八年級數(shù)學教案范文匯編十篇
作為一位兢兢業(yè)業(yè)的人民教師,總不可避免地需要編寫教案,借助教案可以更好地組織教學活動。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家整理的八年級數(shù)學教案10篇,歡迎大家借鑒與參考,希望對大家有所幫助。
八年級數(shù)學教案 篇1
一、全章要點
1、勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)
2、勾股定理的逆定理 如果三角形的三邊長:a、b、c,則有關系a2+b2=c2,那么這個三角形是直角三角形。
3、勾股定理的證明 常見方法如下:
方法一: , ,化簡可證.
方法二:
四個直角三角形的面積與小正方形面積的和等于大正方形的面積.
四個直角三角形的面積與小正方形面積的和為
大正方形面積為 所以
方法三: , ,化簡得證
4、勾股數(shù) 記住常見的勾股數(shù)可以提高解題速度,如 ; ; ; ;8,15,17;9,40,41等
二、經典訓練
(一)選擇題:
1. 下列說法正確的是( )
A.若 a、b、c是△ABC的三邊,則a2+b2=c2;
B.若 a、b、c是Rt△ABC的三邊,則a2+b2=c2;
C.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2;
D.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2.
2. △ABC的三條邊長分別是 、 、 ,則下列各式成立的是( )
A. B. C. D.
3.直角三角形中一直角邊的長為9,另兩邊為連續(xù)自然數(shù),則直角三角形的周長為( )
A.121 B.120 C.90 D.不能確定
4.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( )
A.42 B.32 C.42 或 32 D.37 或 33
(二)填空題:
5.斜邊的邊長為 ,一條直角邊長為 的直角三角形的面積是 .
6.假如有一個三角形是直角三角形,那么三邊 、 、 之間應滿足 ,其中 邊是直角所對的邊;如果一個三角形的三邊 、 、 滿足 ,那么這個三角形是 三角形,其中 邊是 邊, 邊所對的`角是 .
7.一個三角形三邊之比是 ,則按角分類它是 三角形.
8. 若三角形的三個內角的比是 ,最短邊長為 ,最長邊長為 ,則這個三角形三個角度數(shù)分別是 ,另外一邊的平方是 .
9.如圖,已知 中, , , ,以直角邊 為直徑作半圓,則這個半圓的面積是 .
10. 一長方形的一邊長為 ,面積為 ,那么它的一條對角線長是 .
三、綜合發(fā)展:
11.如圖,一個高 、寬 的大門,需要在對角線的頂點間加固一個木條,求木條的長.
12.一個三角形三條邊的長分別為 , , ,這個三角形最長邊上的高是多少?
13.如圖,小李準備建一個蔬菜大棚,棚寬4m,高3m,長20m,棚的斜面用塑料薄膜遮蓋,不計墻的厚度,請計算陽光透過的最大面積.
14.如圖,有一只小鳥在一棵高13m的大樹樹梢上捉蟲子,它的伙伴在離該樹12m,高8m的一棵小樹樹梢上發(fā)出友好的叫聲,它立刻以2m/s的速度飛向小樹樹梢,那么這只小鳥至少幾秒才可能到達小樹和伙伴在一起?
15.如圖,長方體的長為15,寬為10,高為20,點 離點 的距離為5,一只螞蟻如果要沿著長方體的表面從點 爬到點 ,需要爬行的最短距離是多少?
16.中華人民共和國道路交通管理條例規(guī)定:小汽車在城街路上行駛速度不得超過 km/h.如圖,,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方 m處,過了2s后,測得小汽車與車速檢測儀間距離為 m,這輛小汽車超速了嗎?
八年級數(shù)學教案 篇2
第一步:情景創(chuàng)設
乒乓球的標準直徑為40mm,質檢部門從A、B兩廠生產的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認為哪廠生產的乒乓球的直徑與標準的誤差更小呢?
。1)請你算一算它們的平均數(shù)和極差。
。2)是否由此就斷定兩廠生產的乒乓球直徑同樣標準?
今天我們一起來探索這個問題。
探索活動
通過計算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的波動情況不敏感。讓我們一起來做下列的數(shù)學活動
算一算
把所有差相加,把所有差取絕對值相加,把這些差的'平方相加。
想一想
你認為哪種方法更能明顯反映數(shù)據(jù)的波動情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來衡量一批數(shù)據(jù)的波動大小
在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應用更廣泛衡量一組數(shù)據(jù)的波動大小
。3)方差主要應用在平均數(shù)相等或接近時
(4)方差大波動大,方差小波動小,一般選波動小的
方差的簡便公式:
推導:以3個數(shù)為例
。ǘ藴什睿
方差的算術平方根,即④
并把它叫做這組數(shù)據(jù)的標準差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的量.
注意:波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
八年級數(shù)學教案 篇3
一、目標要求
1.理解掌握異分母分式加減法法則。
2.能正確熟練地進行異分母分式的加減運算。
二、重點難點
重點:異分母分式的加減法法則及其運用。
難點:正確確定最簡公分母和靈活運用法則。
1.異分母分式的加減法法則:異分母分式相加減,先通分,變?yōu)橥帜阜质剑缓笤偌訙p。用式子表示為:±=。
2.分式通分時,要注意幾點:(1)如果各分母的系數(shù)都是整數(shù)時通分,常取它們的系數(shù)的最小公倍數(shù),作為最簡公分母的系數(shù);(2)若分母的系數(shù)不是整數(shù)時,先用分式的基本性質將其化為整數(shù),再求最小公倍數(shù);(3)分母的系數(shù)若是負數(shù)時,應利用符號法則,把負號提取到分式前面;(4)若分母是多項式時,先按某一字母順序排列,然后再進行因式分解,再確定最簡公分母。
三、解題方法指導
【例1】計算:(1)++;
。2)-x-1;
。3)--。
分析:(1)把分母的各多項式按x的'降冪排列,能先分解因式的將其分解因式,找最簡公分母,轉化為同分母的分式加減法。(2)一個整式與一個分式相加減,應把這個整式看作一個分母是1的式子來進行通分,注意-x-1=,要注意負號問題。
解:(1)原式=-+=-+====;
。2)原式======;
。3)原式=--===。
【例2】計算:。+++。
分析:此題若將4個分式同時通分,分子將是很復雜的,計算也是比較復雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進行加減。
解:原式=++=++=+=+==。
四、激活思維訓練
▲知識點:異分母分式的加減
【例】計算:-+。
分析:此題如果直接通分,運算勢必十分復雜。當各分子的次數(shù)大于或等于分母的次數(shù)時,可利用多項式的除法,將其分離為整式部分與分式部分的和,再加減會使運算簡便。
解:原式=[x+2-]-[x+3+]
+[+1]
=x+2--x-3-++1
=--+=====。
五、基礎知識檢測
1.填空題:
八年級數(shù)學教案 篇4
學習目標:
1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質.
2、經歷探索軸對稱的性質的活動過程 ,積累數(shù)學活動經驗,進一步發(fā)展空間觀念和有條理地思考和表達能力.
3、利用軸對稱的基本性質解決實際問題。
學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質。
學習難點:軸對稱的性質的.理解和拓展運用。
學習過程 :
一、探索活動
如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關系?
1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關系?線段AA與折痕MN之間又有什么關系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關系?線段BB與MN 有什么關系?
5.如圖,再在紙上任畫一點C,并仿照上面進行操作.
(1)線段AC與 AC有什么關系 ? BC與BC呢?線段CC與MN有什么關系?
(2)A與A有什么關系? B與B呢? △ABC 與△ABC有什么關系?為什么?
(3)軸對稱有哪些性質?
6.軸對稱的性質:
(1)成軸對稱的兩個圖形全等.
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關系?并用測量的方法驗證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?
(5)延長線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級數(shù)學教案 篇5
教學目標:
1.學會根據(jù)定義判別分式方程與整式方程,了解分式方程增根產生的原因,掌握驗根的方法。
2.掌握可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解。
教學重點:去分母法解可化為一元一次方程或一元二次方程的分式方程。驗根的方法。
教學難點:驗根的方法。分式方程增根產生的原因。
教學準備:小黑板。
教學過程:
復習引入:下列方程中哪些分母中含有未知數(shù)?哪些分母中不含有未知數(shù)?
(1);(2);(3);(4);
。5);(6);(7);(8)。
講授新課:
1.由上述歸納出分式方程的概念:只含有分式或整式,且分母里含有未知數(shù)的方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。
2.討論分式方程的`解法:
。1)復習解方程時,怎樣去分母?
(2)講解例1:解方程(按課文講解)
歸納:解分式方程的基本思想:
分式方程整式方程
。3)講解例2:解方程(按課文講解)
歸納:在去分母時,有時可能產生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗,常把求得得根代入原方程的最簡公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。
想一想:產生增根的原因是什么?
鞏固練習:P1451t,2t。
課堂小結:什么叫做分式方程?
解分式方程時,為什么要檢驗?怎樣檢驗?
布置作業(yè):見作業(yè)本。
八年級數(shù)學教案 篇6
1.請同學們回憶(≥0,b≥0)是如何得到的?
2.學生觀察下面的例子,并計算:
由學生總結上面兩個式的關系得:
類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:
。ā0,b0)
使學生回憶起二次根式乘法的運算方法的推導過程.
類似地,請每個同學再舉一個例子,
請學生們思考為什么b的取值范圍變小了?
與學生一起寫清解題過程,提醒他們被開方式一定要開盡.
對比二次根式的`乘法推導出除法的運算方法
增強學生的自信心,并從一開始就使他們參與到推導過程中來.
對學生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.
強化學生的解題格式一定要標準.
教學過程設計
問題與情境師生行為設計意圖
活動二自我檢測
活動三挑戰(zhàn)逆向思維
把反過來,就得到
。ā0,b0)
利用它就可以進行二次根式的化簡.
例2化簡:
。1)
。2)(b≥0).
解:(1)(2)練習2化簡:
(1)(2)活動四談談你的收獲
1.商的算術平方根的性質(注意公式成立的條件).
2.會利用商的算術平方根的性質進行簡單的二次根式的化簡.
找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學生口述解題過程,教師將過程寫在黑板上.
請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.
請學生自己談收獲,并總結本節(jié)課的主要內容.
為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.
此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.
讓學困生在自己做題時有一個參照.
充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.
八年級數(shù)學教案 篇7
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點:方差產生的必要性和應用方差公式解決實際問題。
難點:理解方差公式
二、自主學習:
(一)知識我先懂:
方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習:
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農作物的苗長的比較高(我們可以計算它們的.平均數(shù): = )
(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )
歸納: 方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題
七、學習小札記:
寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學教案 篇8
例題講解
引入問題:有甲乙兩種客車,甲種客車每車能拉30人,乙種客車每車能拉40人,現(xiàn)在有400人要乘車,
1、你有哪些乘車方案?
2、只租8輛車,能否一次把客人都運送走?
問題2;怎樣租車
某學校計劃在總費用2300元的限額內,利用汽車送234名學生和6名教師集體外出活動,每輛汽車上至少有1名教師,F(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表:
甲種客車乙種客車
載客量(單位:人/輛)4530
租金(單位:元/輛)400280
。1)共需租多少輛汽車?
。2)給出最節(jié)省費用的租車方案。
分析;
。1)要保證240名師生有車坐
(2)要使每輛汽車上至少要有1名教師
根據(jù)(1)可知,汽車總數(shù)不能小于____;根據(jù)(2)可知,汽車總數(shù)不能大于____。綜合起來可知汽車總數(shù)為_____。
設租用x輛甲種客車,則租車費用y(單位:元)是x的函數(shù),即
y=400x+280(6-x)
化簡為:y=120x+1680
討論:
根據(jù)問題中的條件,自變量x的.取值應有幾種可能?
為使240名師生有車坐,x不能小于____;為使租車費用不超過2300元,X不能超過____。綜合起來可知x的取值為____。
在考慮上述問題的基礎上,你能得出幾種不同的租車方案?為節(jié)省費用應選擇其中的哪種方案?試說明理由。
方案一:
4兩甲種客車,2兩乙種客車
y1=120×4+1680=2160
方案二:
5兩甲種客車,1輛乙種客車
八年級數(shù)學教案 篇9
教學目標:
1、經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發(fā)展初步審美能力,增強對圖形欣賞的意識。
2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關系設計軸對稱圖形。
教學重點:本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節(jié)課的難點。
教學方法:動手實踐、討論。
教學工具:課件
教學過程:
一、 先復習軸對稱圖形的定義,以及軸對稱的相關的性質:
1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________
2.軸對稱的三個重要性質______________________________________________
_____________________________________________________________________
二、提出問題:
二、探索練習:
1. 提出問題:
如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。
你能畫出這個圖案的另一半嗎?
吸引學生讓學生有一種解決難點的想法。
2.分析問題:
分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據(jù)軸對稱的性質只要畫出這個圖案中六個點的對應點即可
問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`
在學生掌握已知一個點畫對應點的基礎上,解決上述給出的.問題,使學生有一條較明確的思路。
三、對所學內容進行鞏固練習:
1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。
2. 試畫出與線段AB關于直線L的線段
3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形
小 結: 本節(jié)課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質知道如何設計軸對稱圖形。
教學后記:學生對這節(jié)課的內容掌握比較好,但對于利用軸對稱的性質來設計圖形覺得難度比較大。因本節(jié)課內容較有趣,許多學生上課積極性較高
八年級數(shù)學教案 篇10
學習目標
1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關系并能找出變化規(guī)律。
2、由坐標的變化探索新舊圖形之間的變化。
重點
1、 作某一圖形關于對稱軸的對稱圖形,并能寫出所得圖形相應各點的坐標。
2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。
難點
體會極坐標和直角坐標思想,并能解決一些簡單的問題
學習過程(導入、探究新知、即時練習、小結、達標檢測、作業(yè))
第一課時
學習過程:
一、舊知回顧:
1、平面直角坐標系定義:在平面內,兩條____________且有公共_________的數(shù)軸組成平面直角坐標系。
2、坐標平面內點的坐標的表示方法____________。
3、各象限點的坐標的特征:
二、新知檢索:
1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?
例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?
四、題組訓練
1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。
(1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來的2倍呢?
歸納:圖形坐標變化規(guī)律
1、 平移規(guī)律:2、圖形伸長與壓縮:
第二課時
一、舊知回顧:
1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。
中心對稱圖形定義:在同一平面內,如果把一個圖形繞某一點旋轉 ,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形
二、新知檢索:
1、如圖,左邊的魚與右邊的魚關于y軸對稱。
1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?
2、各個對應頂點的坐標有怎樣的關系?
3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關于y軸對稱,那么左邊的魚各個頂點的坐標將發(fā)生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的魚是通過什么樣的變換得到 左圖的魚的。
2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的'魚有什么樣的位置關系。
3、如果將右邊的魚的縱、橫坐標都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關系
四、題組練習
1、將坐標作如下變化時,圖形將怎樣變化?
、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。
3、 如圖,作字母M關于y軸的軸對稱圖形,并寫出所得圖形相應各端點的坐標。
4、 描出下圖中楓葉圖案關于x軸的軸對稱圖形的簡圖。
學習筆記
【八年級數(shù)學教案】相關文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
八年級的數(shù)學教案15篇12-14
八年級數(shù)學教案【薦】12-06
八年級數(shù)學教案人教版01-03
八年級下冊數(shù)學教案01-01
八年級上冊數(shù)學教案11-09
人教版八年級數(shù)學教案11-04
初中八年級數(shù)學教案11-03
八年級數(shù)學教案【推薦】12-04