- 初一數(shù)學(xué)教案:《有理數(shù)的乘法》 推薦度:
- 相關(guān)推薦
初一數(shù)學(xué)教案:《有理數(shù)的乘法》(精選10篇)
作為一位杰出的教職工,就不得不需要編寫教案,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。教案應(yīng)該怎么寫呢?下面是小編幫大家整理的初一數(shù)學(xué)教案:《有理數(shù)的乘法》,供大家參考借鑒,希望可以幫助到有需要的朋友。
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 1
一、 學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學(xué)生能在教師指導(dǎo)下探索問題。由于學(xué)生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。
二、 課前準備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學(xué)習、組間競爭學(xué)習,形成良好的學(xué)習氣氛。
三、 教學(xué)目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、 教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
五、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的.求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?
學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、 小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
a. 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
b. -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
c. 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
d. (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
(-2) ×(-3)=
e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。
(2)學(xué)生歸納法則
a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)= 同號得
(-)×(+)= 異號得
。+)×(-)= 異號得
。-)×(-)= 同號得
b.積的絕對值等于 。
c.任何數(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做 P76 練習1(1)(3),教師評析。
。4)教師引導(dǎo)學(xué)生做P75 例2,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當負因數(shù)個數(shù)有 ,積為 ; 當負因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。
4、 討論對比,使學(xué)生知識系統(tǒng)化。
5、 分層作業(yè),鞏固提高。
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 2
一、教學(xué)目標
知識與技能:
、偈箤W(xué)生在了解乘法的基礎(chǔ)上,掌握有理數(shù)乘法法則并初步掌握有理數(shù)乘法法則的合理性。
、跁M行有理數(shù)乘法運算。
③了解有理數(shù)的倒數(shù)定義,會求一個數(shù)的倒數(shù)。
過程與方法:
、俳(jīng)歷探索有理數(shù)乘法法則,發(fā)展,觀察,歸納,猜想,驗證的能力以及培養(yǎng)學(xué)生的語言表達能力。
、谔岣邔W(xué)生的運算能力
情感與態(tài)度:通過合作學(xué)習調(diào)動學(xué)生學(xué)習的積極性,激發(fā)學(xué)生學(xué)習數(shù)學(xué)的興趣,提高學(xué)生認識世界的水平。
二、教學(xué)重點和難點
重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;
難點:有理數(shù)乘法中的`符號法則。
三、教學(xué)過程
(一)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,復(fù)習舊知,導(dǎo)入新課
前面我們學(xué)習了有理數(shù)的加減法,接下來就應(yīng)該學(xué)習有理數(shù)的乘除法。同學(xué)們先看下面的問題:甲水庫的水位每天升高3㎝,乙水庫的水位每天下降3㎝。4天后,甲、乙水庫各自水位的總變化量是多少?
如果用正號表示水位的上升、用負號表示水位的下降。那么,4天后,甲水庫水位的總變化量是:3+3+3=34=12㎝
乙水庫水位的總變化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出課題:有理數(shù)的乘法
。ǘ⿲W(xué)生探索新知,歸納法則
學(xué)生分為四個小組活動,進行乘法法則的探索
設(shè)蝸,F(xiàn)在的位置為點O,若它一直都是沿直線爬行,而且每分鐘爬行2cm,問:
。1)向右爬行,3分鐘后的位置?
(2)向左爬行,3分鐘后的位置?
(3)向右爬行,3分鐘前的位置?
。4)向左爬行,3分鐘前的位置?
。▽W(xué)生思考后回答)要確定蝸牛的位置需要知道:距離和方向。
為了區(qū)分方向:我們規(guī)定向右為正,向左為負;為區(qū)分時間:我們規(guī)定現(xiàn)在的時間前為負,現(xiàn)在的時間后為正。
(1)情形一:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:
(+2)(+3)=+6
數(shù)軸表示如右:
。2)情形二:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(-2)3=-6
數(shù)軸表示如右:
。3)情形三:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(+2)(-3)=-6
數(shù)軸表示如右
(4)情形四:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:(-2)(-3)=+6
數(shù)軸表示如右:
仔細觀察上面得到的四個式子:
。1)(+2)(+3)=+6
。2)(-2)3=-6
。3)(+2)(-3)=-6
(4)(-2)(-3)=+6
根據(jù)你對乘法的思考,你得到什么規(guī)律?
。ㄈ⿲W(xué)生歸納法則
a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
。+)(+)=()同號得
。-)(+)=()異號得
。+)(-)=()異號得
(-)(-)=()同號得
b.任何數(shù)與零相乘,積仍為。
。ㄋ模⿴熒餐梦淖謹⑹鲇欣頂(shù)乘法法則。
歸納:有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
任何數(shù)與0相乘,積仍為0。
。ㄎ澹┻\用法則計算,鞏固法則。
例1.計算:(1)(-5)(2)(-7)(3)(-3)(4)(-3)(-)
引導(dǎo)學(xué)生觀察、分析例1中(4)小題兩因數(shù)的關(guān)系,得出:有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
例2.見課本P30頁
(六)分層練習,鞏固提高。
。1)計算(口答):
①②③④
、茛蔻撷
四、課題小結(jié)
。1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘,任何數(shù)同0相乘,都得0。
。2)如何進行兩個有理數(shù)的乘法運算:先確定積的符號,再把絕對值相乘,當有一個因數(shù)為零時,積為零。
五、作業(yè)布置
課本P30頁練習1,2,3.
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 3
教學(xué)目標
1、理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2、能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3、三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4、通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5、本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點、難點分析
本節(jié)的教學(xué)重點是能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的'乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
本節(jié)的難點是對有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。
(二)知識結(jié)構(gòu)
a·b=b·a;
(a·b)·c=a·(b·c);
(a+b)·c=a·c+b·c。
(三)教法建議
1、有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2、兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”,絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法。
3、基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4、幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
5、小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。
6、如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 4
教材分析
“數(shù)的運算”是“數(shù)與代數(shù)”學(xué)習領(lǐng)域的重要內(nèi)容。有理數(shù)的乘法運算是加法運算的另一種運算形式,它也是今后學(xué)習有理數(shù)的除法、乘方及混合運算的基礎(chǔ)。因此本節(jié)內(nèi)容具有承前啟后的重要作用。
學(xué)情分析
1.讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)問題的'過程,增加他們對問題的感性認識。
2.通過觀察、歸納,提高學(xué)生的理性認識。
3.培養(yǎng)學(xué)生學(xué)會表達、學(xué)會傾聽的良好品質(zhì)。
教學(xué)目標
1.知識技能:
(1)經(jīng)歷探索有理數(shù)乘法運算的過程,歸納有理數(shù)乘法運算法則。
(2)掌握有理數(shù)乘法法則,能解決簡單的的實際問題。
2.數(shù)學(xué)思考:
通過自主合作探究經(jīng)歷探索有理數(shù)運算的過程,發(fā)展學(xué)生觀察、歸納、猜想等能力。
3.問題解決:
通過自主探索和合作交流,發(fā)展學(xué)生逆向思維及化歸思想。
4.情感態(tài)度價值觀:
通過經(jīng)歷探索有理數(shù)乘法運算的.過程感受數(shù)學(xué)與生活的緊密聯(lián)系,提高學(xué)生對知識的應(yīng)用能力以及勇于探索、敢于發(fā)言的個性品質(zhì)。
教學(xué)重點和難點
教學(xué)重點是:有理數(shù)的乘法法則的理解和運用。
教學(xué)難點是:使學(xué)生體會有理數(shù)乘法法則規(guī)定的合理性;探究出確定兩個負數(shù)相乘和多個有理數(shù)相乘的符號符號規(guī)律。
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 5
一、知識與能力
掌握有理數(shù)乘法以及乘法運算律,熟練進行有理數(shù)乘除運算,發(fā)展觀察,歸納等方面的能力,用相關(guān)知識解決實際問題的能力
二、過程與方法
經(jīng)歷歸納,總結(jié)有理數(shù)乘法,除法法則及乘法運算律的過程,會觀察,選擇適當?shù)、較簡便的方法進行有理數(shù)乘除運算
三、情感、態(tài)度、價值觀
培養(yǎng)學(xué)生學(xué)習的自信心,上進心,通過用乘除運算解決簡單的實際問題,讓學(xué)生明確學(xué)習教學(xué)的'目的是學(xué)以致用,從而培養(yǎng)學(xué)生的主動性、積極性
四、教學(xué)重難點
一、重點:熟練進行有理數(shù)的乘除運算
二、難點:正確進行有理數(shù)的乘除運算
預(yù)習導(dǎo)學(xué)
通過看課本§1.4的.內(nèi)容,歸納有理數(shù)的乘法法則以及乘法運算律
五、教學(xué)過程
一、創(chuàng)設(shè)情景,談話導(dǎo)入
我們已經(jīng)學(xué)習了有理數(shù)的乘除法,同學(xué)們歸納,總結(jié)一下有理數(shù)的乘法法則以及乘法運算律
二、精講點撥質(zhì)疑問難
根據(jù)預(yù)習內(nèi)容,同學(xué)們回答以下問題:
1.有理數(shù)的乘法法則:
(1)同號兩數(shù)相乘___________________________________
(2)異號兩數(shù)相乘_____________________________________
(3)0與任何自然數(shù)相乘,得____
2.有理數(shù)的乘法運算律:
(1)乘法交換律:ab=_________
(2)乘法結(jié)合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理數(shù)的除法法則:
除以一個不等于0的數(shù),等于乘這個數(shù)的__________
比較有理數(shù)的乘法,除法法則,發(fā)現(xiàn)_________可能轉(zhuǎn)化為__________
三、課堂活動強化訓(xùn)練
某公司去年1~3月份平均每月虧損1.5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1.7萬元,11~12月份平均每月虧損2.3萬元,這個公司去年總的盈虧情況如何?
注:學(xué)生分組討論練習,教師在巡視過程中,引導(dǎo)、輔導(dǎo)部分基礎(chǔ)較差的學(xué)生后,各小組進行交流,總結(jié)
四、延伸拓展,鞏固內(nèi)化
例2.(1)若ab=1,則a、b的關(guān)系為()
(2)下列說法中正確的個數(shù)為()
0除以任何數(shù)都得0
②如果=-
1,那么a是非負數(shù)若若⑤(c≠0)⑥()⑦1的倒數(shù)等于本身
A1個B2個C3個D4個
(3)兩個不為零的有理數(shù)相除,如果交換被除數(shù)與除數(shù)的關(guān)系,它們的商不變()
A兩數(shù)相等B兩數(shù)互為相反數(shù)
C兩數(shù)互為倒數(shù)D兩數(shù)相等或互為相反數(shù)
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 6
教學(xué)目的:
1、要求學(xué)生會進行有理數(shù)的加法運算;
2、使學(xué)生更多經(jīng)歷有關(guān)知識發(fā)生、規(guī)律發(fā)現(xiàn)過程。
教學(xué)分析:
重點:對乘法運算法則的運用,對積的確定。
難點:如何在該知識中注重知識體系的延續(xù)。
教學(xué)過程:
一、知識導(dǎo)向:
有理數(shù)的乘法是小學(xué)所學(xué)乘法運算的延續(xù),也是在學(xué)習了有理數(shù)的加法法則與有理數(shù)的減法法則的基礎(chǔ)上所學(xué)習的,所以應(yīng)注意到各種法則間的必然聯(lián)系,在本節(jié)中應(yīng)注重學(xué)生學(xué)習的過程,多讓學(xué)生經(jīng)歷知識、規(guī)律發(fā)現(xiàn)的過程。在學(xué)習中應(yīng)掌握有理數(shù)的乘法法則。
二、新課:
1、知識基礎(chǔ):
其一:小學(xué)所學(xué)過的乘法運算方法;
其二:有關(guān)在加法運算中結(jié)果的確定方法與步驟。
2、知識形成:
(引例)一只小蟲沿一條東西向的跑道,以每分鐘3米的速度爬行。
情形1:小蟲向東爬行2分鐘,那么它現(xiàn)在位于原來位置的.哪個方向?相距出發(fā)地點多少米?
列式:
即:小蟲位于原來出發(fā)位置的東方6米處
拓展:如果規(guī)定向東為正,向西為負
情形2:小蟲向西爬行2分鐘,那么它現(xiàn)在位于原來位置的哪個方向?相距出發(fā)地點多少米?
列式:
即:小蟲位于原來出發(fā)位置的西方6米處
發(fā)現(xiàn):當我們把中的一個因數(shù)3換成它的相反數(shù)-3時,所得的積是原來的積6的相反數(shù)-6
同理,如果我們把中的一個因數(shù)2換成它的相反數(shù)-2時,所得的積是原來的積6的相反數(shù)-6
概括:把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)
3、設(shè)疑:
如果我們把中的一個因數(shù)2換成它的`相
反數(shù)-2時,所得的積又會有什么變化?
當然,當其中的一個因數(shù)為0時,所得的積還是等于0。
綜合:有理數(shù)乘法法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
任何數(shù)與零相乘,都得零。
例:計算:
(1)(2)
三、鞏固訓(xùn)練:
P52.1、2、3
四、知識小結(jié):
本節(jié)課從實際情形入手,對多種情形進行分析,從一般中找到規(guī)律,從而得到有關(guān)有理數(shù)乘法的運算法則。在運算中應(yīng)強調(diào)注意如何正確得到積的結(jié)果。
五、家庭作業(yè):
P57.1、2,3
六、每日預(yù)題:
1、小學(xué)多學(xué)過哪些乘法的運算律?
2、在對有理數(shù)的簡便運算中,一般應(yīng)考慮到哪些可能的情況?
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 7
一、知識與技能
(1)能確定多個因數(shù)相乘時,積的符號,并能用法則進行多個因數(shù)的乘積運算。
(2)能利用計算器進行有理數(shù)的乘法運算。
二、過程與方法
經(jīng)歷探索幾個不為0的數(shù)相乘,積的符號問題的過程,發(fā)展觀察、歸納驗證等能力。
三、情感態(tài)度與價值觀
培養(yǎng)學(xué)生主動探索,積極思考的學(xué)習興趣。
教學(xué)重、難點與關(guān)鍵
1.重點:能用法則進行多個因數(shù)的乘積運算。
2.難點:積的符號的確定。
3.關(guān)鍵:讓學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律。
教具準備
投影儀。
四、教學(xué)過程
1.請敘述有理數(shù)的乘法法則。
2.計算:(1)│-5│(-2);(2)(-)(3)0(-99.9)。
五、新授
1.多個有理數(shù)相乘,可以把它們按順序依次相乘。
例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52
我們知道計算有理數(shù)的乘法,關(guān)鍵是確定積的.符號。
觀察:下列各式的積是正的還是負的?
(1)234(2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式積為負,(2)、(4)式積為正,積的符號與負因數(shù)的個數(shù)有關(guān)。
教師問:幾個不是0的數(shù)相乘,積的.符號與負因數(shù)的個數(shù)之間有什么關(guān)系?
學(xué)生完成思考后,教師指出:幾個不是0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關(guān),當負因數(shù)的個數(shù)為負數(shù)時,積為負數(shù);當負因數(shù)的個數(shù)為偶數(shù)時,積為正數(shù)。
2.多個不是0的有理數(shù)相乘,先由負因數(shù)的個數(shù)確定積的符號再求各個絕對值的積。
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 8
目標:
1、知識與技能
使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)的乘法法則,能熟練地進行有理數(shù)的乘法運算。
2、過程與方法
經(jīng)歷探索有理數(shù)乘法法則的過程,理解有理數(shù)乘法法則,發(fā)展觀察、探究、合情推理等能力,會進行有理數(shù)和乘法運算。
重點、難點:
1、重點:有理數(shù)乘法法則。
2、難點:有理數(shù)乘法意義的理解,確定有理數(shù)乘法積的符號。
過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新
1、由前面的學(xué)習我們知道,正數(shù)的.加減法可以擴充到有理數(shù)的加減法,那么乘法是可也可以擴充呢?
乘法是加法的特殊運算,例如5+5+5=5×3,那么請思考:
。ǎ5)+(-5)+(-5)與(-5)×3是否有相同的結(jié)果呢?本節(jié)我們就探究這個問題。
3、在一條由西向東的筆直的馬路上,取一點O,以向東的路程為正,則向西的路程為負,如果小玫從點O出發(fā),以5千米的向西行走,那么經(jīng)過3小時,她走了多遠?
二、合作交流,解讀探究
1、小學(xué)學(xué)過的乘法的意義是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果兩個數(shù)的和為0,那么這兩個數(shù)互為相反數(shù)。
2、由前面的問題3,根據(jù)小學(xué)學(xué)過的乘法意義,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)
3、學(xué)生活動:計算3×(-5)+3×5,注意運用簡便運算
通過計算表明3×(-5)與3×5互為相反數(shù),從而有
3×(-5)=-(3×5),由此看出,3×(-5)得負數(shù),并且把絕對值3與5相乘。
類似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正數(shù),并且把絕對值5與3相乘。
4、提出:從以上的.運算中,你能總結(jié)出有理數(shù)的乘法法則嗎?
鼓勵學(xué)生自己歸納,并用自己的語舞衫歌扇,并與同伴交流。
在學(xué)生猜測、歸納、交流的過程中及時引導(dǎo)、肯定
兩數(shù)相乘,同號得正,異號得負,絕對值相乘。
任何數(shù)與0相乘,積仍為0
。ò鍟┯欣頂(shù)乘法法則:
三、應(yīng)用遷移,鞏固提高
1、計算
(-5)×(-4)2×(-3.5)×(-0.75)×0
。1)學(xué)生根據(jù)乘法法則,在練習本上完成。指定四位同學(xué)到黑板演習。
。2)教師:要求學(xué)生明確算理,學(xué)生做練習時,教師巡視,及時引導(dǎo)。
2、計算下列各題
、伲ǎ4)×5×(-0.25)②×()×(-2)
③×()×0×()
指定三名同學(xué)在黑板上做,使學(xué)生明確,做有理數(shù)的乘法時,要先確定積的符號,再求出積的絕對值。
教師提出問題:幾個有理數(shù)相乘時,因數(shù)都不為0時,積是多少?
學(xué)生小結(jié)后,教師歸納:
幾個不為0的有理數(shù)相乘,積的符號由負因數(shù)的符號決定,負因數(shù)有奇數(shù)個時,積為負;負因數(shù)有偶數(shù)個時,積為正;只要有一個因數(shù)為0,則積為0
練習:本P31練習
四、總結(jié)反思(學(xué)生先小結(jié))
1、有理數(shù)乘法法則
2、有理數(shù)乘法的一般步驟是:
。1)確定積的符號;(2)把絕對值相乘。
五、作業(yè):P39習題1.5A組1、2
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 9
教學(xué)目的:
(一)知識點目標:有理數(shù)的乘法運算律。
(二)能力訓(xùn)練目標:
1.經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2.能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1.在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的.喜悅。
2.在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團隊意識。
教學(xué)重點:
乘法運算律的運用。
教學(xué)難點:
乘法運算律的運用。
教學(xué)方法:
探究交流相結(jié)合。
創(chuàng)設(shè)問題情境,引入新課
[活動1]
問題1:有理數(shù)的加法具有交換律和結(jié)合律,在以前學(xué)過的范圍內(nèi)乘法交換律、結(jié)合律,以及乘法對加法的分配律都是成立的,那么在有理數(shù)的范圍內(nèi),乘法的這些運算律成立嗎?
問題2:計算下列各題:
(1)(一7)×8;
(2)8×(一7);
(5)[3×(一4)]×(一5);
(6)3×[(一4)×(一5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)
[師](一5)×(3一7)和(一5)×3一5×7的結(jié)果相等嗎?
(注意:(一5)×(3一7)中的3一7應(yīng)看作3與(一7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
應(yīng)得出:
1.一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等.
2.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3.一般地,一個數(shù)同兩個數(shù)的'和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習的快樂。
3.用簡便方法計算:
[活動4]
練習(教科書第42頁)
課時小結(jié):
這節(jié)課我們學(xué)習乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。
課后作業(yè):課本習題1.4的第7題(3)、(6)。
活動與探究:
用簡便方法計算:
(1)6.868×(一5)十6.868×(一12)十6.868×(十17)
(2)[(4×8)×25一8]×125
初一數(shù)學(xué)教案:《有理數(shù)的乘法》 10
一、學(xué)習目標:
1.熟練掌握有理數(shù)的乘法法則
2.會運用乘法運算率簡化乘法運算
3.了解互為倒數(shù)的意義,并會求一個非零有理數(shù)的`倒數(shù)
二、學(xué)習重點:
探索有理數(shù)乘法運算律
學(xué)習難點:運用乘法運算律簡化計算
三、學(xué)習過程:
(一)、情境引入:
1、復(fù)習有理數(shù)的乘法法則(兩個因數(shù)、兩個以上的因數(shù)),并舉例說明。
2、在含有負數(shù)的乘法運算中,乘法交換律,結(jié)合律和分配律還成立嗎?
觀察下列各有理數(shù)乘法,從中可得到怎樣的結(jié)論?
(1)(-6)(-7)=(-7)(-6)=
(2)[(-3)(-5)]2=(-3)[(-5)2]=
(3)(-4)(-3+5)=(-4)(-3)+(-4)5=
3、請再舉幾組數(shù)試一試,看上面所得的.結(jié)論是否成立?
(二)、新課講解:
有理數(shù)乘法運算律
交換律ab=ba
結(jié)合律(ab)c=a(bc)
分配律a(b+c)=ab+ac
例1.計算:
(1)8(-)(-0.125)(2)
(3)()(-36)(4)
例2.計算
(1)8(2)(4)()(3)()()
觀察例2中的三個運算,兩個因數(shù)有什么特點?它們的乘積呢?你能夠得到什么結(jié)論?
(三)、鞏固練習:
1.運用運算律填空
(1)-2-3=-3(_____)
(2)[-32](-4)=-3[(______)(______)]
(3)-5[-2+-3]=-5(_____)+(_____)-3
2.選擇題
(1)若a0,必有()
Aa0Ba0Ca,b同號Da,b異號
(2)利用分配律計算時,正確的方案可以是()
AB
CD
3.運用運算律計算:
(1)(-25)(-85)(-4)(2)14-12-1816
(3)6037-6017+6057(4)18-23+1323-423
(5)(-4)(-18.36)(6)(-)0.125(-2)
(7)(-+--)(-20);(8)(-7.33)(42.07)+(-2.07)(-7.33)
四、課堂小結(jié):
通過本節(jié)課你學(xué)到了哪些知識?你達成學(xué)習目標了嗎?
五、作業(yè)布置:
課本第42頁習題2.5第3題
數(shù)學(xué)評價手冊
六、學(xué)后記/教后記
【初一數(shù)學(xué)教案:《有理數(shù)的乘法》】相關(guān)文章:
數(shù)學(xué)教案-有理數(shù)的乘法08-16
初一數(shù)學(xué)教案:《有理數(shù)的乘法》3篇11-03
有理數(shù)的乘法數(shù)學(xué)教案優(yōu)秀03-26
有理數(shù)的乘法08-16
有理數(shù)的乘法說課稿08-14
有理數(shù)乘法說課稿11-21
有理數(shù)的乘法教學(xué)反思08-25