人教版高一數(shù)學(xué)教案(通用20篇)
作為一名專為他人授業(yè)解惑的人民教師,可能需要進行教案編寫工作,編寫教案有利于我們科學(xué)、合理地支配課堂時間。我們該怎么去寫教案呢?下面是小編精心整理的人教版高一數(shù)學(xué)教案,歡迎閱讀與收藏。
高一數(shù)學(xué)教案 1
一、教材的本質(zhì)、地位與作用
對數(shù)函數(shù)(第二課時)是20xx人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學(xué)的實用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
二、教學(xué)目標
根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認知特點確定教學(xué)目標如下:
學(xué)習(xí)目標:
1、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小
能力目標:
1、培養(yǎng)學(xué)生運用圖形解決問題的意識即數(shù)形結(jié)合能力
2、學(xué)生運用已學(xué)知識,已有經(jīng)驗解決新問題的能力
3、探索出方法,有條理闡述自己觀點的能力
德育目標:
培養(yǎng)學(xué)生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)
三、教材的重點及難點
對數(shù)比大小發(fā)揮的是承上啟下的作用,對前一是復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像和性質(zhì),二是對指數(shù)中比大小問題的數(shù)學(xué)思想及方法的再次體現(xiàn)和應(yīng)用,對后為解對數(shù)方程及對數(shù)不等式奠定基礎(chǔ)。所以確定本節(jié)課重點:運用對數(shù)函數(shù)圖像性質(zhì)比較兩數(shù)的大小
教學(xué)中將在以下2個環(huán)節(jié)中突出教學(xué)重點:
1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補不足
2、通過適當(dāng)?shù)木毩?xí),加強對解題方法的掌握及原理的理解
另一方面,學(xué)生在預(yù)習(xí)后上課的情況下,對于課本上知識有了一定的'認識,但本節(jié)課教師要補充第三類比大小問題———同真異底型,對于學(xué)生以小組為單位自主探究有一定的挑戰(zhàn)性。所以確定本節(jié)課難點:同真異底的對數(shù)比大小
教學(xué)中會在以下3個方面突破教學(xué)難點:
1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學(xué)生,增強學(xué)生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
四、學(xué)生學(xué)情分析
長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
五、教法特點
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。基于此,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
六、教學(xué)過程分析
1、課件展示本節(jié)課學(xué)習(xí)目標
設(shè)計意圖:明確任務(wù),激發(fā)興趣
2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))
設(shè)計意圖:復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應(yīng)用打下基礎(chǔ)。
3、預(yù)習(xí)后心得交流
1)同底對數(shù)比大小
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小
以課本例題為例,交流解題思路,題后總結(jié)此類型比大小問題的一般方法,而后通過練習(xí)加強理解鞏固
設(shè)計意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小
以例3為例,學(xué)生分組合作探究解題方法,預(yù)計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學(xué)生的主動性,培養(yǎng)主動學(xué)習(xí)的意識,同時也鍛煉學(xué)生各方面能力的很好機會,為以后的探究學(xué)習(xí)積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)
以學(xué)生自主小結(jié)的方式總結(jié)本節(jié)課得收獲,教師可引導(dǎo)小結(jié)三個方面:所學(xué)內(nèi)容、數(shù)學(xué)思想、數(shù)學(xué)方法
6、思考題
以20xx高考題為例,讓學(xué)生學(xué)以致用,增強數(shù)學(xué)學(xué)習(xí)興趣。
7、作業(yè)
包括兩個方面:
1、書寫作業(yè)
2、下節(jié)課前的預(yù)習(xí)作業(yè)
七、教學(xué)效果分析
通過本節(jié)課的教學(xué)實例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯,既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動性。在自主探究時,學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾,使學(xué)生都能動起來,課堂都有所收獲,增強學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學(xué)生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達到小結(jié)知識的程度,在以后的訓(xùn)練中還會加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
高一數(shù)學(xué)教案 2
教學(xué)目標:
(1)了解集合的表示方法;
(2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學(xué)重點:
掌握集合的表示方法;
教學(xué)難點:
選擇恰當(dāng)?shù)谋硎痉椒?
教學(xué)過程:
一、復(fù)習(xí)回顧:
1.集合和元素的定義;元素的三個特性;元素與集合的關(guān)系;常用的數(shù)集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系
二、新課教學(xué)
(一).集合的表示方法
我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的'元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考
慮元素的順序。
2.各個元素之間要用逗號隔開;
3.元素不能重復(fù);
4.集合中的元素可以數(shù),點,代數(shù)式等;
5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實數(shù)根組成的集合;
(3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;
(4)方程組 的解組成的集合。
思考2:(課本P4的思考題)得出描述法的定義:
(2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內(nèi)。
具體方法:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
說明:
1.課本P5最后一段話;
2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。
例2.(課本例2)試分別用列舉法和描述法表示下列集合:
(1)方程x2—2=0的所有實數(shù)根組成的集合;
(2)由大于10小于20的所有整數(shù)組成的集合;
(3)方程組 的解。
思考3:(課本P6思考)
說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(二).課堂練習(xí):
1.課本P6練習(xí)2;
2.用適當(dāng)?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)
3.集合A={x| ∈Z,x∈N},則它的元素是 。
4.已知集合A={x|-3
歸納小結(jié):
本節(jié)課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。
作業(yè)布置:
1. 習(xí)題1.1,第3.4題;
2. 課后預(yù)習(xí)集合間的基本關(guān)系.
高一數(shù)學(xué)教案 3
學(xué)習(xí)目標
1. 根據(jù)具體函數(shù)圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解;
2. 通過用二分法求方程的近似解,使學(xué)生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.
舊知提示 (預(yù)習(xí)教材P89~ P91,找出疑惑之處)
復(fù)習(xí)1:什么叫零點?零點的等價性?零點存在性定理?
對于函數(shù) ,我們把使 的實數(shù)x叫做函數(shù) 的零點.
方程 有實數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .
如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點.
復(fù)習(xí)2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12個小球,質(zhì)量均勻,只有一個是比別的球重的,你用天平稱幾次可以找出這個球的,要求次數(shù)越少越好.
解法:第一次,兩端各放 個球,低的那一端一定有重球;
第二次,兩端各放 個球,低的那一端一定有重球;
第三次,兩端各放 個球,如果平衡,剩下的`就是重球,否則,低的就是重球.
思考:以上的方法其實這就是一種二分法的思想,采用類似的方法,如何求 的零點所在區(qū)間?如何找出這個零點?
新知:二分法的思想及步驟
對于在區(qū)間 上連續(xù)不斷且 0的函數(shù) ,通過不斷的把函數(shù)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫二分法(bisection).
反思: 給定精度,用二分法求函數(shù) 的零點近似值的步驟如何呢?
、俅_定區(qū)間 ,驗證 ,給定精度
、谇髤^(qū)間 的中點 ;[]
、塾嬎 : 若 ,則 就是函數(shù)的零點; 若 ,則令 (此時零點 ); 若 ,則令 (此時零點 );
、芘袛嗍欠襁_到精度即若 ,則得到零點零點值a(或b);否則重復(fù)步驟②~④.
典型例題
例1 借助計算器或計算機,利用二分法求方程 的近似解.
練1. 求方程 的解的個數(shù)及其大致所在區(qū)間.
練2.求函數(shù) 的一個正數(shù)零點(精確到 )
零點所在區(qū)間 中點函數(shù)值符號 區(qū)間長度
練3. 用二分法求 的近似值.
課堂小結(jié)
、 二分法的概念;②二分法步驟;③二分法思想.
知識拓展
高次多項式方程公式解的探索史料
在十六世紀,已找到了三次和四次函數(shù)的求根公式,但對于高于4次的函數(shù),類似的努力卻一直沒有成功,到了十九世紀,根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認識到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運算及根號表示的一般的公式解.同時,即使對于3次和4次的代數(shù)方程,其公式解的表示也相當(dāng)復(fù)雜,一般來講并不適宜作具體計算.因此對于高次多項式函數(shù)及其它的一些函數(shù),有必要尋求其零點近似解的方法,這是一個在計算數(shù)學(xué)中十分重要的課題.
學(xué)習(xí)評價
1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).
A. 至少有一個零點 B. 只有一個零點
C. 沒有零點 D. 至多有一個零點
2. 下列函數(shù)圖象與 軸均有交點,其中不能用二分法求函數(shù)零點近似值的是( ).
3. 函數(shù) 的零點所在區(qū)間為( ).
A. B. C. D.
4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實根,由計算器可算得 , , ,那么下一個有根區(qū)間為 .
課后作業(yè)
1.若函數(shù)f(x)是奇函數(shù),且有三個零點x1、x2、x3,則x1+x2+x3的值為( )
A.-1 B.0 C.3 D.不確定
2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內(nèi)( )
A.至少有一實數(shù)根 B.至多有一實數(shù)根
C.沒有實數(shù)根 D.有惟一實數(shù)根
3.設(shè)函數(shù)f(x)=13x-lnx(x0)則y=f(x)( )
A.在區(qū)間1e,1,(1,e)內(nèi)均有零點 B.在區(qū)間1e,1, (1,e)內(nèi)均無零點
C.在區(qū)間1e,1內(nèi)有零點;在區(qū)間(1,e)內(nèi)無零點[]
D.在區(qū)間1e,1內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點
4.函數(shù)f(x)=ex+x-2的零點所在的一個區(qū)間是( )
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的兩根均在(0,+)內(nèi),則m的取值范圍是( )
A.m1 B.01 D.0
6.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點有( )
A.0個 B.1個 C.2個 D.3個
7.函數(shù)y=3x-1x2的一個零點是( )
A.-1 B.1 C.(-1,0) D.(1,0)
8.函數(shù)f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點的個數(shù)為( )
A.至多有一個 B.有一個或兩個 C.有且僅有一個 D.一個也沒有
9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為( )
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
10.求函數(shù)y=x3-2x2-x+2的零點,并畫出它的簡圖.
高一數(shù)學(xué)教案 4
教學(xué)目標
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的'觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
教學(xué)建議
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等.如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的
上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實際需要!
高一數(shù)學(xué)教案 5
學(xué)習(xí)目標
1.函數(shù)奇偶性的概念
2.由函數(shù)圖象研究函數(shù)的奇偶性
3.函數(shù)奇偶性的判斷
重點:能運用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性
難點:理解函數(shù)的奇偶性
知識梳理:
1.軸對稱圖形:
2中心對稱圖形:
【概念探究】
1、 畫出函數(shù) ,與 的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、 求出 , 時的函數(shù)值,寫出 , 。
結(jié)論: 。
3、 奇函數(shù):___________________________________________________
4、 偶函數(shù):______________________________________________________
【概念深化】
(1)、強調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以 軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關(guān)于 軸對稱,則這個函數(shù)是___________。
6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.
題型一:判定函數(shù)的奇偶性。
例1、判斷下列函數(shù)的奇偶性:
(1) (2) (3)
(4) (5)
練習(xí):教材第49頁,練習(xí)A第1題
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式
例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x0時,f(x)=x(1-x),求當(dāng) 時f(x)的解析式。
練習(xí):若f(x)是定義在R上的'奇函數(shù),當(dāng)x0時,f(x)=x|x-2|,求當(dāng)x0時f(x)的解析式。
已知定義在實數(shù)集 上的奇函數(shù) 滿足:當(dāng)x0時, ,求 的表達式
題型三:利用奇偶性作函數(shù)圖像
例3 研究函數(shù) 的性質(zhì)并作出它的圖像
練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題
當(dāng)堂檢測
1 已知 是定義在R上的奇函數(shù),則( D )
A. B. C. D.
2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )
A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7
C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7
3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )
A. B. C. D.
4 已知函數(shù) 為奇函數(shù),若 ,則 -1
5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是
6 下列函數(shù)中不是偶函數(shù)的是(D )
A B C D
7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函數(shù) 的圖像必經(jīng)過點( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )
A 0 B 1 C 2 D 4
10 設(shè)f(x)是定義在R上的奇函數(shù),且x0時,f(x)= ,則f(-2)=_-5__
11若f(x)在 上是奇函數(shù),且f(3)_f(-1)
12.解答題
用定義判斷函數(shù) 的奇偶性。
13定義證明函數(shù)的奇偶性
已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)
14利用函數(shù)的奇偶性求函數(shù)的解析式:
已知分段函數(shù) 是奇函數(shù),當(dāng) 時的解析式為 ,求這個函數(shù)在區(qū)間 上的解析表達式。
高一數(shù)學(xué)教案 6
一、教材
首先談?wù)勎覍滩牡睦斫猓秲蓷l直線平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個合格的.高中教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。
三、教學(xué)目標
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。
(二)過程與方法
在經(jīng)歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。
(三)情感態(tài)度價值觀
在猜想論證的過程中,體會數(shù)學(xué)的嚴謹性。
四、教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:兩條直線平行與垂直的判定。本節(jié)課的教學(xué)難點是:兩條直線平行與垂直的判定的推導(dǎo)。
五、教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、教學(xué)過程
下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關(guān)系呢?
利用上節(jié)課所學(xué)的知識進行導(dǎo)入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學(xué)教案 7
一、教學(xué)目標
1、知識與技能
。1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
。4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2、過程與方法
。1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3、情感態(tài)度與價值觀
。1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀察、思考、交流、討論、概括。
。2)實物模型、投影儀 四、教學(xué)思路
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
。ǘ⒀刑叫轮
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
。2)其余各面都是平行四邊形;
。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的'結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10、現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本P8,習(xí)題1.1 A組第1題。
4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本P8 練習(xí)題1.1 B組第1題
課外練習(xí) 課本P8 習(xí)題1.1 B組第2題
高一數(shù)學(xué)教案 8
教學(xué)目標
1、使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì)。
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如的圖象。
2、通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3、通過對指數(shù)函數(shù)的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
教學(xué)建議
教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究。
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì)。難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分。
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的`重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如等都不是指數(shù)函數(shù)。
(2)對底數(shù)的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象。
高一數(shù)學(xué)教案 9
學(xué)習(xí)目標
1.能根據(jù)拋物線的定義建立拋物線的標準方程;
2.會根據(jù)拋物線的標準方程寫出其焦點坐標與準線方程;
3.會求拋物線的標準方程。
一、預(yù)習(xí)檢查
1.完成下表:
標準方程
圖形
焦點坐標
準線方程
開口方向
2.求拋物線的焦點坐標和準線方程.
3.求經(jīng)過點的拋物線的標準方程.
二、問題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標準方程?
探究2:方程是拋物線的標準方程嗎?試將其與拋物線的標準方程辨析比較.
例1.已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線上,求拋物線的方程.
例2.已知拋物線的焦點在軸上,點是拋物線上的一點,到焦點的距離是5,求的值及拋物線的標準方程,準線方程.
例3.拋物線的`頂點在原點,對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點坐標與準線方程.
三、思維訓(xùn)練
1.在平面直角坐標系中,若拋物線上的點到該拋物線的焦點的距離為6,則點的橫坐標為.
2.拋物線的焦點到其準線的距離是.
3.設(shè)為拋物線的焦點,為該拋物線上三點,若,則=.
4.若拋物線上兩點到焦點的距離和為5,則線段的中點到軸的距離是.
5.(理)已知拋物線,有一個內(nèi)接直角三角形,直角頂點在原點,斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。
四、課后鞏固
1.拋物線的準線方程是.
2.拋物線上一點到焦點的距離為,則點到軸的距離為.
3.已知拋物線,焦點到準線的距離為,則.
4.經(jīng)過點的拋物線的標準方程為.
5.頂點在原點,以雙曲線的焦點為焦點的拋物線方程是.
6.拋物線的頂點在原點,以軸為對稱軸,過焦點且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
7.若拋物線上有一點,其橫坐標為,它到焦點的距離為10,求拋物線方程和點的坐標。
高一數(shù)學(xué)教案 10
教學(xué)目標:
①掌握對數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學(xué)重點與難點:
對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計:
1、復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
2、開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logЛ0.5 ,lnЛ
師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的`單調(diào)性取決于底的大小:當(dāng)0
調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當(dāng)0
∵5.1<5.9 loga5.1="">loga5.9
、)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
高一數(shù)學(xué)教案 11
【內(nèi)容與解析】
本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號的理解,理解它關(guān)鍵就是能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過了集合并且初中對函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點是函數(shù)的概念,函數(shù)的三要素,所以解決重點的關(guān)鍵是通過實例領(lǐng)悟構(gòu)成函數(shù)的三個要素;會求一些簡單函數(shù)的定義域和值域。
【教學(xué)目標與解析】
1、教學(xué)目標
。1)理解函數(shù)的概念;
。2)了解區(qū)間的概念;
2、目標解析
。1)理解函數(shù)的概念就是指能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的'變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有唯一的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個臭氧層空洞面積S與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問題4:上述三個實例中變量之間的關(guān)系都是函數(shù),那么從集合與對應(yīng)的觀點分析,函數(shù)還可以怎樣定義?
4.1在一個函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個集合分別叫什么名稱?
4.2在從集合A到集合B的一個函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個函數(shù)由哪幾個部分組成?如果給定函數(shù)的定義域和對應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個函數(shù)相等的條件是什么?
【例題】:
例1求下列函數(shù)的定義域
分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!
例2已知函數(shù)
分析:理解函數(shù)f(x)的意義
例3下列函數(shù)中哪個與函數(shù)相等?
例4在下列各組函數(shù)中與是否相等?為什么?
分析:
。1)兩個函數(shù)相等,要求定義域和對應(yīng)關(guān)系都一致;
。2)用x還是用其它字母來表示自變量對函數(shù)實質(zhì)而言沒有影響.
【課堂目標檢1測】
教科書第19頁1、2.
【課堂小結(jié)】
1、理解函數(shù)的定義,函數(shù)的三要素,會球簡單的函數(shù)的定義域和函數(shù)值;
2、理解區(qū)間是表示數(shù)集的一種方法,會把不等式轉(zhuǎn)化為區(qū)間。
高一數(shù)學(xué)教案 12
學(xué)習(xí)目標
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
一、預(yù)習(xí)檢查
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
二、問題探究
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,離心率為、
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、
例3(理)求離心率為,且過點的雙曲線標準方程、
三、思維訓(xùn)練
1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設(shè)直線的斜率是、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、(理)設(shè)是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、
四、知識鞏固
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、
2、設(shè)雙曲線的一條準線與兩條漸近線交于兩點,相應(yīng)的焦點為,若以為直徑的圓恰好過點,則離心率為、
3、已知雙曲線的.左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、
高一數(shù)學(xué)教案 13
教學(xué)準備
教學(xué)目標
熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。
教學(xué)重難點
熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。
教學(xué)過程
【復(fù)習(xí)要求】熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。
【方法規(guī)律】應(yīng)用數(shù)列知識界實際應(yīng)用問題的關(guān)鍵是通過對實際問題的.綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差或公比等基本元素,然后設(shè)計合理的計算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
一、基礎(chǔ)訓(xùn)練
1、某種細菌在培養(yǎng)過程中,每20分鐘*一次一個*為兩個,經(jīng)過3小時,這種細菌由1個可繁殖成
A、511B、512C、1023D、1024
2、若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為
A、B、
C、D、
二、典型例題
例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問到第n期期末的本金和是多少?
評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]
例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉(zhuǎn)為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?
例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從20xx年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬柦?jīng)過多少年的努力才能使全縣的綠洲面積超過60%。lg2=0.3
例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
高一數(shù)學(xué)教案 14
一、目的要求
結(jié)合集合的圖形表示,理解交集與并集的概念。
二、內(nèi)容分析
1.這小節(jié)繼續(xù)研究集合的運算,即集合的交、并及其性質(zhì)。
2.本節(jié)課的重點是交集與并集的概念,難點是弄清交集與并集的概念,符號之間的區(qū)別與聯(lián)系。
三、教學(xué)過程
復(fù)習(xí)提問:
1.說出A的意義。
2.填空:如果全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么,
a=,B=。
(A={0,2,4},B={0,2,3,5})
新課講解:
1.觀察下面兩個圖的陰影部分,它們同集合A、集合B有什么關(guān)系?
2.定義:
(1)交集:A∩B={x∈A,且x∈B}。
(2)并集:A∪B={x∈A,且x∈B}。
3.講解教科書1.3節(jié)例1-例5。
組織討論:
觀察下面表示兩個集合A與B之間關(guān)系的5個圖,根據(jù)這些圖分別討論A∩B與A∪B。
(2)中A∩B=φ。
(3)中A∩B=B,A∪B=A。
(4)中A∩B=A,A∪B=B。
(5)中A∩B=A∪B=A=B。
課堂練習(xí):
教科書1.3節(jié)第一個練習(xí)第1~5題。
拓廣引申:
在教科書的例3中,由A={3,5,6,8},B={4,5,7,8},得
a∪B={3,5,6,8}∪{4,5,7,8}
={3,4,5,6,7,8}
我們研究一下上面三個集合中的'元素的個數(shù)問題。我們把有限集合A的元素個數(shù)記作card(A)=4,card(B)=4,card(A∪B)=6.
顯然,
Card(A∪B)≠card(A)+card(B)
這是因為集合中的元素是沒有重復(fù)現(xiàn)象的,在兩個集合的公共元素只能出現(xiàn)一次。那么,怎樣求card(A∪B)呢?不難看出,要扣除兩個集合的公共元素的個數(shù),即card(A∩B)。在上例中,card(A∩B)=2。
一般地,對任意兩個有限集合A,B,有
Card(A∪B)=card(A)+card(B)-card(A∩B)。
四、布置作業(yè)
1.教科書習(xí)題1.3第1~5題。
2.選作:設(shè)集合A={x|-4≤x<2},B={-1
求A∩B∩C,A∪B∩C。
(A∩B∩C={-1
高一數(shù)學(xué)教案 15
一、教學(xué)目標
1. 知識與技能:
掌握集合的并集、交集、補集的概念及表示方法。
能夠運用集合的基本運算解決簡單問題。
2. 過程與方法:
通過實例分析,引導(dǎo)學(xué)生理解集合運算的實質(zhì)。
采用講練結(jié)合的方法,提高學(xué)生的運算能力。
3. 情感態(tài)度與價值觀:
培養(yǎng)學(xué)生的邏輯思維能力和嚴謹?shù)目茖W(xué)態(tài)度。
二、教學(xué)重點和難點
重點:集合的.并集、交集、補集的概念及表示方法。
難點:運用集合的基本運算解決復(fù)雜問題。
三、教學(xué)方法
講授法:通過教師講解,引導(dǎo)學(xué)生理解集合運算的基本概念。
練習(xí)法:通過大量練習(xí),提高學(xué)生的運算能力和解題技巧。
多媒體輔助教學(xué):利用PPT等多媒體工具展示實例,幫助學(xué)生直觀理解。
四、教學(xué)過程
1. 引入新課(約2分鐘)
通過復(fù)習(xí)集合的概念和表示方法,引出集合運算的重要性。
2. 新課講授(約20分鐘)
概念講解:詳細講解集合的并集、交集、補集的概念及表示方法。
實例分析:通過具體實例,引導(dǎo)學(xué)生理解集合運算的實質(zhì)和運算規(guī)則。
例題講解:給出幾道例題,教師邊講邊練,引導(dǎo)學(xué)生掌握解題技巧。
3. 鞏固練習(xí)(約15分鐘)
給出幾道練習(xí)題,讓學(xué)生獨立完成,然后小組內(nèi)交流答案,教師點評。
4. 課堂小結(jié)(約5分鐘)
總結(jié)本節(jié)課的知識點,強調(diào)集合運算的重要性,布置課后作業(yè)。
五、教學(xué)器材
多媒體PPT課件
黑板及粉筆
練習(xí)冊或作業(yè)本
高一數(shù)學(xué)教案 16
一、教學(xué)目標
1. 知識與技能:
理解三角函數(shù)(正弦、余弦、正切)的定義,掌握特殊角的三角函數(shù)值。
能夠利用三角函數(shù)的基本關(guān)系式進行簡單的計算。
2. 過程與方法:
通過實例引入,理解三角函數(shù)在解決實際問題中的應(yīng)用。
采用講授與練習(xí)相結(jié)合的方法,鞏固所學(xué)知識。
3. 情感態(tài)度與價值觀:
培養(yǎng)學(xué)生嚴謹?shù)臄?shù)學(xué)態(tài)度,提高數(shù)學(xué)應(yīng)用意識。
激發(fā)學(xué)生的`學(xué)習(xí)興趣,增強學(xué)習(xí)數(shù)學(xué)的信心。
二、教學(xué)重點和難點
重點:三角函數(shù)的定義及其基本關(guān)系式。
難點:理解三角函數(shù)在直角三角形中的幾何意義,以及特殊角的三角函數(shù)值的記憶。
三、教學(xué)過程
1. 引入新課(約2分鐘)
通過展示生活中的實例(如角度測量、高度計算等),引出三角函數(shù)的學(xué)習(xí)主題。
2. 新知講解(約10分鐘)
講解三角函數(shù)的定義,包括正弦、余弦、正切的定義及其幾何意義。
展示特殊角的三角函數(shù)值表,引導(dǎo)學(xué)生記憶并理解其意義。
3. 例題講解(約10分鐘)
通過例題講解如何利用三角函數(shù)的基本關(guān)系式進行簡單的計算。
強調(diào)計算過程中的注意事項和易錯點。
4. 課堂練習(xí)(約10分鐘)
布置課堂練習(xí)題目,讓學(xué)生獨立完成,教師巡回指導(dǎo)。
講解練習(xí)中的共性問題,鞏固所學(xué)知識。
5. 課堂小結(jié)(約5分鐘)
總結(jié)本節(jié)課的知識點,強調(diào)三角函數(shù)的重要性。
布置課后作業(yè),鼓勵學(xué)生進一步鞏固所學(xué)知識。
四、教學(xué)方法
采用講授與練習(xí)相結(jié)合的教學(xué)方法,注重知識的鞏固和應(yīng)用。
引導(dǎo)學(xué)生積極參與課堂討論,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和解決問題的能力。
五、教學(xué)器材
黑板、粉筆、多媒體課件等。
高一數(shù)學(xué)教案 17
重點
理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.
難點
理解角與角的相關(guān)概念;掌握角的度量單位以及單位之間的換算.
一、創(chuàng)設(shè)情境,導(dǎo)入新知
展示實物:時鐘,圓規(guī),折扇等.
(1)觀察實物與圖片,你發(fā)現(xiàn)其中有什么相同圖形嗎?學(xué)生回答,教師點評,注意鼓勵學(xué)生.
(2)你能把觀察得到的圖形畫在本子上或黑板上嗎?這是一些什么圖形?思考,動手畫一畫.
(3)從黑板上這些不同的圖形中,你能歸納出它們的共同特點嗎?
學(xué)生相互交流并回答,挖掘和利用現(xiàn)實生活中與角相關(guān)的背景,讓學(xué)生在現(xiàn)實背景中認識角,培養(yǎng)學(xué)生的動手能力.引導(dǎo)學(xué)生觀察并歸納角的共同點,進而引入課題.
二、自主合作,感受新知
回顧以前學(xué)的知識、閱讀課文并結(jié)合生活實際,完成“預(yù)習(xí)導(dǎo)學(xué)”部分.
三、師生互動,理解新知
探究點一:角的概念及表示方法
活動一:從生活中認識角
我們看物體時,有視角,鐘表的指針轉(zhuǎn)動也形成角.請同學(xué)們看課本后回答下面問題.
(1)角是一個幾何圖形,請大家說說,角是由什么圖形構(gòu)成的?(學(xué)生回答,教師點評,注意鼓勵學(xué)生)
(2)如果我們把角看作是一條射線繞它的端點旋轉(zhuǎn)圍成的圖形,那么始邊和終邊又指什么?
教師總結(jié):角有兩個定義,一個是靜態(tài)的定義,把角看作由一點出發(fā)的兩條射線組成的圖形;另一個定義是動態(tài)的,把角看作一條射線繞端點旋轉(zhuǎn)所形成的圖形,把開始位置的射線叫做始邊,把終止位置的射線叫做終邊.
(3)請同學(xué)們說一說,我們?nèi)粘I钪,哪些地方有角?學(xué)生舉例)
活動二:角的表示方法
我們怎樣表示角呢?請同學(xué)們看課本上說了幾種表示方法?(學(xué)生先看書,后回答)
教師總結(jié):
(1)用三個大寫字母可以表示一個角,比如∠AOB.
練習(xí):誰能指出下列各角的頂點和兩條邊?
注意:
、偃齻字母的順序有規(guī)定,頂點的字母必須寫在中間.
、陧旤c的字母不一定用O,角的始邊與終邊的字母也可以隨意.
(2)當(dāng)一個頂點只有一個角時,也可以用頂點的字母表示.比如,下面的角可以表示為∠O.
練習(xí):判斷下列角可以用頂點的字母表示嗎?
(3)用數(shù)字或小寫的希臘字母表示角.(注意:角中不能有角)
練習(xí):下面表示角的方法,哪個是正確的?哪個是錯誤的?
探究點二:角的度量
活動三:角的度量
(1)請同學(xué)們借助量角器畫出下列各角:
①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°
學(xué)生畫圖,教師指導(dǎo).(根據(jù)需要教師可先做示范)
(2)任意畫一個角,用量角器測量角的大小.提問:如果這個角的度數(shù)不是整數(shù),應(yīng)該怎樣表示這個角的度數(shù)呢?引出角的度量單位是度、分、秒.
教師總結(jié):它們之間的關(guān)系是:1°=60′,1′=60″ (強調(diào)度、分、秒是60進制,不是十進制).
(3)還有什么單位是60進制?
(4)讓學(xué)生畫一個1°角,感受1°角有多大.
四、應(yīng)用遷移,運用新知
1.角的定義
例1 下列說法中,正確的是( )
A.兩條射線組成的圖形叫做角
B.有公共端點的兩條線段組成的圖形叫做角
C.角可以看作是由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形
D.角可以看作是由一條線段繞著它的端點旋轉(zhuǎn)而形成的圖形
解析:A.有公共端點的兩條射線組成的圖形叫做角,故錯誤;B.根據(jù)A可得B錯誤;C.角可以看作是由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形,正確;D.據(jù)C可得D錯誤.
方法總結(jié):此題考查了角的定義,有公共端點的兩條不重合的射線組成的圖形叫做角.這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊.
2.角的表示方法
例2 下列四個圖形中,能用∠1、∠AOB、∠O三種方法表示同一個角的`圖形是( )
A B C D
解析:在角的頂點處有多個角時,用一個字母表示這個角,這種方法是錯誤的.所以A、C、D錯誤.
方法總結(jié):角的兩個基本元素中,邊是兩條射線,
頂點是這兩條射線的公共端點.
3.判斷角的數(shù)量
例3 如圖所示,在∠AOB的內(nèi)部有3條射線,則圖中角的個數(shù)為( )
A.10 B.15 C.5 D.20
解析:可以根據(jù)圖形依次數(shù)出角的個數(shù);或者根據(jù)公式求圖中角的個數(shù)是12×5×(5-1)=10.
方法總結(jié):若從一點發(fā)出n條射線,則構(gòu)成12n(n-1)個角.
4.角的度量
例4 見課本P144例1.
方法總結(jié):用度、分、秒表示的角度和用度表示的角度的相互轉(zhuǎn)化的過程正好相反:大單位化小單位,乘以進率;而小單位化大單位要除以進率.
五、嘗試練習(xí),掌握新知
課本P144練習(xí)第1、2題、P145練習(xí)第1、2題.
“隨堂演練”部分.
六、課堂小結(jié),梳理新知
通過本節(jié)課的學(xué)習(xí),我們都學(xué)到了哪些數(shù)學(xué)知識和方法?
本節(jié)課學(xué)習(xí)了角及角的有關(guān)概念,并會表示角;知道角的度量單位,并能進行單位的轉(zhuǎn)換;會把角的知識與現(xiàn)實生活相聯(lián)系,用角的知識解釋生活中的一些現(xiàn)象.
七、深化練習(xí),鞏固新知
課本P145~146習(xí)題4.4第1~4題.
“課時作業(yè)”部分.
高一數(shù)學(xué)教案 18
教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
課型:
新授課
教學(xué)目標:
(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關(guān)系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學(xué)重點:
集合的基本概念與表示方法;
教學(xué)難點:
運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;
教學(xué)過程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合(宣布課題),即是一些研究對象的總體。
二、新課教學(xué)
(一)集合的有關(guān)概念
1.集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這
些東西,并且能判斷一個給定的東西是否屬于這個總體。
2.一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡
稱集。
3.關(guān)于集合的元素的特征
(1)確定性:設(shè)A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)集合相等:構(gòu)成兩個集合的元素完全一樣
4.元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a?A(或a A)
5.常用數(shù)集及其記法
非負整數(shù)集(或自然數(shù)集),記作N
正整數(shù)集,記作N_或N+;
整數(shù)集,記作Z
有理數(shù)集,記作Q
實數(shù)集,記作R
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。
具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
強調(diào):描述法表示集合應(yīng)注意集合的代表元素
{(x,y)|y= x2+3x+2}與{y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。
說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
三、歸納小結(jié)
本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關(guān)系
教材分析:類比實數(shù)的大小關(guān)系引入集合的包含與相等關(guān)系
了解空集的含義
課型:新授課
教學(xué)目的:(1)了解集合之間的包含、相等關(guān)系的含義;
(2)理解子集、真子集的概念;
(3)能利用Venn圖表達集合間的關(guān)系;
(4)了解與空集的含義。
教學(xué)重點:子集與空集的概念;用Venn圖表達集合間的關(guān)系。教學(xué)難點:弄清元素與子集、屬于與包含之間的區(qū)別;
教學(xué)過程:
四、引入課題
1、復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填以下空白:(1)0 N;(2;(3)-1.5 R
2、類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(宣
布課題)
五、新課教學(xué)
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素構(gòu)成的'集合,我們說集合B包含集合A;
如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集(subset)。
記作:A?B(或B?A)
讀作:A包含于(is contained in)B,或B包含(contains)A (一)集合與集合之間的“包含”關(guān)系;
當(dāng)集合A不包含于集合B時,記作B
用Venn圖表示兩個集合間的“包含”關(guān)系A(chǔ)?B(或B?A)
(二)集合與集合之間的“相等”關(guān)系;
A?B且B?A,則A=B中的元素是一樣的,因此A=B
?A?B即A=B?? B?A?
結(jié)論:
任何一個集合是它本身的子集
(三)真子集的概念
若集合A?B,存在元素x∈B且x?A,則稱集合A是集合B的真子集(proper subset)。
記作:A B(或B A)
讀作:A真包含于B(或B真包含A)
(四)空集的概念
(實例引入空集概念)
不含有任何元素的集合稱為空集(empty set),記作:?規(guī)定:空集是任何集合的子集,是任何非空集合的真子集。
(五)結(jié)論:1A?A ○2A?B,且B?C,則A?C ○
(六)例題
(1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化簡集合A={x|x-3>2},B={x|x≥5},并表示A、B的關(guān)系;
(七)歸納小結(jié),強化思想
兩個集合之間的基本關(guān)系只有“包含”與“相等”兩種,可類比兩個實數(shù)間的大小關(guān)系,同時還要注意區(qū)別“屬于”與“包含”兩種關(guān)系及其表示方法;
1、已知集合A={x|a取值范圍。
2、設(shè)集合A={○四邊形},B={平行四邊形},C={矩形},
D={正方形},試用Venn圖表示它們之間的關(guān)系。
課題:§1.3集合的基本運算
教學(xué)目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。
課型:新授課
教學(xué)重點:集合的交集與并集、補集的概念;
教學(xué)難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;
教學(xué)過程:
六、引入課題
我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
七、新課教學(xué)
并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B
Venn圖表示:讀作:“A并B”即:A∪B={x|x∈A,或x∈B}
高一數(shù)學(xué)教案 19
一、教學(xué)目標
知識與技能:
了解中心投影和平行投影的概念。
能夠判斷簡單的空間幾何體(柱、錐、臺、球及其簡單組合體)的三視圖。
能夠根據(jù)三視圖描述基本幾何體或?qū)嵨镌汀?/p>
掌握簡單組合體與其三視圖之間的相互轉(zhuǎn)化。
過程與方法:
通過自主學(xué)習(xí)和質(zhì)疑提問,了解投影的基本原理。
通過觀察、思考和討論,掌握中心投影和平行投影的區(qū)別。
通過實踐操作和練習(xí),提高三視圖的繪制和識別能力。
情感態(tài)度與價值觀:
激發(fā)學(xué)生對數(shù)學(xué)的興趣和熱情。
培養(yǎng)學(xué)生的空間想象能力和邏輯推理能力。
引導(dǎo)學(xué)生認識到數(shù)學(xué)在現(xiàn)實生活中的應(yīng)用價值。
二、教學(xué)重難點
教學(xué)重點:
中心投影和平行投影的概念。
簡單空間幾何體的三視圖繪制和識別。
教學(xué)難點:
根據(jù)三視圖描述基本幾何體或?qū)嵨镌汀?/p>
簡單組合體與其三視圖之間的相互轉(zhuǎn)化。
三、教學(xué)過程
自主學(xué)習(xí):
引導(dǎo)學(xué)生思考照相、繪畫中的空間視覺效果是如何產(chǎn)生的,引出投影的概念。
介紹在建筑、機械等工程中,需要用平面圖形反映空間幾何體的形狀和大小的需求,引出三視圖的概念。
質(zhì)疑提問:
通過手影游戲等實例,引導(dǎo)學(xué)生思考投影的基本原理和不同類型。
提問學(xué)生關(guān)于中心投影和平行投影的區(qū)別,以及它們在不同情況下的應(yīng)用。
講授新知:
詳細講解中心投影和平行投影的概念和特點。
通過實物模型或多媒體演示,展示不同空間幾何體的三視圖。
引導(dǎo)學(xué)生觀察、思考和討論,總結(jié)不同空間幾何體的三視圖特點。
問題探究:
提問學(xué)生關(guān)于長方體、圓柱、圓錐等幾何體的三視圖是什么,并引導(dǎo)學(xué)生進行思考和討論。
通過練習(xí)和鞏固,加深學(xué)生對三視圖的`理解和掌握。
課堂檢測:
設(shè)計一些與課堂內(nèi)容相關(guān)的練習(xí)題,讓學(xué)生進行練習(xí)和鞏固。
通過提問和討論,檢查學(xué)生對課堂內(nèi)容的理解和掌握情況。
小結(jié)評價:
總結(jié)本節(jié)課的學(xué)習(xí)內(nèi)容和重點。
對學(xué)生的學(xué)習(xí)表現(xiàn)進行評價和鼓勵。
四、教學(xué)反思
在教學(xué)過程中,要注重學(xué)生的參與度和積極性,通過提問、討論和練習(xí)等方式,激發(fā)學(xué)生的學(xué)習(xí)興趣和熱情。同時,要注重培養(yǎng)學(xué)生的空間想象能力和邏輯推理能力,引導(dǎo)學(xué)生認識到數(shù)學(xué)在現(xiàn)實生活中的應(yīng)用價值。此外,還需要根據(jù)學(xué)生的實際情況和學(xué)習(xí)反饋,及時調(diào)整教學(xué)策略和方法,以提高教學(xué)效果和質(zhì)量。
高一數(shù)學(xué)教案 20
一、教學(xué)目標
知識與技能:
通過實物操作,增加學(xué)生的直觀感知。
能依據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
過程與方法:
讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
情感態(tài)度與價值觀:
使學(xué)生感受空間幾何體存在于現(xiàn)實生活四周,增加學(xué)生學(xué)習(xí)的主動性。
提高學(xué)生的觀察能力。
培養(yǎng)學(xué)生的空間想象能力和抽象概括能力。
二、教學(xué)重點與難點
教學(xué)重點:
感受大量空間實物及模型,概括出柱、錐、臺、球的結(jié)構(gòu)特征。
教學(xué)難點:
柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)準備
實物模型:棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球等。
投影儀:用于展示實物模型的投影圖片。
四、教學(xué)過程
創(chuàng)設(shè)情景,揭示課題:
提問:六根火柴最多可搭成幾個三角形?(答案:4個,空間幾何中的四面體)
提問:在我們周圍有不少有特色的建筑物,你能舉出一些例子嗎?(引導(dǎo)學(xué)生關(guān)注建筑物的幾何形狀)
展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體,并請學(xué)生根據(jù)某種標準對以上空間物體進行分類。
研探新知:
圓柱:以矩形的.一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體。
圓錐:直角三角形繞其中一直角邊所在直線旋轉(zhuǎn)一周所得到的幾何體。
圓臺:用平行于圓錐底面的平面去截圓錐,底面與截面之間的部分。
球:空間中到定點的距離等于定長的所有點的集合。
棱柱:有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩上四邊形的公共邊相互平行。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:由平行于棱錐底面的平面截棱錐后,截面與底面之間的部分。
多面體:面、棱、頂點;具體分為棱柱、棱錐、棱臺。
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。
提問并討論:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點和不同點?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生改變時,它們能否相互轉(zhuǎn)化?圓柱、圓錐、圓臺呢?
排難解惑,發(fā)展思維:
提問:有兩個面相互平行,其余后面都是平行四邊形的幾何體是不是棱柱?(通過反例說明,不一定,需要滿足棱柱的所有條件)
提問:棱柱的任何一個平面都可以作為棱柱的底面嗎?(不一定,需要滿足棱柱的定義)
提問:圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?(圓臺可以由等腰梯形旋轉(zhuǎn)得到,也可以由扇形旋轉(zhuǎn)得到,旋轉(zhuǎn)方式需滿足圓臺的定義)
鞏固深化練習(xí):
完成課本相關(guān)練習(xí)題。
歸納整理:
由學(xué)生整理本節(jié)課所學(xué)內(nèi)容,包括柱、錐、臺、球的結(jié)構(gòu)特征及其相互關(guān)系。
五、教學(xué)反思
本節(jié)課通過實物模型和投影儀的輔助教學(xué),使學(xué)生更加直觀地感受了空間幾何體的結(jié)構(gòu)特征。
通過提問和討論的方式,激發(fā)了學(xué)生的學(xué)習(xí)興趣和主動性,培養(yǎng)了學(xué)生的空間想象能力和抽象概括能力。
在教學(xué)過程中,需要注意引導(dǎo)學(xué)生關(guān)注幾何體的細節(jié)特征,避免對結(jié)構(gòu)的誤解或混淆。
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案11-27
高一數(shù)學(xué)教案11-08
高一數(shù)學(xué)教案(通用)06-29
高一數(shù)學(xué)教案(薦)03-16
高一數(shù)學(xué)教案(精品)10-14
高一數(shù)學(xué)教案范文11-30
高一數(shù)學(xué)教案模板11-08
高一數(shù)學(xué)教案最新08-27
[實用]高一數(shù)學(xué)教案10-30