率,有利于對(duì)知識(shí)點(diǎn)的掌握。
五、列簡(jiǎn)易方程解應(yīng)用題
列簡(jiǎn)易方程解應(yīng)用題的一般步驟
(1)弄清題意和題目中的已知數(shù)、未知數(shù),用字母(如x)表示題目中的一個(gè)未知數(shù).
(2)找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.
(3)根據(jù)這個(gè)相等關(guān)系列出需要的代數(shù)式,從而列出方程.
(4)解這個(gè)方程,求出未知數(shù)的值.
(5)寫(xiě)出答案(包括單位名稱(chēng)).
概括地說(shuō),列簡(jiǎn)易方程解應(yīng)用題,一般有“設(shè)、列、解、驗(yàn)、答”五個(gè)步驟,審題可在草稿紙上進(jìn)行.其中關(guān)鍵是“列”,即列出符合題意的方程.難點(diǎn)是找等量關(guān)系.要想抓住關(guān)鍵、突破難點(diǎn),一定要開(kāi)動(dòng)腦筋,勤于思考、努力提高自己分析問(wèn)題和解決問(wèn)題的能力.
初二數(shù)學(xué)上冊(cè)教案7
一、學(xué)生起點(diǎn)分析
八年級(jí)學(xué)生已在七年級(jí)學(xué)習(xí)了“變量之間的關(guān)系”,對(duì)利用圖象表示變量之間的關(guān)系已有所認(rèn)識(shí),并能從圖象中獲取相關(guān)的信息,對(duì)函數(shù)與圖象的聯(lián)系還比較陌生,需要教師在教學(xué)中引導(dǎo)學(xué)生重點(diǎn)突破函數(shù)與圖象的對(duì)應(yīng)關(guān)系.
二、教學(xué)任務(wù)分析
《一次函數(shù)的圖象》是義務(wù)教育課程標(biāo)準(zhǔn)北師大實(shí)驗(yàn)教科書(shū)八年級(jí)(上)第六章《一次函數(shù)》的第三節(jié).本節(jié)內(nèi)容安排了2個(gè)課時(shí),第1課時(shí)是讓學(xué)生了解函數(shù)與對(duì)象的對(duì)應(yīng)關(guān)系和作函數(shù)圖象的步驟和方法,明確一次函數(shù)的圖象是一條直線(xiàn),能熟練地作出一次函數(shù)的圖象。第2課時(shí)是通過(guò)對(duì)一次函數(shù)圖象的比較與歸類(lèi),探索一次函數(shù)及其圖象的簡(jiǎn)單性質(zhì).本課時(shí)是第一課時(shí),教材注重學(xué)生在探索過(guò)程的體驗(yàn),注重對(duì)函數(shù)與圖象對(duì)應(yīng)關(guān)系的認(rèn)識(shí).
為此本節(jié)課的教學(xué)目標(biāo)是:
1.了解一次函數(shù)的圖象是一條直線(xiàn),能熟練作出一次函數(shù)的圖象.
2.經(jīng)歷函數(shù)圖象的作圖過(guò)程,初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線(xiàn).
3.已知函數(shù)的代數(shù)表達(dá)式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力.
4.理解一次函數(shù)的代數(shù)表達(dá)式與圖象之間的一一對(duì)應(yīng)關(guān)系.
教學(xué)重點(diǎn)是:
初步了解作函數(shù)圖象的一般步驟:列表、描點(diǎn)、連線(xiàn).
教學(xué)難點(diǎn)是:
理解一次函數(shù)的代數(shù)表達(dá)式與圖象之間的一一對(duì)應(yīng)關(guān)系.
三、教學(xué)過(guò)程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題;
第二環(huán)節(jié):畫(huà)一次函數(shù)的圖象;
第三環(huán)節(jié):動(dòng)手操作,深化探索;
第四環(huán)節(jié):鞏固練習(xí),深化理解;
第五環(huán)節(jié):課時(shí)小結(jié);
第六環(huán)節(jié):拓展探究;
第七環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題
內(nèi)容:
一天,小明以80米/分的速度去上學(xué),請(qǐng)問(wèn)小明離家的距離S(米)與小明出發(fā)的時(shí)間t(分)之間的函數(shù)關(guān)系式是怎樣的?它是一次函數(shù)嗎?它是正比例函數(shù)嗎? S=80t(t≥0)下面的圖象能表示上面問(wèn)題中的S與t的關(guān)系嗎?
我們說(shuō),上面的圖象是函數(shù)S=80t(t≥0)的圖象,這就是我們今天要學(xué)習(xí)的主要內(nèi)容:一次函數(shù)的圖象的特殊情況正比例函數(shù)的'圖象。
目的:通過(guò)學(xué)生比較熟悉的生活情景,讓學(xué)生在寫(xiě)函數(shù)關(guān)系式和認(rèn)識(shí)圖象的過(guò)程中,初步感受函數(shù)與圖象的聯(lián)系,激發(fā)其學(xué)習(xí)的欲望.
效果:學(xué)生通過(guò)對(duì)上述情景的分析,初步感受到函數(shù)與圖象的聯(lián)系,激發(fā)了學(xué)生的學(xué)習(xí)欲望.
第二環(huán)節(jié):畫(huà)正比例函數(shù)的圖象
內(nèi)容:首先我們來(lái)學(xué)習(xí)什么是函數(shù)的圖象?
把一個(gè)函數(shù)的自變量x與對(duì)應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象(graph).
例1請(qǐng)作出正比例函數(shù)y=2x的圖象.
第三環(huán)節(jié):動(dòng)手操作,深化探索
內(nèi)容:做一做
(1)作出正比例函數(shù)y= 3x的圖象.
(2)在所作的圖象上取幾個(gè)點(diǎn),找出它們的橫坐標(biāo)和縱坐標(biāo),并驗(yàn)證它們是否都滿(mǎn)足關(guān)系y= 3x.
請(qǐng)同學(xué)們以小組為單位,討論下面的問(wèn)題,把得出的結(jié)論寫(xiě)出來(lái).
(1)滿(mǎn)足關(guān)系式y(tǒng)= 3x的x,y所對(duì)應(yīng)的點(diǎn)(x,y)都在正比例函數(shù)y= 3x的圖象上嗎?
(2)正比例函數(shù)y= 3x的圖象上的點(diǎn)(x,y)都滿(mǎn)足關(guān)系式y(tǒng)= 3x嗎?
(3)正比例函數(shù)y=kx的圖象有什么特點(diǎn)?
明晰
由上面的討論我們知道:正比例函數(shù)的代數(shù)表達(dá)式與圖象是一一對(duì)應(yīng)的,即滿(mǎn)足正比例函數(shù)的代數(shù)表達(dá)式的x,y所對(duì)應(yīng)的點(diǎn)(x,y)都在正比例函數(shù)的圖象上;正比例函數(shù)的圖象上的點(diǎn)(x,y)都滿(mǎn)足正比例函數(shù)的代數(shù)表達(dá)式.正比例函數(shù)y=kx的圖象是一條直線(xiàn),以后可以稱(chēng)正比例函數(shù)y=kx的圖象為直線(xiàn)y=kx.
議一議
既然我們得出正比例函數(shù)y=kx的圖象是一條直線(xiàn).那么在畫(huà)正比例函數(shù)圖象時(shí)有沒(méi)有什么簡(jiǎn)單的方法呢?
因?yàn)椤皟牲c(diǎn)確定一條直線(xiàn)”,所以畫(huà)正比例函數(shù)y=kx的圖象時(shí)可以只描出兩個(gè)點(diǎn)就可以了.因?yàn)檎壤瘮?shù)的圖象是一條過(guò)原點(diǎn)(0,0)的直線(xiàn),所以只需再確定一個(gè)點(diǎn)就可以了,通常過(guò)(0,0),(1,k)作直線(xiàn).
4.3一次函數(shù)的圖象:同步測(cè)試
14若直線(xiàn)經(jīng)過(guò)第一.二.四象限,則k.b的取值范圍是( ).
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D. k<0,b<0
2.已知一次函數(shù)y=3-2x
(1)求圖像與兩條坐標(biāo)軸的交點(diǎn)坐標(biāo),并在下面的直角坐標(biāo)系中畫(huà)出它的圖像;
(2)從圖像看,y隨著x的增大而增大,還是隨x的增大而減小?
(3)x取何值時(shí),y>0?
3.已知一次函數(shù)y=-2x+4
(1)畫(huà)出函數(shù)的圖象.
(2)求圖象與x軸、y軸的交點(diǎn)A、B的坐標(biāo).
(3)求A、B兩點(diǎn)間的距離.
(4)求△AOB的面積.
(5)利用圖象求當(dāng)x為何值時(shí),y≥0.
《函數(shù)的圖象》課后練習(xí)
1.一根彈簧原長(zhǎng)12cm,它所掛物體的質(zhì)量不超過(guò)10kg,并且每掛重物1kg就伸長(zhǎng)1.5cm,掛重物后彈簧長(zhǎng)度y(cm)與掛重物x(kg)之間的函數(shù)關(guān)系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
初二數(shù)學(xué)上冊(cè)教案8
一、學(xué)生情況分析及改進(jìn)提高措施:
學(xué)生們經(jīng)過(guò)兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡(jiǎn)單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會(huì)了獨(dú)立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會(huì)了探究問(wèn)題,并能根據(jù)具體情況提出合理的問(wèn)題,還能正確解決問(wèn)題的能力。無(wú)論是理解問(wèn)題的能力,還是分析、解決問(wèn)題的能力均有所提高,基礎(chǔ)知識(shí)和基本技能打得也比較扎實(shí),對(duì)數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂(lè)于參與到學(xué)習(xí)活動(dòng)中去,特別是對(duì)一些動(dòng)手操作,合作學(xué)習(xí),實(shí)踐活動(dòng)等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計(jì)一些活動(dòng),引導(dǎo)學(xué)生進(jìn)行獨(dú)立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的經(jīng)驗(yàn)。
在數(shù)學(xué)知識(shí)上已經(jīng)掌握了兩步計(jì)算式題和有余數(shù)的除法,還有統(tǒng)計(jì)知識(shí),并學(xué)會(huì)了辨認(rèn)八個(gè)方位;掌握了萬(wàn)以?xún)?nèi)數(shù)的讀法、寫(xiě)法和加、減法;還掌握了長(zhǎng)度單位毫米、厘米、分米、米和千米的實(shí)際長(zhǎng)度和簡(jiǎn)單的換算以及實(shí)際測(cè)量,并能用以上這些相應(yīng)的知識(shí)解決實(shí)際生活中的問(wèn)題?傊@些技能和知識(shí)點(diǎn)都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識(shí)打下了堅(jiān)實(shí)的基礎(chǔ),他們愛(ài)學(xué)數(shù)學(xué)的熱情,以及對(duì)數(shù)學(xué)的感悟能力會(huì)在本學(xué)期進(jìn)一步得到發(fā)揚(yáng)光大,他們的情感、態(tài)度、價(jià)值觀會(huì)沿著良性軌道螺旋式上升。
具體提高措施是:
1.從學(xué)生的年齡特點(diǎn)出發(fā),多采用情境活動(dòng)式教學(xué),培養(yǎng)學(xué)生的參與意識(shí)。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的`數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問(wèn)題,能積極投入到探索問(wèn)題的活動(dòng)中去,絕大部分學(xué)生能夠在課堂上主動(dòng)的研究問(wèn)題,獲取知識(shí)。
2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問(wèn)題,讓學(xué)生在解決問(wèn)題的過(guò)程中能夠聯(lián)系到實(shí)際,便于對(duì)問(wèn)題的理解。結(jié)合學(xué)生的生活實(shí)際,將問(wèn)題生活化,讓學(xué)生從生活中獲取到更多的解決問(wèn)題的素材。
3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實(shí)踐練習(xí),加強(qiáng)各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實(shí)踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長(zhǎng),并做記錄,再將每天的記錄制作成統(tǒng)計(jì)圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長(zhǎng)度單位,讓他們從成語(yǔ)詞典上收集有關(guān)長(zhǎng)度單位的成語(yǔ),通過(guò)對(duì)詞語(yǔ)的理解把握其表示的長(zhǎng)度。
4.加強(qiáng)學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時(shí)學(xué)習(xí)情況,與學(xué)生家長(zhǎng)多溝通交流。
二、本冊(cè)教材分析
本冊(cè)教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動(dòng)實(shí)踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動(dòng)有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實(shí)問(wèn)題的過(guò)程中獲得對(duì)數(shù)學(xué)知識(shí)的理解和體驗(yàn)。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長(zhǎng);(6)年、月、日;(7)可能性;(8)共有五個(gè)社會(huì)實(shí)踐活動(dòng),還有兩個(gè)整理復(fù)習(xí),一個(gè)總復(fù)習(xí)。具體特點(diǎn)是:
1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動(dòng)手操作與抽象概括相結(jié)合,體驗(yàn)乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號(hào)感。
2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗(yàn)出發(fā),注重通過(guò)操作活動(dòng)發(fā)展空間觀念。
3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計(jì)。
三、總體教學(xué)目標(biāo):
(一)、知識(shí)與技能
1.在單元學(xué)習(xí)中,學(xué)生通過(guò)“數(shù)一數(shù)”、“分一分”等活動(dòng),經(jīng)歷從具體情境中抽象出乘法除法算式,體會(huì)乘法與除法的意義。
2.學(xué)平面圖形的周長(zhǎng),會(huì)進(jìn)行周長(zhǎng)的計(jì)算。
(二)、實(shí)踐能力培養(yǎng)
1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過(guò)程,體驗(yàn)從不同的位置觀察,所看到的物體可能是不一樣的。
2.結(jié)合生活情境,感受并認(rèn)識(shí)質(zhì)量單位。
3.經(jīng)歷對(duì)生活中某些現(xiàn)象進(jìn)行推理、判斷的過(guò)程,能對(duì)生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。
(三)、情感與態(tài)度
1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動(dòng)中,能夠感受到思考的條理性和合理性。
2、教師重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià),讓他們?cè)诟惺艿綐?lè)趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
教研專(zhuān)題:
創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識(shí)。
個(gè)人專(zhuān)題:
在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識(shí),提高課堂的有效性。
初二數(shù)學(xué)上冊(cè)教案9
一、教學(xué)目標(biāo):
1.經(jīng)歷觀察、發(fā)現(xiàn)、探究中心對(duì)稱(chēng)圖形的有關(guān)概念和基本性質(zhì)的過(guò)程,積累一定的審美體驗(yàn)。
2了解中心對(duì)稱(chēng)圖形及其基本性質(zhì),掌握平行四邊形也是中心對(duì)稱(chēng)圖形。
二、教學(xué)重、難點(diǎn):
理解中心對(duì)稱(chēng)圖形的概念及其基本性質(zhì)。
三、教學(xué)過(guò)程:
(一)創(chuàng)設(shè)問(wèn)題情境
1.以魔術(shù)創(chuàng)設(shè)問(wèn)題情境:教師通過(guò)撲克牌魔術(shù)的演示引出研究課題,激發(fā)學(xué)生探索“中心對(duì)稱(chēng)圖形”的興趣。
【魔術(shù)設(shè)計(jì)】:師取出若干張非中心對(duì)稱(chēng)的撲克牌和一張是中心對(duì)稱(chēng)的牌,按牌面的多數(shù)指向整理好(如上圖),然后請(qǐng)一位同學(xué)上臺(tái)任意抽出一張撲克,把這張牌旋轉(zhuǎn)180O后再插入,再請(qǐng)這位同學(xué)洗幾下,展開(kāi)撲克牌,馬上確定這位同學(xué)抽出的撲克。
(課堂反應(yīng):學(xué)生非常安靜,目不轉(zhuǎn)睛地盯著老師做動(dòng)作。每完成一個(gè)動(dòng)作之后,學(xué)生就進(jìn)入沉思狀態(tài),接著就是小聲議論。)
師重復(fù)以上活動(dòng)
2次后提問(wèn):
(1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點(diǎn)?
(2)你能說(shuō)明為什么老師要把抽出的這張牌旋轉(zhuǎn)1800嗎?(小組討論)
(反思:創(chuàng)設(shè)問(wèn)題情境主要在于下面幾點(diǎn)理由:(1)采取從學(xué)生最熟悉的實(shí)際問(wèn)題情境入手的方式,貼近學(xué)生的生活實(shí)際,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活,進(jìn)一步感悟到把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的訓(xùn)練,從而激發(fā)學(xué)生的求知欲。
(2)所有新知識(shí)的學(xué)習(xí)都以對(duì)相關(guān)具體問(wèn)題情境的探索作為開(kāi)始,它們是學(xué)生了解與學(xué)習(xí)這些新知識(shí)的有效方法,同時(shí)也活躍了課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣。(
3)通過(guò)撲克魔術(shù)創(chuàng)設(shè)問(wèn)題情境,學(xué)生獲得的答案將是豐富的。在最后交流歸納時(shí),他們感覺(jué)到,自己在活動(dòng)中“研究”的成果,對(duì)最終形成規(guī)范、正確的結(jié)論是有貢獻(xiàn)的,從而激發(fā)他們更加注意學(xué)習(xí)方式和“研究”方式。這也是對(duì)他們從事科學(xué)研究的情感態(tài)度的培養(yǎng)。學(xué)生勤于動(dòng)手、樂(lè)于探究,發(fā)展學(xué)生實(shí)踐應(yīng)用能力和創(chuàng)新精神成為可行。)
2.教師揭示謎底。
利用“Z+Z”課件游戲演示牌面,請(qǐng)學(xué)生找一找哪張牌旋轉(zhuǎn)
180O后和原來(lái)牌面一樣。
3.學(xué)生通過(guò)動(dòng)手分析上述撲克牌牌面、獨(dú)立思考、探究、合作交流等活動(dòng),得到答案:
(1)只有一張撲克牌圖案顛倒后和原來(lái)牌面一樣。
(2)其余撲克牌顛倒后和原來(lái)牌面不一樣,因此,老師事先按牌面的多數(shù)(少數(shù))指向整理好,把任意抽出的一張撲克牌旋轉(zhuǎn)180O后,就可以馬上在一堆撲克牌中找出它。
(反思:本環(huán)節(jié)是在撲克魔術(shù)揭密問(wèn)題的具體背景下,通過(guò)學(xué)生自己的觀察、發(fā)現(xiàn)、總結(jié)、歸納,進(jìn)一步理解中心對(duì)稱(chēng)圖形及其特點(diǎn),發(fā)展空間觀念,突出了數(shù)學(xué)課堂教學(xué)中的探索性。從而培養(yǎng)了學(xué)生觀察、概括能力,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花。)
(二)學(xué)生分組討論、思考探究:
1.師問(wèn):生活中有哪些圖形是與這張撲克牌一樣,旋轉(zhuǎn)180O后和原來(lái)一樣?
生舉例:線(xiàn)段、平行四邊形、矩形、菱形、正方形、圓、飛機(jī)的雙葉螺旋槳等。
2.你能將下列各圖分別繞其上的一點(diǎn)旋轉(zhuǎn)180O,使旋轉(zhuǎn)前后的圖形完全重合嗎?(先讓學(xué)生思考,允許有困難的學(xué)生利用 “
Z+Z”演示其旋轉(zhuǎn)過(guò)程。)3
.有人用“中心對(duì)稱(chēng)圖形”一詞描述上面的這些現(xiàn)象,你認(rèn)為這個(gè)詞是什么含義?
(對(duì)于抽象的概念教學(xué),要關(guān)注概念的實(shí)際背景與形成過(guò)程,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,力求讓學(xué)生采取發(fā)現(xiàn)式的學(xué)習(xí)方式,通過(guò)“想一想”、“議一議”、 “動(dòng)一動(dòng)”等多種活動(dòng)形式,幫助學(xué)生克服記憶概念的學(xué)習(xí)方式。)
(三)教師明晰,建立模型
1給出“中心對(duì)稱(chēng)圖形”定義:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180O,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)叫做它的對(duì)稱(chēng)中心。
2.對(duì)比軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)圖形:(列出表格,加深印象)
軸對(duì)稱(chēng)圖形中心對(duì)稱(chēng)圖形有一條對(duì)稱(chēng)軸——直線(xiàn)有一個(gè)對(duì)稱(chēng)中心——點(diǎn)沿對(duì)稱(chēng)軸對(duì)折繞對(duì)稱(chēng)中心旋轉(zhuǎn)1880O對(duì)折后與原圖形重合
旋轉(zhuǎn)后與原圖形重合
(四)解釋、應(yīng)用與拓廣
1.教師用“Z+Z
智能教育平臺(tái)”演示旋轉(zhuǎn)過(guò)程,驗(yàn)證上述圖形的中心對(duì)稱(chēng)性,引導(dǎo)學(xué)生討論、探究中心對(duì)稱(chēng)圖形的性質(zhì)。
(利用計(jì)算機(jī)《Z+Z智能教育平臺(tái)》技術(shù),通過(guò)圖形旋轉(zhuǎn)給出中心對(duì)稱(chēng)圖形的一個(gè)幾何解釋?zhuān)康氖鞘箤W(xué)生對(duì)中心對(duì)稱(chēng)圖形有一個(gè)更直觀的認(rèn)識(shí)。)
2.探究中心對(duì)稱(chēng)圖形的性質(zhì)
板書(shū):中心對(duì)稱(chēng)圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線(xiàn)段都被對(duì)稱(chēng)中心平分。
3.師問(wèn):怎樣找出一個(gè)中心對(duì)稱(chēng)圖形的對(duì)稱(chēng)中心?
(兩組對(duì)應(yīng)點(diǎn)連結(jié)所成線(xiàn)段的交點(diǎn))
4平行四邊形是中心對(duì)稱(chēng)圖形嗎?若是,請(qǐng)找出其對(duì)稱(chēng)中心,你怎樣驗(yàn)證呢?
學(xué)生分組討論交流并回答。
討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?學(xué)生分組討論交流并回答。
討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?
5逆向問(wèn)題:如果一個(gè)四邊形是中心對(duì)稱(chēng)圖形,那么這個(gè)四邊形一定是平行四邊形嗎?
學(xué)生討論回答。
6你還能找出哪些多邊形是中心對(duì)稱(chēng)圖形?
(反思:合作學(xué)習(xí)是新課程改革中追求的一種學(xué)習(xí)方法,但合作學(xué)習(xí)必須建立在學(xué)生的獨(dú)立探索的基礎(chǔ)上,否則合作學(xué)習(xí)將會(huì)流于形式,不能起到應(yīng)有的效果,所于我在上課時(shí)強(qiáng)調(diào)學(xué)生先獨(dú)立思考,再由當(dāng)天的'小組長(zhǎng)組織進(jìn)行,并由當(dāng)天的記錄員記錄小組成員的活動(dòng)情況(每個(gè)小組有一張課堂合作學(xué)習(xí)參考表,見(jiàn)附錄)。)
(五)拓展與延伸
1中國(guó)文字豐富多彩、含義深刻,有許多是中心對(duì)稱(chēng)的,你能找出幾個(gè)嗎?
2.正六邊形的對(duì)稱(chēng)中心怎樣確定?
(六)魔術(shù)表演:
1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉(zhuǎn)180o后,得到右圖,你知道哪一張撲克被旋轉(zhuǎn)過(guò)嗎?
2.學(xué)生小組活動(dòng):
以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設(shè)計(jì)魔術(shù),相互之間做游戲。
(新教材的編寫(xiě),著重突出了用數(shù)學(xué)活動(dòng)呈現(xiàn)教學(xué)內(nèi)容,而不是以例題和習(xí)題的形式出現(xiàn)。通過(guò)多種形式的實(shí)踐活動(dòng),讓學(xué)生親歷探究與現(xiàn)實(shí)生活聯(lián)系密切的學(xué)習(xí)過(guò)程,使學(xué)生在合作中學(xué)習(xí),在競(jìng)爭(zhēng)收獲,共同分享成功的喜悅,同時(shí)能調(diào)節(jié)課堂的氣氛,培養(yǎng)學(xué)生之間的情感。只有這樣,學(xué)生的創(chuàng)新意識(shí)和動(dòng)手意識(shí)才會(huì)充分地發(fā)揮出來(lái)。)
四、案例小結(jié)
《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“實(shí)踐活動(dòng)是培養(yǎng)學(xué)生進(jìn)行主動(dòng)探索與合作交流的重要途徑!薄敖處煈(yīng)該充分利用學(xué)生已有的生活經(jīng)驗(yàn),隨時(shí)引導(dǎo)學(xué)生把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到生活中去,解決身邊的數(shù)學(xué)問(wèn)題,了解數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,體會(huì)學(xué)習(xí)數(shù)學(xué)的重要性!边@兩段話(huà),正體現(xiàn)了新教材的重要變化——關(guān)注學(xué)生的生活世界,學(xué)習(xí)內(nèi)容更加貼近實(shí)際,同時(shí)強(qiáng)調(diào)了數(shù)學(xué)教學(xué)讓學(xué)生動(dòng)手實(shí)踐的重要意義和作用。
現(xiàn)實(shí)性的生活內(nèi)容,能夠賦予數(shù)學(xué)足夠的活力和靈性。對(duì)許多學(xué)生來(lái)說(shuō),“撲克”和“游戲”是很感興趣的內(nèi)容,因此,也具有現(xiàn)實(shí)性,即回歸生活(玩撲克牌)——讓學(xué)生感知學(xué)習(xí)數(shù)學(xué)可以讓生活增添許多樂(lè)趣,同時(shí)也讓學(xué)生感知到數(shù)學(xué)就在我們身邊,學(xué)生學(xué)習(xí)的數(shù)學(xué)應(yīng)當(dāng)是生活中的數(shù)學(xué),是學(xué)生“自己身邊的數(shù)學(xué)”。這樣,數(shù)學(xué)來(lái)源于生活,又必須回歸于生活,學(xué)生就能在游戲中學(xué)得輕松愉快,整個(gè)課堂顯得生動(dòng)活潑。
初二數(shù)學(xué)上冊(cè)教案10
一、學(xué)生起點(diǎn)分析
《平面直角坐標(biāo)系》是八年級(jí)上冊(cè)第五章《位置與坐標(biāo)》第二節(jié)內(nèi)容。本章是“圖形與坐標(biāo)”的主體內(nèi)容,不僅呈現(xiàn)了“確定位置的多種方法、平面直角坐標(biāo)系”等內(nèi)容,而且也從坐標(biāo)的角度使學(xué)生進(jìn)一步體會(huì)圖形平移、軸對(duì)稱(chēng)的數(shù)學(xué)內(nèi)涵,同時(shí)又是一次函數(shù)的重要基礎(chǔ)。《平面直角坐標(biāo)系》反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系和對(duì)人類(lèi)歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。因此,教學(xué)過(guò)程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問(wèn)題情境,會(huì)引起學(xué)生的極大關(guān)注,會(huì)有利于學(xué)生對(duì)內(nèi)容的較深層次的理解;另一方面,學(xué)生已經(jīng)具備了一定的學(xué)習(xí)能力,可多為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究。
二、教學(xué)任務(wù)分析
教學(xué)目標(biāo)設(shè)計(jì):
知識(shí)目標(biāo):
1、理解平面直角坐標(biāo)系以及橫軸、縱軸、原點(diǎn)、坐標(biāo)等概念;
2、認(rèn)識(shí)并能畫(huà)出平面直角坐標(biāo)系;
3、能在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫(xiě)出它的坐標(biāo)。
能力目標(biāo):
1、通過(guò)畫(huà)坐標(biāo)系、由點(diǎn)找坐標(biāo)等過(guò)程,發(fā)展學(xué)生的數(shù)形結(jié)合意識(shí)、合作交流意識(shí);
2、通過(guò)對(duì)一些點(diǎn)的坐標(biāo)進(jìn)行觀察,探索坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn),縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線(xiàn)段與兩坐標(biāo)軸之間的關(guān)系,培養(yǎng)學(xué)生的探索意識(shí)和能力。
情感目標(biāo):
由平面直角坐標(biāo)系的有關(guān)內(nèi)容,以及由點(diǎn)找坐標(biāo),反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系和對(duì)人類(lèi)歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。
教學(xué)重點(diǎn):
1、理解平面直角坐標(biāo)系的有關(guān)知識(shí);
2、在給定的平面直角坐標(biāo)系中,會(huì)根據(jù)點(diǎn)的位置寫(xiě)出它的坐標(biāo);
3、由觀察點(diǎn)的坐標(biāo)、縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線(xiàn)段與兩坐標(biāo)軸之間的關(guān)系,說(shuō)明坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
教學(xué)難點(diǎn):
1、橫(或縱)坐標(biāo)相同的點(diǎn)的連線(xiàn)與坐標(biāo)軸的關(guān)系的探究;
2、坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)的總結(jié)。
三、教學(xué)過(guò)程設(shè)計(jì)
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課
同學(xué)們,你們喜歡旅游嗎?假如你到了某一個(gè)城市旅游,那么你應(yīng)怎樣確定旅游景點(diǎn)的位置呢?下面給出一張某市旅游景點(diǎn)的示意圖,根據(jù)示意圖(圖5— 6),回答以下問(wèn)題:
。1)你是怎樣確定各個(gè)景點(diǎn)位置的?
(2)“大成殿”在“中心廣場(chǎng)”南、西各多少個(gè)格?“碑林”在“中心廣場(chǎng)”北、東各多少個(gè)格?
。3)如果以“中心廣場(chǎng)”為原點(diǎn)作兩條互相垂直的數(shù)軸,分別取向右、向上的方向?yàn)閿?shù)軸的正方向,一個(gè)方格的邊長(zhǎng)看做一個(gè)單位長(zhǎng)度,那么你能表示“碑林”的位置嗎?“大成殿”的位置呢?
在上一節(jié)課,我們已經(jīng)學(xué)習(xí)了許多確定位置的方法,這個(gè)問(wèn)題中,大家看用哪種方法比較合適?
第二環(huán)節(jié)分類(lèi)討論,探索新知
1、平面直角坐標(biāo)系、橫軸、縱軸、橫坐標(biāo)、縱坐標(biāo)、原點(diǎn)的定義和象限的'劃分。
學(xué)生自學(xué)課本,理解上述概念。
2、例題講解
(出示投影)例1
例1寫(xiě)出圖中的多邊形ABCDEF各頂點(diǎn)的坐標(biāo)。
3.2平面直角坐標(biāo)系:課后練習(xí)
一、選擇題(共9小題,每小題3分,滿(mǎn)分27分)
1、若點(diǎn)A(﹣2,n)在x軸上,則點(diǎn)B(n﹣1,n+1)在()
A、第四象限B、第三象限C、第二象限D(zhuǎn)、第一象限
【考點(diǎn)】點(diǎn)的坐標(biāo)。
【專(zhuān)題】計(jì)算題。
【分析】由點(diǎn)在x軸的條件是縱坐標(biāo)為0,得出點(diǎn)A(﹣2,n)的n=0,再代入求出點(diǎn)B的坐標(biāo)及象限。
【解答】解:∵點(diǎn)A(﹣2,n)在x軸上,
∴n=0,
∴點(diǎn)B的坐標(biāo)為(﹣1,1)。
則點(diǎn)B(n﹣1,n+1)在第二象限。
故選C。
【點(diǎn)評(píng)】本題主要考查點(diǎn)的坐標(biāo)問(wèn)題,解決本題的關(guān)鍵是掌握好四個(gè)象限的點(diǎn)的坐標(biāo)的特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù)。
2、已知點(diǎn)M到x軸的距離為3,到y(tǒng)軸的距離為2,且在第三象限。則M點(diǎn)的坐標(biāo)為()
A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)
【考點(diǎn)】點(diǎn)的坐標(biāo)。
【分析】根據(jù)到坐標(biāo)軸的距離判斷出橫坐標(biāo)與縱坐標(biāo)的長(zhǎng)度,再根據(jù)第三象限的點(diǎn)的坐標(biāo)特征解答。
【解答】解:∵點(diǎn)M到x軸的距離為3,
∴縱坐標(biāo)的長(zhǎng)度為3,
∵到y(tǒng)軸的距離為2,
∴橫坐標(biāo)的長(zhǎng)度為2,
∵點(diǎn)M在第三象限,
∴點(diǎn)M的坐標(biāo)為(﹣2,﹣3)。
故選D。
【點(diǎn)評(píng)】本題考查了點(diǎn)的坐標(biāo),難點(diǎn)在于到y(tǒng)軸的距離為橫坐標(biāo)的長(zhǎng)度,到x軸的距離為縱坐標(biāo)的長(zhǎng)度,這是同學(xué)們?nèi)菀谆煜鴮?dǎo)致出錯(cuò)的地方。
3.2平面直角坐標(biāo)系同步測(cè)試題
1.點(diǎn)A(3,—1)其中橫坐標(biāo)為XX,縱坐標(biāo)為XX。
2.過(guò)B點(diǎn)向x軸作垂線(xiàn),垂足點(diǎn)坐標(biāo)為—2,向y軸作垂線(xiàn),垂足點(diǎn)坐標(biāo)為5,則點(diǎn)B的坐標(biāo)為。
3.點(diǎn)P(—3,5)到x軸距離為XX,到y(tǒng)軸距離為XX。
初二數(shù)學(xué)上冊(cè)教案11
重難點(diǎn)分析
本節(jié)的重點(diǎn)是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個(gè)角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點(diǎn)是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時(shí)還具有自己獨(dú)特的性質(zhì)。如果得到一個(gè)平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對(duì)角線(xiàn)的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無(wú)措,教師在教學(xué)過(guò)程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過(guò)程中注意以下問(wèn)題:
1.矩形的知識(shí),學(xué)生在小學(xué)時(shí)接觸過(guò)一些,可由小學(xué)學(xué)過(guò)的知識(shí)作為引入。
2.矩形在現(xiàn)實(shí)中的實(shí)例較多,在講解矩形的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來(lái)進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識(shí).
3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁(yè)圖4-30所示,制作一個(gè)平行四邊形作為教學(xué)過(guò)程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對(duì)知識(shí)的掌握更輕松些.
4.在對(duì)性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對(duì)事先準(zhǔn)備后的圖形進(jìn)行邊、角、對(duì)角線(xiàn)的測(cè)量,然后在組內(nèi)進(jìn)行整理、歸納.
5.由于矩形的性質(zhì)定理證明比較簡(jiǎn)單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來(lái)進(jìn)行具體的證明.
6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
矩形教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說(shuō)出矩形的四個(gè)角都是直角和矩形的的對(duì)角線(xiàn)相等的性質(zhì);能推出直角三角形斜邊上的中線(xiàn)等于斜邊的一半的性質(zhì)。
2.能運(yùn)用以上性質(zhì)進(jìn)行簡(jiǎn)單的證明和計(jì)算。
此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會(huì)特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點(diǎn)。
引導(dǎo)性材料
想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-1的圓圈中填上四邊形和平行四邊形的字樣來(lái)說(shuō)明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。
小學(xué)里已學(xué)過(guò)長(zhǎng)方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個(gè)角都是直角(小學(xué)里已學(xué)過(guò))等特殊性質(zhì),那么,如果在圖4.5-1中再畫(huà)一個(gè)圈表示矩形,這個(gè)圈應(yīng)畫(huà)在哪里?
(讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)
演示:用四根木條制作一個(gè)平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個(gè)內(nèi)角由銳角變?yōu)殁g角的過(guò)程中,會(huì)發(fā)生怎樣的特殊情況,這時(shí)的圖形是什么圖形(矩形)。
問(wèn)題1:從上面的演示過(guò)程,可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?
說(shuō)明與建議:教師的演示應(yīng)充分展現(xiàn)變化過(guò)程,從而讓學(xué)生深切地感受到短形是無(wú)數(shù)個(gè)平行四邊形中的一個(gè)特例,同時(shí),又使學(xué)生能正確地給出矩形的定義。
問(wèn)題2:矩形是特殊的平行四邊形,它除了有一個(gè)角是直角以外,還可能具有哪些平行四邊形所沒(méi)有的特殊性質(zhì)呢?
說(shuō)明與建議:讓學(xué)生分組探索,有必要時(shí),教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗(yàn),分別從邊、角、對(duì)角線(xiàn)三個(gè)方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個(gè)角是直角矩形的四個(gè)角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。
學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說(shuō)明:這與矩形的四個(gè)角是直角本質(zhì)上是一致的,所以不必另列為一個(gè)性質(zhì)。
學(xué)生探索矩形的四條對(duì)角線(xiàn)的大小關(guān)系時(shí),如有困難,可引導(dǎo)學(xué)生測(cè)量并比較矩形兩條對(duì)角線(xiàn)的長(zhǎng)度,然后加以證明,得出性質(zhì)定理2。
問(wèn)題3:矩形的一條對(duì)角線(xiàn)把矩形分成兩個(gè)直角三角形,矩形的對(duì)角線(xiàn)既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?
說(shuō)明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個(gè)直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線(xiàn)BO與斜線(xiàn)AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:
證明:在矩形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AC=BD(矩形的對(duì)角線(xiàn)相等)。
AO=CO
在Rt△ABC中,BO是斜邊AC上的中線(xiàn),且。
直角三角形斜邊上的中線(xiàn)等于斜邊的一半。
例題解析
例1:(即課本例1)
說(shuō)明:本題難度不大,又有助于學(xué)生加深對(duì)性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:
如圖4.5-4,欲求對(duì)角線(xiàn)BD的長(zhǎng),由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長(zhǎng),或一個(gè)銳角的`度數(shù),再?gòu)囊阎獥l件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計(jì)算題書(shū)寫(xiě)格式的示范;第二種解法如下:
∵四邊形ABCD是矩形,
AC=BD(矩形的對(duì)角線(xiàn)相等)。
又。
OA=BO,△AOB是等腰三角形,
∵AOD=120,AOB=180- 120= 60
AOB是等邊三角形。
BO=AB=4cm,
BD=2BO=244cm=8cm。
例2:(補(bǔ)充例題)
已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90,E是AC的中點(diǎn),EF平分BED交BD于點(diǎn)F。
(1)猜想:EF與BD具有怎樣的關(guān)系?
(2)試證明你的猜想。
解:(1)EF垂直平分BD。
(2)證明:∵ABC=90,點(diǎn)E是AC的中點(diǎn)。
(直角三角形的斜邊上的中線(xiàn)等于斜邊的一半)。
同理:。
BE=DE。
又∵EF平分BED。
EFBD,BF=DF。
說(shuō)明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實(shí)際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對(duì)了沒(méi)有?證明了沒(méi)有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過(guò)程,順便指出:求解本題的重要基礎(chǔ)是識(shí)圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個(gè)基本圖形。
課堂練習(xí)
1.課本例1后練習(xí)題第2題。
2.課本例1后練習(xí)題第4題。
小結(jié)
1.矩形的定義:
2.歸納總結(jié)矩形的性質(zhì):
對(duì)邊平行且相等
四個(gè)角都是直角
對(duì)角線(xiàn)平行且相等
3.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。
4.矩形的一條對(duì)角線(xiàn)把矩形分成兩個(gè)全等的直角三角形;矩形的兩條對(duì)角線(xiàn)把矩形分成四個(gè)全等的等腰三角形。因此,有關(guān)矩形的問(wèn)題往往可化為直角三角形或等腰三角形的問(wèn)題來(lái)解決。
作業(yè)
1.課本習(xí)題4.3A組第2題。
2.課本復(fù)習(xí)題四A組第6、7題。
初二數(shù)學(xué)上冊(cè)教案12
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類(lèi), 會(huì)按角的大小對(duì)三角形進(jìn)行分類(lèi);
3.通過(guò)對(duì)三角形分類(lèi)的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類(lèi)的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問(wèn)題。
4.通過(guò)三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過(guò)對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點(diǎn):三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):三角形內(nèi)角和定理的證明
教學(xué)用具:直尺、微機(jī)
教學(xué)方法:互動(dòng)式,談話(huà)法
教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境,自然引入
把問(wèn)題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
問(wèn)題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問(wèn)題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?
問(wèn)題2 你能用幾何推理來(lái)論證得到的關(guān)系嗎?
對(duì)于問(wèn)題1絕大多數(shù)學(xué)生都能回答出來(lái)(小學(xué)學(xué)過(guò)的),問(wèn)題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線(xiàn),這是同學(xué)們第一次接觸的`新知識(shí)―――“輔助線(xiàn) ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書(shū)課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺(jué)本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問(wèn)質(zhì)疑,探究嘗試
(1)求證:三角形三個(gè)內(nèi)角的和等于
讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來(lái),再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫(huà)顯示具體情景。然后,圍繞問(wèn)題設(shè)計(jì)以下幾個(gè)問(wèn)題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問(wèn)題1 觀察:三個(gè)內(nèi)角拼成了一個(gè) 什么角?
問(wèn)題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?
(把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)
問(wèn)題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫(huà)一條什么樣的線(xiàn),作為解決問(wèn)題的橋梁?
其中問(wèn)題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問(wèn)題3學(xué)生經(jīng)過(guò)思考會(huì)畫(huà)出此線(xiàn)的。這里教師要重點(diǎn)講解“輔助線(xiàn)”的有關(guān)知識(shí)。比如:為什么要畫(huà)這條線(xiàn)?畫(huà)這條線(xiàn)有什么作用?要讓學(xué)生知道“輔助線(xiàn)”是以后解決幾何問(wèn)題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問(wèn)題的目的。
(2)通過(guò)類(lèi)比“三角形按邊分類(lèi)”,三角形按角怎樣分類(lèi)呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個(gè)內(nèi)角之和為定值 ,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?
問(wèn)題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?
問(wèn)題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?
問(wèn)題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?
其中問(wèn)題1學(xué)生很容易得出,提出問(wèn)題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過(guò)分析討論,得出結(jié)論并書(shū)寫(xiě)證明過(guò)程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書(shū)寫(xiě)格式,加強(qiáng)學(xué)生書(shū)寫(xiě)能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。
3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論
通過(guò)上面四個(gè)例題的分析與討論,有利于學(xué)生基礎(chǔ)知識(shí)與基本能力的掌握與提高,同時(shí)更有利于學(xué)生創(chuàng)新意識(shí)與創(chuàng)造性思維能力的培養(yǎng),在練習(xí)、講評(píng)等教學(xué)環(huán)節(jié)中,形成師生之間的、學(xué)生之間的“雙向反饋”是很重要的。
4、變式訓(xùn)練,鞏固提高
根據(jù)例4 的度數(shù)的求法,思考如下問(wèn)題:
(3)如圖5,過(guò)D點(diǎn)畫(huà)AB的平行線(xiàn)MN,與AC、BC交于點(diǎn)M、N,則 的度數(shù)多少?
(4)當(dāng)MN繞著點(diǎn)D旋轉(zhuǎn)過(guò)程中, 會(huì)有怎樣的變化?
提示:變化1 當(dāng)直線(xiàn)MN與AC、BC的交點(diǎn)仍在線(xiàn)段AC、BC上時(shí), =
變化2 當(dāng)直線(xiàn)MN與AC的交點(diǎn)在線(xiàn)段AC上,與BC的交點(diǎn)在BC的延長(zhǎng)線(xiàn)上時(shí),
變化3 當(dāng)直線(xiàn)MN與AC的交點(diǎn)在線(xiàn)段AC的延長(zhǎng)線(xiàn)上,與BC的交點(diǎn)在線(xiàn)段BC上時(shí), =
變化4當(dāng)直線(xiàn)MN與AC、BC的交點(diǎn)在C點(diǎn)時(shí), =
經(jīng)過(guò)這樣的變式、發(fā)展、學(xué)習(xí),不僅使學(xué)生鞏固了所學(xué)的數(shù)學(xué)知識(shí),也使學(xué)生體驗(yàn)了數(shù)學(xué)的運(yùn)動(dòng)變化觀,使學(xué)生的思維得到了培養(yǎng)。
5、小結(jié)
通過(guò)設(shè)置問(wèn)題:“本節(jié)在知識(shí)方面以及在思想方法方面你有怎樣的收獲?”師生以談話(huà)交流的形式進(jìn)行小結(jié)。強(qiáng)調(diào)學(xué)生注意:輔助線(xiàn)的作用及運(yùn)用定理及推論解決問(wèn)題時(shí),要善于抓住條件與結(jié)論的關(guān)系。
6、布置作業(yè)
a、書(shū)面作業(yè)P43#3
b、上交作業(yè)P42#16、17
初二數(shù)學(xué)上冊(cè)教案13
一、基本知識(shí)和需說(shuō)明的問(wèn)題:
(一)圓的有關(guān)性質(zhì),本節(jié)中最重要的定理有4個(gè)。
1、垂徑定理:
本定理和它的三個(gè)推論說(shuō)明: 在(垂直于弦(不是直徑的弦);(2)平分弦;(3)平分弦所對(duì)的;(4)過(guò)圓心(是半徑或是直徑)這四個(gè)語(yǔ)句中,滿(mǎn)足兩個(gè)就可得到其它兩個(gè)的結(jié)論。如垂直于弦(不是直徑的弦)的直徑,平分弦且平分弦所對(duì)的兩條弧。條件是垂直于弦(不是直徑的弦)的直徑,結(jié)論是平分弦、平分弧。再如弦的垂直平分線(xiàn),經(jīng)過(guò)圓心且平分弦所對(duì)的弧。條件是垂直弦,、分弦,結(jié)論是過(guò)圓心、平分弦。
應(yīng)用:在圓中,弦的一半、半徑、弦心距組成一個(gè)直角三角形,利用勾股定理解直角三角形的知識(shí),可計(jì)算弦長(zhǎng)、半徑、弦心距和弓形的高。
2、圓心角、弧、弦、弦心距四者之間的關(guān)系定理:
在同圓和等圓中, 圓心角、弧、弦、弦心距這四組量中有一組量相等,則其它各組量均相等。這個(gè)定理證弧相等、弦相等、圓心角相等、弦心距相等是經(jīng)常用的。
3、圓周角定理:
此定理在證題中不大用,但它的'推論,即弧相等所對(duì)的圓周角相等;在同圓或等圓中,圓周角相等,弧相等。直徑所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑,都是很重要的。條件中若有直徑,通常添加輔助線(xiàn)形成直角。
4、圓內(nèi)接四邊形的性質(zhì)。
。ǘ┲本(xiàn)和圓的位置關(guān)系。
1、性質(zhì):
圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。(有了切線(xiàn),將切點(diǎn)與圓心連結(jié),則半徑與切線(xiàn)垂直,所以連結(jié)圓心和切點(diǎn),這條輔助線(xiàn)是常用的。)
2、切線(xiàn)的判定有兩種方法。
、偃糁本(xiàn)與圓有公共點(diǎn),連圓心和公共點(diǎn)成半徑,證明半徑與直線(xiàn)垂直即可。
、谌糁本(xiàn)和圓公共點(diǎn)不確定,過(guò)圓心做直線(xiàn)的垂線(xiàn),證明它是半徑(利用定義證)。根據(jù)不同的條件,選擇不同的添加輔助線(xiàn)的方法是極重要的。
3、三角形的內(nèi)切圓:
內(nèi)心是內(nèi)切圓圓心,具有的性質(zhì)是:到三角形的三邊距離相等,還要注意說(shuō)某點(diǎn)是三角形的內(nèi)心。連結(jié)三角形的頂點(diǎn)和內(nèi)心,即是角平分線(xiàn)。
4、切線(xiàn)長(zhǎng)定理:自圓外一點(diǎn)引圓的切線(xiàn),則切線(xiàn)和半徑、圓心到該點(diǎn)的連線(xiàn)組成直角三角形。
。ㄈ﹫A和圓的位置關(guān)系。
1、記住5種位置關(guān)系的圓心距d與兩圓半徑之間的相等或不等關(guān)系。會(huì)利用d與R,r之間的關(guān)系確定兩圓的位置關(guān)系,會(huì)利用d,R,r之間的關(guān)系確定兩圓的位置關(guān)系。
2、相交兩圓,添加公共弦,通過(guò)公共弦將兩圓連結(jié)起來(lái)。
。ㄋ模┱噙呅魏蛨A。
1、弧長(zhǎng)公式。
2、扇形面積公式。
3、圓錐側(cè)面積計(jì)算公式:S= 2π=π。
二、鞏固練習(xí)。
。ㄒ唬┚倪x一選,相信自己的判斷!
1、如圖,把自行車(chē)的兩個(gè)車(chē)輪看成同一平面內(nèi)的兩個(gè)圓,則它們的位置關(guān)系是
A、外離 B、外切 C、相交 D、內(nèi)切
2、已知⊙O的直徑為12cm,圓心到直線(xiàn)L的距離為6cm,則直線(xiàn)L與⊙O的公共點(diǎn)的個(gè)數(shù)為( )
A、2 B、1 C、0 D、不確定
3、已知⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關(guān)系是( )
A、外切 B、內(nèi)切 C、相交 D、相離
4、已知在⊙O中,弦AB的長(zhǎng)為8厘米,圓心O到AB的距離為3厘米,則⊙O的半徑是( )
A、3厘米 B、4厘米 C、5厘米 D、8厘米
5、下列命題錯(cuò)誤的是( )
A、經(jīng)過(guò)三個(gè)點(diǎn)一定可以作圓 B、三角形的外心到三角形各頂點(diǎn)的距離相等
C、同圓或等圓中,相等的圓心角所對(duì)的弧相等 D、經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
6、在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓必定( )
A、與x軸相離、與y軸相切 B、與x軸、y軸都相離
C、與x軸相切、與y軸相離 D、與x軸、y軸都相切
7、在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線(xiàn)旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是( )
A、25π B、65π C、90π D、130π
。ǘ┘(xì)心填一填,試自己的身手!
12、各邊相等的圓內(nèi)接多邊形_____正多邊形;各角相等的圓內(nèi)接多邊形_____正多邊形。(填“是”或“不是”)
13、△ABC的內(nèi)切圓半徑為r,△ABC的周長(zhǎng)為l,則△ABC的面積為_(kāi)______________ 。
14、已知在⊙O中,半徑r=13,弦AB∥CD,且AB=24,CD=10,則AB與CD的距離為_(kāi)_________。
15、同圓的內(nèi)接正四邊形和內(nèi)接正方邊形的連長(zhǎng)比為_(kāi)___________________。
初二數(shù)學(xué)上冊(cè)教案14
教學(xué)目標(biāo):
知識(shí)與技能:會(huì)解含有分母的一元一次不等式;能夠用不等式表達(dá)數(shù)量之間的不等關(guān)系;能夠確定不等式的整數(shù)解。
過(guò)程與方法:經(jīng)歷解方程和解不等式兩種過(guò)程的比較,體會(huì)類(lèi)比思想,發(fā)展學(xué)生的數(shù)學(xué)思考水平。
情感態(tài)度、價(jià)值觀:通過(guò)一元一次不等式的學(xué)習(xí),培養(yǎng)學(xué)生認(rèn)真、堅(jiān)持等良好學(xué)習(xí)習(xí)慣。.
教材分析:
本節(jié)教材首先讓學(xué)生動(dòng)手做一做解兩個(gè)不等式;之后讓大家談?wù)劷庖辉淮尾坏仁脚c解一元一次方程的異同點(diǎn);最后是關(guān)于通過(guò)列不等式表示數(shù)量之間不等關(guān)系的例題2、3,其中例3涉及到了不等式的正解數(shù)解問(wèn)題。關(guān)于解含有分母的一元一次不等式,學(xué)生在去分母這一部可能容易出錯(cuò),可以采用通過(guò)學(xué)生深度解決、師生總結(jié)交流方法、鞏固應(yīng)用等方式處理。關(guān)于一元一次不等式的整數(shù)解問(wèn)題,學(xué)生確實(shí)會(huì)有一定困難,主要是思考不夠認(rèn)真,缺少方法等原因,教師要注重借助數(shù)軸的學(xué)法指導(dǎo)。
教學(xué)重點(diǎn):
1、含有分母的.一元一次不等式的解法
2、用不等式表達(dá)數(shù)量之間的不等關(guān)系
3、確定不等式的整數(shù)解
教學(xué)難點(diǎn):
1、解含有分母的一元一次不等式時(shí),去分母這一部的準(zhǔn)確性。
2、不等式的整數(shù)解的確定
教學(xué)流程:
一、直接引入
我們學(xué)習(xí)了解一元一次方程和解一元一次不等式,它們之間有怎樣的區(qū)別和聯(lián)系呢今天我們來(lái)探究一下。
二、探究新知
(一)解一元一次方程和解一元一次不等式的異同點(diǎn)
1、出示問(wèn)題,讓學(xué)生板演
找兩名同學(xué),分別解下面兩個(gè)問(wèn)題:
(1)解方程:﹦
(2)解不等式:
2、小組討論解一元一次方程和解一元一次不等式的過(guò)程的異同點(diǎn)。
3、師生交流。
相同點(diǎn):解一元一次方程和解一元一次不等式的步驟相同,依次為:去分母去括號(hào)移項(xiàng),合并同類(lèi)項(xiàng)化系數(shù)為1。
不同點(diǎn):在解一元一次不等式的化系數(shù)為1時(shí),要注意不等式兩邊乘或除以同一個(gè)負(fù)數(shù)時(shí),不等號(hào)要改變方向。
4、運(yùn)用新知。
將下列不等式中的分母化去:
初二數(shù)學(xué)上冊(cè)教案15
教學(xué)目標(biāo)
1知識(shí)與技能目標(biāo)
。1)通過(guò)拼圖活動(dòng),讓學(xué)生感受無(wú)理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性.
。2)能判斷給出的數(shù)是否為無(wú)理數(shù),并能說(shuō)出理由.
2過(guò)程與方法目標(biāo)
。1)學(xué)生親自動(dòng)手做拼圖活動(dòng),感受無(wú)理數(shù)存在的必要性和合理性,培養(yǎng)學(xué)生的動(dòng)手能力和合作精神.
。2)通過(guò)回顧有理數(shù)的有關(guān)知識(shí),能正確地進(jìn)行推理和判斷識(shí)別某些數(shù)是否為有理數(shù)、無(wú)理數(shù),訓(xùn)練他們的思維判斷力.
。3)借助計(jì)算器進(jìn)行估算,培養(yǎng)學(xué)生的估算能力,發(fā)展學(xué)生的抽象概括能力,并在活動(dòng)中進(jìn)一步發(fā)展學(xué)生獨(dú)立思考、合作交流的意識(shí)和能力.
3情感與態(tài)度目標(biāo)
(1)激勵(lì)學(xué)生積極參與教學(xué)活動(dòng),提高大家學(xué)習(xí)數(shù)學(xué)的熱情.
(2)引導(dǎo)學(xué)生充分進(jìn)行交流,討論與探索等教學(xué)活動(dòng),培養(yǎng)他們的合作精神與鉆研精神,借助計(jì)算器進(jìn)行估算.
。3)了解有關(guān)無(wú)理數(shù)發(fā)現(xiàn)的知識(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻(xiàn)身精神.
教學(xué)重點(diǎn)
1讓學(xué)生經(jīng)歷無(wú)理數(shù)發(fā)現(xiàn)的過(guò)程,感知生活中確實(shí)存在著不同于有理數(shù)的數(shù).
2會(huì)判斷一個(gè)數(shù)是否為有理數(shù),是否不是有理數(shù).
3用計(jì)算器進(jìn)行無(wú)理數(shù)的'估算.
教學(xué)難點(diǎn)
1把兩個(gè)邊長(zhǎng)為1的正方形拼成一個(gè)大正方形的動(dòng)手操作過(guò)程.
2無(wú)理數(shù)概念的建立及估算.
3判斷一個(gè)數(shù)是否為有理數(shù).
教學(xué)準(zhǔn)備:多媒體,兩個(gè)邊長(zhǎng)為1的正方形,剪刀,短繩.
教學(xué)過(guò)程:
第一環(huán)節(jié):章節(jié)引入(2分鐘,學(xué)生閱讀感受)
內(nèi)容:.小紅是剛升入八年級(jí)的新生,一個(gè)周末的上午,當(dāng)工程師的爸爸給小紅出了兩個(gè)數(shù)學(xué)題:
。1)兩個(gè)數(shù)3.252525……與3.252252225……一樣嗎?它們有什么不同?
(2)一個(gè)邊長(zhǎng)為6cm的正方形木板,按如圖的痕跡鋸掉四個(gè)一樣的直角三角形.請(qǐng)計(jì)算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長(zhǎng)又是多少厘米呢?你能幫小紅解決這個(gè)問(wèn)題嗎?
b.你能求出面積為2的正方形的邊長(zhǎng)嗎?你知道圓周率的精確值嗎?它們能用整數(shù)或分?jǐn)?shù)(即有理數(shù))來(lái)表示嗎?
第二環(huán)節(jié):復(fù)習(xí)引入(3分鐘,學(xué)生口答)
內(nèi)容:閱讀下面的資料,在數(shù)學(xué)中,有理數(shù)的定義為:形如的數(shù)(p、q為互質(zhì)的整數(shù),且p≠0)叫做有理數(shù),當(dāng)p=1,q為任意整數(shù)時(shí),有理數(shù)就是指所有的整數(shù),如:=-2等,當(dāng)p≠1時(shí),由p、q互質(zhì)可知,有理數(shù)就是指所有的分?jǐn)?shù),如,-,-等,綜上所述,有理數(shù)就是整數(shù)和分?jǐn)?shù)的統(tǒng)稱(chēng).
請(qǐng)用上述材料中所涉及的知識(shí)證明下面的問(wèn)題:
a.直角邊長(zhǎng)分別為3和1的直角三角形的斜邊長(zhǎng)是不是有理數(shù)?
b.復(fù)習(xí)前面學(xué)過(guò)的數(shù),有理數(shù)包括整數(shù)和分?jǐn)?shù),有理數(shù)范圍是否滿(mǎn)足實(shí)際生活的需要呢?
第三環(huán)節(jié):活動(dòng)探究(15分鐘,學(xué)生動(dòng)手操作,小組合作探究)
。ㄒ唬┌l(fā)現(xiàn)新數(shù)
內(nèi)容:將課前已準(zhǔn)備好的兩個(gè)邊長(zhǎng)為1的小正方形剪一剪,拼一拼,設(shè)法得到一個(gè)大正方形.
在學(xué)生活動(dòng)的基礎(chǔ)上,教師利用多媒體展示其中一種剪拼過(guò)程,并拋出下面的議一議:
。1)設(shè)大正方形的邊長(zhǎng)為,應(yīng)滿(mǎn)足什么條件?
。2)滿(mǎn)足:2=2的數(shù)是一個(gè)什么樣的數(shù)?可能是整數(shù)嗎?說(shuō)明你的理由?
(3)可能是分?jǐn)?shù)嗎?說(shuō)說(shuō)你的理由?
引出課題《數(shù)怎么又不夠用了》
。ǘ└惺苄聰(shù)的廣泛性
內(nèi)容:面積為5的正方形,它的邊長(zhǎng)b可能是有理數(shù)嗎?說(shuō)說(shuō)你的理由。
(三)鞏固驗(yàn)證,應(yīng)用拓展
內(nèi)容:aB,C是一個(gè)生活小區(qū)的兩個(gè)路口,BC長(zhǎng)為2千米,A處是一個(gè)花園,從A到B,C兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長(zhǎng)可能是整數(shù)嗎?可能是分?jǐn)?shù)嗎?說(shuō)明理由.
b如圖(1)是由16個(gè)邊長(zhǎng)為1的小正方形拼成的,試從連接這些
小正方形的兩個(gè)頂點(diǎn)所得的線(xiàn)段中,分別找出兩條長(zhǎng)度是有理數(shù)的線(xiàn)段,兩條長(zhǎng)度不是有理數(shù)的線(xiàn)段
第四環(huán)節(jié):介紹歷史,開(kāi)闊視野(3分鐘,學(xué)生閱讀)
內(nèi)容:早在公元前,古希臘數(shù)學(xué)家畢達(dá)哥拉斯認(rèn)為萬(wàn)物皆“數(shù)”,即“宇宙間的一切現(xiàn)象都能歸結(jié)為整數(shù)或整數(shù)之比”,也就是一切現(xiàn)象都可用有理數(shù)去描述.后來(lái),這個(gè)學(xué)派中的一個(gè)叫希伯索斯的成員發(fā)現(xiàn)邊長(zhǎng)為1的正方形的對(duì)角線(xiàn)的長(zhǎng)不能用整數(shù)或整數(shù)之比來(lái)表示,這個(gè)發(fā)現(xiàn)動(dòng)搖了畢達(dá)哥拉斯學(xué)派的信條,據(jù)說(shuō),為此希伯斯被投進(jìn)了大海,他為真理而獻(xiàn)出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來(lái),古希臘人終于正視了希伯索斯的發(fā)現(xiàn).
第五環(huán)節(jié):課時(shí)小結(jié)(2分鐘,全班交流)
內(nèi)容談?wù)劚竟?jié)課你有什么收獲與體會(huì)?有哪些困難需要?jiǎng)e人幫你解決?
b感受數(shù)不夠用了,會(huì)確定一個(gè)數(shù)是有理數(shù)或不是有理數(shù).
c本節(jié)課用到基本方法:動(dòng)手、操作、觀察、思考,猜想驗(yàn)證,推理,歸納等過(guò)程,獲取數(shù)學(xué)知識(shí).
第六環(huán)節(jié):布置作業(yè)
【初二數(shù)學(xué)上冊(cè)教案】相關(guān)文章:
初二數(shù)學(xué)上冊(cè)教案 (15篇)12-06
初二數(shù)學(xué)上冊(cè)教案精選15篇12-12
初二數(shù)學(xué)上冊(cè)教案 15篇12-05
初二數(shù)學(xué)上冊(cè)教案15篇11-16
初二數(shù)學(xué)上冊(cè)教案(15篇)11-16
初二數(shù)學(xué)上冊(cè)教案匯編15篇11-17