天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>七年級數(shù)學教案>七年級下冊數(shù)學教案

七年級下冊數(shù)學教案

時間:2022-05-01 09:12:06 七年級數(shù)學教案 我要投稿

七年級下冊數(shù)學教案通用10篇

  作為一名辛苦耕耘的教育工作者,就有可能用到教案,編寫教案有利于我們科學、合理地支配課堂時間。來參考自己需要的教案吧!以下是小編精心整理的七年級下冊數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

七年級下冊數(shù)學教案通用10篇

七年級下冊數(shù)學教案1

  一、教學內容分析

  1.2有理數(shù)1.2.2數(shù)軸。這一節(jié)是初中數(shù)學中非常重要的內容,從知識上講,數(shù)軸是數(shù)學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數(shù)運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數(shù)軸是數(shù)形結合的起點,而數(shù)形結合是學生理解數(shù)學、學好數(shù)學的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學習數(shù)軸概念打下了一定的基礎。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學習方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學生領悟分類思想的基礎。

  二、學生學習情況分析

  (1)知識掌握上,七年級的學生剛剛學習有理數(shù)中的正負數(shù),對正負數(shù)的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統(tǒng)的去講述;

  (2)學生學習本節(jié)課的知識障礙。學生對數(shù)軸概念和數(shù)軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學中教師應予以簡單明白、深入淺出的分析;

  (3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生的主動性。

  三、設計思想

  從學生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數(shù)軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。

  四、教學目標

  (一)知識與技能

  1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

  2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。

  (二)過程與方法

  1、使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的`意識。

  2、對學生滲透數(shù)形結合的思想方法。

  (三)情感、態(tài)度與價值觀

  1、使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。

  2、通過畫數(shù)軸,給學生以圖形美的教育,同時由于數(shù)形的結合,學生會得到和諧美的享受。

  五、教學重點及難點

  1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。

  2、難點:有理數(shù)和數(shù)軸上的點的對應關系。

  六、教學建議

  1、重點、難點分析

  本節(jié)的重點是初步理解數(shù)形結合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與數(shù)軸上點的對應關系。數(shù)軸的概念包含兩個內容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎。

  2、知識結構

  有了數(shù)軸,數(shù)和形得到了初步結合,這有利于對數(shù)學問題的研究,數(shù)形結合是理解數(shù)學、學好數(shù)學的重要思想方法,本課知識要點如下:

  定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸

  三要素原點正方向單位長度

  應用數(shù)形結合

  七、學法引導

  1、教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法。

  2、學生學法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習。

  八、課時安排

  1課時

  九、教具學具準備

  電腦、投影儀、三角板

  十、師生互動活動設計

  講授新課

  (出示投影1)

  問題1:三個溫度計.其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

  師:三個溫度計所表示的溫度是多少?

  生:2℃,-5℃,0℃.

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(小組討論,交流合作,動手操作)

  師:我們能否用類似的圖形表示有理數(shù)呢?

  師:這種表示數(shù)的圖形就是今天我們要學的內容—數(shù)軸(板書課題).

  師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀

  數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下

  (邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  讓學生觀察畫好的直線,思考以下問題:

  (出示投影2)

  (1)原點表示什么數(shù)?

  (2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

  (3)表示+2的點在什么位置?表示-1的點在什么位置?

  (4)原點向右0.5個單位長度的A點表示什么數(shù)?

  原點向左1.5個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義.

  師:在此基礎上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單

  位長度的直線叫做數(shù)軸.

  進而提問學生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向學生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可.

  教法說明通過“觀察—類比—思考—概括—表達”展現(xiàn)知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數(shù)學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.

  師生同步畫數(shù)軸,學生概括數(shù)軸三要素,師出示投影,生動手動腦練習

  嘗試反饋,鞏固練習

  (出示投影3).畫出數(shù)軸并表示下列有理數(shù):

  1、1.5,-2.2,-2.5,0.

  2.寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):

  請大家回答下列問題:

  (出示投影4)

  (1)有人說一條直線是一條數(shù)軸,對不對?為什么?

  (2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  教法說明此組練習的目的是鞏固數(shù)軸的概念.

  十一、小結

  本節(jié)課要求同學們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究.

  十二、課后練習習題1.2第2題

  十三、教學反思

  1、數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

  2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。

  3、注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。

七年級下冊數(shù)學教案2

  一、教學目標

  1、知識目標:掌握數(shù)軸三要素,會畫數(shù)軸。

  2、能力目標:能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;

  3、情感目標:向學生滲透數(shù)形結合的思想。

  二、教學重難點

  教學重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。

  教學難點:有理數(shù)與數(shù)軸上點的對應關系。

  三、教法

  主要采用啟發(fā)式教學,引導學生自主探索去觀察、比較、交流。

  四、教學過程

  (一)創(chuàng)設情境激活思維

  1.學生觀看鐘祥二中相關背景視頻

  意圖:吸引學生注意力,激發(fā)學生自豪感。

  2.聯(lián)系實際,提出問題。

  問題1:鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

  師生活動:學生思考解決問題的方法,學生代表畫圖演示。

  學生畫圖后提問:

  1.馬路用什么幾何圖形代表?(直線)

  2.文中相關地點用什么代表?(直線上的點)

  3.學校大門起什么作用?(基準點、參照物)

  4.你是如何確定問題中各地點的位置的?(方向和距離)

  設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學抽象。

  問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學校大門的相對位置關系呢?

  師生活動:

  學生思考后回答解決方法,學生代表畫圖。

  學生畫圖后提問:

  1.0代表什么?

  2.數(shù)的符號的實際意義是什么?

  3.-75表示什么?100表示什么?

  設計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎。

  問題3:生活中常見的溫度計,你能描述一下它的結構嗎?

  設計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導學生用三要素表達,為定義數(shù)軸的概念提供直觀基礎。

  問題4:你能說說上述2個實例的共同點嗎?

  設計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎。

  (二)自主學習探究新知

  學生活動:帶著以下問題自學課本第8頁:

  1.什么樣的直線叫數(shù)軸?它具備什么條件。

  2.如何畫數(shù)軸?

  3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?

  4.你是怎么理解“選取適當?shù)拈L度為單位長度”的?

  師生活動:

  學生自學完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。

  設計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。

  至此,學生已會畫數(shù)軸,師生共同歸納總結(板書)

 、贁(shù)軸的定義。

 、跀(shù)軸三要素。

  練習:(媒體展示)

  1.判斷下列圖形是否是數(shù)軸。

  2.口答:數(shù)軸上各點表示的數(shù)。

  3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小組合作交流展示

  問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  數(shù)軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數(shù),對表示a的點和-a的點進行同樣的討論。

  設計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的`特點,培養(yǎng)學生的抽象概括能力。

  (四)歸納總結反思提高

  師生共同回顧本節(jié)課所學主要內容,回答以下問題:

  1.什么是數(shù)軸?

  2.數(shù)軸的“三要素”各指什么?

  3.數(shù)軸的畫法。

  設計意圖:梳理本節(jié)課內容,掌握本節(jié)課的核心――數(shù)軸“三要素”。

  (五)目標檢測設計

  1.下列命題正確的是()

  A.數(shù)軸上的點都表示整數(shù)。

  B.數(shù)軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

  C.數(shù)軸包括原點與正方向兩個要素。

  D.數(shù)軸上的點只能表示正數(shù)和零。

  2.畫數(shù)軸,在數(shù)軸上標出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。

  3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有XXXXXXX個。4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是XXXXXXXX。

  五、板書

  1.數(shù)軸的定義。

  2.數(shù)軸的三要素(圖)。

  3.數(shù)軸的畫法。

  4.性質。

  六、課后反思

  附:活動單

  活動一:畫一畫

  鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

  思考:如何簡明地用數(shù)表示這些地理位置與學校大門的相對位置關系?

  活動二:讀一讀

  帶著以下問題閱讀教科書P8頁:

  1.什么樣的直線叫數(shù)軸?

  定義:規(guī)定了XXXXXXXXX、XXXXXXXX、XXXXXXXXX的直線叫數(shù)軸。

  數(shù)軸的三要素:XXXXXXXXX、XXXXXXXXX、XXXXXXXXXX。

  2.畫數(shù)軸的步驟是什么?

  3.“原點”起什么作用?XXXXXXXXXX

  4.你是怎么理解“選取適當?shù)拈L度為單位長度”的?

  練習:

  1.畫一條數(shù)軸

  2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5

  活動三:議一議

  小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  歸納:一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的XXXX邊,與原點的距離是XXXX個單位長度;表示數(shù)-a的點在原點的XXXX邊,與原點的距離是XXXX個單位長度.

  練習:

  1.數(shù)軸上表示-3的點在原點的XXXXXXX側,距原點的距離是XXXXXX;表示6的點在原點的XXXXXX側,距原點的距離是XXXXXX;兩點之間的距離為XXXXXXX個單位長度。

  2.距離原點距離為5個單位的點表示的數(shù)是XXXXXXXX。

  3.在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是XXXXXXXX。

  附:目標檢測

  1.下列命題正確的是()

  A.數(shù)軸上的點都表示整數(shù)。

  B.數(shù)軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

  C.數(shù)軸包括原點與正方向兩個要素。

  D.數(shù)軸上的點只能表示正數(shù)和零。

  2.畫數(shù)軸,在數(shù)軸上標出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。

  3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有XXXXXXX個。

  4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是XXXXXXXX。

七年級下冊數(shù)學教案3

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.

  2.掌握直線平行的條件,領悟歸納和轉化的數(shù)學思想

  學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.

  一、探索直線平行的條件

  平行線的判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )

  2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.

  五、作業(yè)課本15頁-16頁練習的`1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空

  間觀念,推理能力和有條理表達能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

  學習重點:直線平行的條件的應用.

  學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.

  一、學習過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習:

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因為∠1=∠4,所以DE∥AB

  B.因為∠2=∠3,所以AB∥EC

  C.因為∠5=∠A,所以AB∥DE

  D.因為∠ADE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

七年級下冊數(shù)學教案4

  學習目標

  1. 理解有序數(shù)對的應用意義,了解平面上確定點的常用方法

  2. 培養(yǎng)用數(shù)學的意識,激發(fā)學習興趣.

  學習重點: 理解有序數(shù)對的意義和作用

  學習難點: 用有序數(shù)對表示點的位置

  學習過程

  一.問題導入

  1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.

  2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。

  3.某人買了一張8排6號的電影票,很快找到了自己的座位。

  分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。

  你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?

  二.概念確定

  有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的'數(shù)對,叫做有序數(shù)對,記作(a,b)

  利用有序數(shù)對,可以很準確地表示出一個位置。

  1.在教室里,根據(jù)座位圖,確定數(shù)學課代表的位置

  2.教材40頁練習

  三.方法歸類

  常見的確定平面上的點位置常用的方法

 。1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。

  (2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數(shù)來確定目標所在的位置。

  1.如圖,A點為原點(0,0),則B點記為(3,1)

  2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。

  例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:

  (1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?

 。2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?

 。3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?

  [鞏固練習]

  1. 如圖是某城市市區(qū)的一部分示意圖,對市政府來說:

  北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?

  結合實際問題歸納方法

  學生嘗試描述位置

  2. 如圖,馬所處的位置為(2,3).

 。1) 你能表示出象的位置嗎?

 。2) 寫出馬的下一步可以到達的位置。

  [小結]

  1. 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?

  2. 幾種常用的表示點位置的方法.

  [作業(yè)]

  必做題:教科書44頁:1題

七年級下冊數(shù)學教案5

  教學目標:1.能夠在實際情境中,抽象概括出所要研究的數(shù)學問題,增強學生的數(shù)感符號感。

  2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經(jīng)歷探索同底數(shù)冪乘法運算性質

  過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。

  3.了解同底數(shù)冪乘法的運算性質,并能解決一些實際問題,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,

  增強學生的數(shù)學應用意識,訓練他們養(yǎng)成學會分析問題、解決問題的良好習慣。

  教學重點:同底數(shù)冪乘法的運算性質,并能解決一些實際問題。

  教學過程

  一、復習回顧

  活動內容:復習七年級上冊數(shù)學課本中介紹的有關乘方運算知識:

  二、情境引入

  活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數(shù)學模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學生進行獨立思考,也可采用小組合作交流的形式,結合學生現(xiàn)有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。

  三、講授新課

  1.利用乘方的意義,提問學生,引出法則:計算103×102.

  解:103×102=(10×10×10)×(10×10)(冪的意義)

  =10×10×10×10×10(乘法的`結合律)=105.

  2.引導學生建立冪的運算法則:

  將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整數(shù),則有即am·an=am+n.

  3.引導學生剖析法則

  (1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關系?

  (3)等號兩邊的指數(shù)有什么關系?(4)公式中的底數(shù)a可以表示什么

  (5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?

  要求學生敘述這個法則,并強調冪的底數(shù)必須相同,相乘時指數(shù)才能相加.

  三、應用提高

  活動內容:1.完成課本“想一想”:a?a?a等于什么?

  2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。

  3.獨立處理例2,從實際情境中學會處理問題的方法。

  4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp

  四、拓展延伸

  活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

 。5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542

  2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  五、課堂小結

  活動內容:師生互相交流總結本節(jié)課上應該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。

  六、布置作業(yè)

  1.請你根據(jù)本節(jié)課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。

  2.完成課本習題1.4中所有習題。

  1.2冪的乘方與積的乘方(一)

七年級下冊數(shù)學教案6

  一.教學目標:

  1.認知目標:

  1)了解二元一次方程組的概念。

  2)理解二元一次方程組的解的概念。

  3)會用列表嘗試的方法找二元一次方程組的解。

  2.能力目標:

  1)滲透把實際問題抽象成數(shù)學模型的思想。

  2)通過嘗試求解,培養(yǎng)學生的探索能力。

  3.情感目標:

  1)培養(yǎng)學生細致,認真的學習習慣。

  2)在積極的教學評價中,促進師生的情感交流。

  二.教學重難點

  重點:二元一次方程的意義及二元一次方程的解的概念。

  難點:把一個二元一次方程形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質是解一個含有字母系數(shù)的方程。

  三.教學過程

  (一)創(chuàng)設情景,引入課題

  1.本班共有40人,請問能確定男女生各幾人嗎?為什么?

 。1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)

 。2)這是什么方程?根據(jù)什么?

  2.男生比女生多了2人。設男生x人,女生y人.方程如何表示? x,y的值是多少?

  3.本班男生比女生多2人且男女生共40人.設該班男生x人,女生y人。方程如何表示?

  兩個方程中的x表示什么?類似的兩個方程中的y都表示?

  像這樣,同一個未知數(shù)表示相同的量,我們就應用大括號把它們連起來組成一個方程組。

  4.點明課題:二元一次方程組。

  (設計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學)

 。ǘ┨骄啃轮,練習鞏固

  1.二元一次方程組的概念

  (1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。

  [讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]

  (2)練習:判斷下列是不是二元一次方程組,學生作出判斷并要說明理由。

 、賦2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

  (設計意圖:這一環(huán)節(jié)是本課設計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)的思考”,進而完善血生對二元一次方程概念的理解。)

  2.二元一次方程組的解的概念

 。1)由學生給出引例的答案,教師指出這就是此方程組的解。

 。2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>

  方程x+y=0的'解,方程2x+3y=2的解,方程組的解。

 。3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

 。4)練習:已知是方程組的解,求a,b的值。

 。ㄈ┖献魈剿,嘗試求解

  現(xiàn)在我們一起來探索如何尋找方程組的解呢?

  1.已知兩個整數(shù)x,y,試找出方程組的解.

  學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。

  一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試.

 。ㄔO計意圖:把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學活動的經(jīng)驗)

  2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。

  (1) 設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。

  由學生獨立完成,并分析講解。

  3.例 已知方程3X+2Y=10

 、女擷=2時,求所對應的Y 的值;

 、迫∫粋你自己喜歡的數(shù)作為X的值,求所對應的Y的值;

 、怯煤琗的代數(shù)式表示Y;

 、扔煤琘 的代數(shù)式表示X;

 、僧擷=-2,0 時,所對應的Y值是多少;

  (設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程。)

  (四)課堂小結,布置作業(yè)

  1.這節(jié)課學哪些知識和方法?

  2.你還有什么問題或想法需要和大家交流?

  3.教材P82

  教學設計說明:

  1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

  2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。

  3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。

七年級下冊數(shù)學教案7

  第一章 一元一次不等式組

  1.1 一元一次不等式組

  第1教案

  教學目標

  1. 能結合實例,了解一元一次不等式組的相關概念。

  2. 讓學生在探索活動中體會化陌生為熟悉,化復雜為簡單的“轉化”思想方法。

  3. 提高分析問題的能力,增強數(shù)學應用意識,體會數(shù)學應用價值。

  教學重、難點

  1..不等式組的解集的概念。

  2.根據(jù)實際問題列不等式組。

  教學方法

  探索方法,合作交流。

  教學過程

  一、 引入課題:

  1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。

  2. 由許多問題受到多種條件的限制引入本章。

  二、 探索新知:

  自主探索、解決第2頁“動腦筋”中的.問題,完成書中填空。

  分別解出兩個不等式。

  把兩個不等式解集在同一數(shù)軸上表示出來。

  找出本題的答案。

  三、 抽象:

  教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)

七年級下冊數(shù)學教案8

  一、教學目標

  知識與技能

  了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。

  過程與方法

  通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應關系,體會數(shù)形結合的思想。

  情感、態(tài)度與價值觀

  在數(shù)與形結合的過程中,體會數(shù)學學習的樂趣。

  二、教學重難點

  教學重點

  數(shù)軸的'三要素,用數(shù)軸上的點表示有理數(shù)。

  教學難點

  數(shù)形結合的思想方法。

  三、教學過程

  (一)引入新課

  提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學習的數(shù)軸。

  (二)探索新知

  學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:

  提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

  學生活動:畫圖表示后提問。

  提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

  教師給出定義:在數(shù)學中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

  提問3:你是如何理解數(shù)軸三要素的?

  師生共同總結:“原點”是數(shù)軸的“基準”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

  (三)課堂練習

  如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

  (四)小結作業(yè)

  提問:今天有什么收獲?

  引導學生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

  課后作業(yè):

  課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?

七年級下冊數(shù)學教案9

  【知識講解】

  一、本講主要學習內容

  1、代數(shù)式的意義

  2、列代數(shù)式的注意點

  3、代數(shù)式值的意義

  其中列代數(shù)式是重點,也是難點。

  下面講述一下這三點知識的主要內容。

  1、代數(shù)式的意義

  用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數(shù)及 表示數(shù)的字母連接而成的式子叫代數(shù)式。單個的數(shù)字或字母也叫代數(shù)式。如:5,a, 4x, ab, x+2y, , a2等

  2.列代數(shù)式的注意點

  ⑴在代數(shù)式中出現(xiàn)的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。

 、茢(shù)字與數(shù)字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。

 、菙(shù)字寫在字母的前面。

 、仍诖鷶(shù)式中出現(xiàn)除法運算時,一般按照分數(shù)的寫法來寫, 如s÷t寫作 。

 、纱鷶(shù)式中帶分數(shù)與字母相乘時,應寫成假分數(shù)與字母相乘的形式,如 應寫作 。

  (6)兩個代數(shù)式相乘,應該用分數(shù)形式表示。

  3.代數(shù)式值的意義

  用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式指明的運算,計算出的結果,就叫做代數(shù)式的值。

  二、典型例題

  例1 填空

 、倮忾L是acm 的正方體的體積是___cm3。

  ②溫度由t°c下降2°c后是___°c。

  ③產(chǎn)量由m千克增長10%,就達到___千克。

  ④a和b 的倒數(shù)和是___。

  ⑤a和b的和的倒數(shù)是___。

  解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤

  說明: ⑴列代數(shù)式的關鍵在于仔細審題,弄清題意,正確找出題中的數(shù)量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數(shù)量關系,可先分段考慮,要正確地使用括號。

 、葡馻3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。

  例2、用代數(shù)式表示

  ⑴被4整除得 m的數(shù)

 、票2除商為 a余1的數(shù)

  ⑶兩數(shù)的平均數(shù)

 、萢和b兩數(shù)的平方差與這兩數(shù)平方和的商

 、梢豁椆こ,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數(shù)。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數(shù)式表示此人行完全路程的平均速度。

  ⑺個位數(shù)字是8,十位數(shù)字是 b 的兩位數(shù)。

  解: ⑴4m ⑵2a+1 ⑶設這兩個數(shù)分別為a、b、則平均數(shù)為 。

 、 ⑸ ⑹ ⑺10b+8

  分析說明:

 、艛(shù)a除以數(shù)b,除得的商正好是整數(shù),而沒有余數(shù),我們稱a能被b整除。

 、颇鼙2整除的數(shù)叫偶數(shù),不能被2整除的數(shù)叫奇數(shù)。兩個連續(xù)奇數(shù),若較小的是n,則較大的是n +2 。

 、菍τ陬}⑶中兩數(shù)沒有給出,為說明其一般性?上仍O這兩個數(shù)為a, b;用字母表示數(shù)時,在同一個問題中,不同的數(shù)要用不同的字母表示。

 、阮}⑷中的a,b兩數(shù)的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。

  ⑸題⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。

 、势骄俣=

  所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。

  題⑺中主要應清楚自然數(shù)的十進制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數(shù)總可以用它各個數(shù)位上的數(shù)字來表示。

  例3說出下列代數(shù)式的意義。

  ⑴ 3a+2 ⑵ 3(a+2) (3)

  (4) a- (5)(a-b)2 (6)a2-b2

  分析:說出代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點。

 、俨缓ㄌ柕拇鷶(shù)式習慣從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;

 、诤ㄌ柕拇鷶(shù)應該把括號里的代數(shù)式看作一個整體,按運算結果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;

  ③由于分數(shù)線具有除法和括號的雙重作用,應該把分子與分母看成一個整體來讀。

  解:(1)a的3倍與2的和;

  (2)a與2的和的3倍;

  (3)a與b的差除以c的商;

  (4)a與b除以c的差;

  (5)a與b的差的平方;

  (6)a、b的平方差。

  例4、當x=7,y=4, z=0時,求代數(shù)式x ( 2x-y+3z)的值。

  解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70

  說明:⑴由比例題可以看出,求代數(shù)式值的一般步驟是:①代入 ②計算⑵在代數(shù)式中,數(shù)字與字母之間,字母與字母之間的乘號是省略不寫的。而當代入數(shù)據(jù)求值時,都變成了數(shù)字相乘,原來省略的乘號“×”應補上。

  【一周一練】

  1、選擇題

  (1)下列各式中,屬于代數(shù)式的'有( )個。

  , s= ah, 5× , -y, x-2=y, a-b, 3x>y

  a、2 b、3 c、4 d、5

  (2)下列代數(shù)式,書寫正確的是( )

  a、2 b、m· n c、 mn d、(m+n)÷2

  (3)用代數(shù)式表示“a的 乘以b減去c的積”是( )

  a、 ab-c b、 a(b-c) c、 a( b-c) d、

  (4)用語言敘述代數(shù)式 ,表述不正確的是( )

  a、比a的倒數(shù)小2的數(shù); b、a與2的差的倒數(shù)

  c、1除以a減去2的商 d、比a小2的數(shù)的倒數(shù)

  2、判斷題

 、舗除m用代數(shù)式可表示成 ( )

 、迫齻連續(xù)的奇數(shù),中間一個是n,其余兩個分別是n-2和n+2( )

 、侨绻鹡是偶數(shù),則緊跟在n后面的兩個連續(xù)奇數(shù)分別是n+1,n+3( )

  3、填空題

 、琶勘揪毩暠臼0.3元,買a本練習本需__元。

 、菩∶饔5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。

 、潜3整除得n 的數(shù)是__。

 、葌位上的數(shù)是a,十位上的數(shù)是個位上的數(shù)的2倍少3的兩位數(shù)是_。

 、杉庸ひ慌慵瞞個,乙先加工n個零件后,甲單獨再做3天才完成任務,則甲平均每天加工零件__個。

 、室环N小麥磨成面粉后,重量減少數(shù)15%, b千克小麥磨成面粉后,面粉的重量是__千克。

 、艘粋長方形的長是a,寬是長的 還多1,這個長方形的周長是__

  ⑻a、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。

  4.求下列代數(shù)式的值。

 、 其中a=2

  ⑵當 時,求代數(shù)式 的值。

  5、填表

  x

  y

  x+y

  x-y

  xy

  5

  15

  6、某班級里男生人數(shù)比女生人數(shù)的 多16人,男生人數(shù)是a,問a的代數(shù)式表示:⑴女生人數(shù)。 ⑵該班學生總數(shù);當a=25時,求該班學生總數(shù)。

七年級下冊數(shù)學教案10

  [教學目標]

  1. 通過動手、操作、推斷、交流等活動,進一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達能力

  2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題

  [教學重點與難點]

  重點:鄰補角與對頂角的概念.對頂角性質與應用

  難點:理解對頂角相等的性質的探索

  [教學設計]

  一.創(chuàng)設情境 激發(fā)好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角

  在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。

  觀察剪刀剪布的過程,引入兩條相交直線所成的角。

  學生觀察、思考、回答問題

  教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的口又怎么變化?

  教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的'問題,

  二.認識鄰補角和對頂角,探索對頂角性質

  1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配

  共能組成幾對角?根據(jù)不同的位置怎么將它們分類?

  學生思考并在小組內交流,全班交流。

  當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用

  幾何語言準確表達;

  有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線

  2.學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關系?

  (學生得出結論:相鄰關系的兩個角互補,對頂?shù)膬蓚角相等)

  3學生根據(jù)觀察和度量完成下表:

  兩條直線相交 所形成的角 分類 位置關系 數(shù)量關系

  教師提問:如果改變 的大小,會改變它與其它角的位置關系和數(shù)量關系嗎?

  4.概括形成鄰補角、對頂角概念和對頂角的性質

  三.初步應用

  練習:

  下列說法對不對

  (1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角

  (2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角

  (3) 對頂角相等,相等的兩個角是對頂角

  學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現(xiàn)象

  四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數(shù)。

  [鞏固練習](教科書5頁練習)已知,如圖, ,求: 的度數(shù)

  [小結]

  鄰補角、對頂角.

  [作業(yè)]課本P9-1,2P10-7,8

【七年級下冊數(shù)學教案】相關文章:

七年級下冊數(shù)學教案12-05

初中七年級下冊數(shù)學教案01-13

七年級下冊數(shù)學教案【熱門】02-23

【熱】七年級下冊數(shù)學教案03-16

七年級下冊數(shù)學教案【精】03-14

【薦】七年級下冊數(shù)學教案03-14

七年級下冊數(shù)學教案【薦】03-15

【精】七年級下冊數(shù)學教案03-16

【熱門】七年級下冊數(shù)學教案03-15

七年級下冊數(shù)學教案8篇04-18