天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>七年級數(shù)學(xué)教案>初中七年級數(shù)學(xué)教案

初中七年級數(shù)學(xué)教案

時間:2022-03-07 14:49:16 七年級數(shù)學(xué)教案 我要投稿

初中七年級數(shù)學(xué)教案(精選6篇)

  作為一名教師,常常要根據(jù)教學(xué)需要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么什么樣的教案才是好的呢?下面是小編為大家收集的初中七年級數(shù)學(xué)教案,歡迎閱讀與收藏。

初中七年級數(shù)學(xué)教案(精選6篇)

  初中七年級數(shù)學(xué)教案 篇1

  一、教學(xué)內(nèi)容分析

  1.2有理數(shù)1.2.2數(shù)軸。這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標(biāo)系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。

  二、學(xué)生學(xué)習(xí)情況分析

  (1)知識掌握上,七年級的學(xué)生剛剛學(xué)習(xí)有理數(shù)中的正負數(shù),對正負數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;

 。2)學(xué)生學(xué)習(xí)本節(jié)課的知識障礙。學(xué)生對數(shù)軸概念和數(shù)軸的三要素,學(xué)生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學(xué)中教師應(yīng)予以簡單明白、深入淺出的分析;

 。3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。

  三、設(shè)計思想

  從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的`一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學(xué)生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。

  四、教學(xué)目標(biāo)

 。ㄒ唬┲R與技能

  1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

  2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。

 。ǘ┻^程與方法

  1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。

  2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。

  (三)情感、態(tài)度與價值觀

  1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點。

  2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。

  五、教學(xué)重點及難點

  1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。

  2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。

  六、教學(xué)建議

  1、重點、難點分析

  本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。

  2、知識結(jié)構(gòu)

  有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下:

  定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸

  三要素原點正方向單位長度

  應(yīng)用數(shù)形結(jié)合

  七、學(xué)法引導(dǎo)

  1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。

  2、學(xué)生學(xué)法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習(xí)。

  八、課時安排

  1課時

  九、教具學(xué)具準(zhǔn)備

  電腦、投影儀、三角板

  十、師生互動活動設(shè)計

  講授新課

  (出示投影1)

  問題1:三個溫度計,其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。

  師:三個溫度計所表示的溫度是多少?

  生:2℃,-5℃,0℃。

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)

  師:我們能否用類似的圖形表示有理數(shù)呢?

  師:這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。

  師:與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀

  數(shù),用直線上的點表示正數(shù)、負數(shù)和零。具體方法如下

  (邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);

  2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  讓學(xué)生觀察畫好的直線,思考以下問題:

  (出示投影2)

 。1)原點表示什么數(shù)?

 。2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

 。3)表示+2的點在什么位置?表示-1的點在什么位置?

 。4)原點向右0.5個單位長度的A點表示什么數(shù)?

  原點向左1.5個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義。

  師:在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單

  位長度的直線叫做數(shù)軸。

  進而提問學(xué)生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可。

  【教法說明】

  通過“觀察—類比—思考—概括—表達”展現(xiàn)知識的形成是從感性認識上升到理性認識的過程,讓學(xué)生在獲取知識的過程中,領(lǐng)會數(shù)學(xué)思想和思維方法,并有意識地訓(xùn)練學(xué)生歸納概括和口頭表達能力。

  師生同步畫數(shù)軸,學(xué)生概括數(shù)軸三要素,師出示投影,生動手動腦練習(xí)

  嘗試反饋,鞏固練習(xí)

 。ǔ鍪就队3).畫出數(shù)軸并表示下列有理數(shù):

  1、1.5,-2.2,-2.5,,,0.

  2、寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):

  請大家回答下列問題:

  (出示投影4)

 。1)有人說一條直線是一條數(shù)軸,對不對?為什么?

 。2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  【教法說明】

  此組練習(xí)的目的是鞏固數(shù)軸的概念。

  十一、小結(jié)

  本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究。

  十二、課后練習(xí)習(xí)題1.2第2題

  十三、教學(xué)反思

  1、數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

  2、教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。

  3、注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。

  初中七年級數(shù)學(xué)教案 篇2

  一元一次不等式組

  教學(xué)目標(biāo)

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;

  2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實際問題中的價值。

  教學(xué)難點

  正確分析實際問題中的.不等關(guān)系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學(xué)模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結(jié)

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?

  在討論或議論的基礎(chǔ)上老師揭示:

  步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。

  初中七年級數(shù)學(xué)教案 篇3

  教學(xué)目標(biāo)

  1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力。

  教學(xué)重點和難點

  重點:列代數(shù)式。

  難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系。

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有的認知結(jié)構(gòu)提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?

  解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?

  解:設(shè)甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時,可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)?

  例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:

  (1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

  (3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?

  分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)

  例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

  分析本題時,可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個; (2)( m)m個?

  三、課堂練習(xí)

  1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的'商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結(jié)

  首先,請學(xué)生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?

  其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);

  (2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;

  (3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個長方形另一邊的長;(2)這個長方形的面積。

  學(xué)法探究

  已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律。

  當(dāng)圓環(huán)為三個的時候,如圖:

  此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

  解:

  =99a+b(cm)

  初中七年級數(shù)學(xué)教案 篇4

  問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?

  這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的.解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

  同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  這正是我們本章要解決的問題。

  三、鞏固練習(xí)

  1、教科書第3頁練習(xí)1、2。

  2、補充練習(xí):檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。

 。1)x-3(x+2)=6+x(x=3,x=-4)

 。2)2y(y-1)=3(y=-1,y=2)

  (3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。

  五、作業(yè)。

  初中七年級數(shù)學(xué)教案 篇5

  教學(xué)目標(biāo)

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進行分類,培養(yǎng)分類能力;

  2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;

  3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。

  教學(xué)難點 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進行分類

  知識重點 正確理解有理數(shù)的概念

  教學(xué)過程(師生活動) 設(shè)計理念

  探索新知 在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出)。

  問題1:觀察黑板上的9個數(shù),并給它們進行分類。

  學(xué)生思考討論和交流分類的情況.

  學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵。

  例如,

  對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù)…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))

  通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的'5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’。

  按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念

  看書了解有理數(shù)名稱的由來。

  “統(tǒng)稱”是指“合起來總的名稱”的意思。

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個引入具有開放的特點,學(xué)生樂于參與

  學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會

  練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流。

  2,教科書第10頁練習(xí)。

  此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明。

  把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集。類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號。

  思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?

  也可以教師說出一些數(shù),讓學(xué)生進行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?

  教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。

  有理數(shù) 這個分類可視學(xué)生的程度確定是否有必要教學(xué)。

  應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時,分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結(jié)與作業(yè)

  課堂小結(jié) 到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁習(xí)題1.2第1題

  2, 教師自行準(zhǔn)備

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)

  1,本課在引人了負數(shù)后對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進行。

  初中七年級數(shù)學(xué)教案 篇6

  教學(xué)目標(biāo)

  1、熟練掌握加減消元法;

  2、能根據(jù)方程組的特點選擇合適的方法解方程組,

  3、通過分析實際問題中的數(shù)量關(guān)系,建立方程解決問題,進一步認識方程模型的重要性。

  教學(xué)難點

  教材中例4的數(shù)量關(guān)系較復(fù)雜,是本課的難點。

  知識重點能根據(jù)方程組的特點選擇合適的方法解方程組。

  教學(xué)過程

  (師生活動)設(shè)計理念

  創(chuàng)設(shè)情境

  1、復(fù)習(xí)提問

  解二元一次方程組有哪幾種方法?它們的實質(zhì)是什么?

  2、播放動畫《西游記》場景,配數(shù)學(xué)詩。

  悟空順風(fēng)探妖蹤,千里只行四分鐘。

  歸時四分行六百,風(fēng)速多少才稱雄?

  請一名學(xué)生解釋詩歌大意:孫悟空順風(fēng)去查妖精的行蹤,僅用4分鐘就飛躍千里。逆風(fēng)返回時4分鐘走了600里,問風(fēng)速是多少?

  學(xué)生思考,根據(jù)題中等量關(guān)系,列出方程。

  設(shè)悟空行走速度為x里/分,風(fēng)速為y里/分,則

  你會解這個方程組嗎?引例生動活波,激發(fā)學(xué)生的探究欲望,讓學(xué)生在看、聽、想的過程中愉悅地獲得數(shù)學(xué)知識.

  探究新知學(xué)生獨立完成后。在班級里交流解法。

  解法一:①+②,消去y,得8x=1600

  ∴x=200,代人①,得y=50

  原方程組的解為

  解法二:①-②,消去x。以下略。

  解法三:整體代入。由①得:4x=1000-4y,代入②,消去x。

  同理,也可消去y。

  解法四:化簡原方程組為,再利用加減消元,或代入消元均可。

  反思:試著從各個角度比較“代入法”與“加減法”的`共同點與不同點。(同學(xué)間相互交流)它們各適用于什么情況?

  在學(xué)生回答的基礎(chǔ)上,教師指出:當(dāng)方程組中某一個未知數(shù)的系數(shù)絕對值是1或一個方程的常數(shù)項為零時,用代入法較方便;當(dāng)兩個方程中,同一個未知數(shù)的系數(shù)絕對值相等或成整倍數(shù)時,用加減法較方便。

  解二元一次方程組不管采用哪種方法,都可以獲得它的解,但根據(jù)題目形式的特點,選擇不同的方法可以減少彎路,加快速度使解題過程簡潔提高正確率。

  實際應(yīng)用教材第109頁例4。

  2臺大收割機和5臺小收割機工作2小時收割小麥

  3.6公頃,3臺大收割機和2臺小收割機工作5小時收割小麥8公頃,問:1臺大收割機和1臺小收割機1小時各收割小麥多少公頃?

  分析:

  問題1.列二元一次方程組解應(yīng)用題的關(guān)鍵是什么?

  (找出兩個等量關(guān)系)

  問題2.你能找出本題的等量關(guān)系嗎?

  2臺大收割機2小時的工作量+5臺小收割機2小時的工作量=3.6

  3臺大收割機5小時的工作量+2臺小收割機5小時的工作量=8

  問題3.怎么表示2臺大收割機2小時的工作量呢?

  設(shè)1臺大收割機1小時收割小麥x公頃,則

  2臺大收割機1小時收割小麥_公頃,

  2臺大收割機2小時收割小麥_公頃。

  現(xiàn)在你能列出方程了嗎?

  解后反思:應(yīng)用題中,如何化解較復(fù)雜數(shù)量關(guān)系?

  練習(xí)2:教科書第111頁練習(xí)第3題應(yīng)用題體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。

  小結(jié)與作業(yè)

  小結(jié)提高在學(xué)生暢所欲言話收獲的基礎(chǔ)上,通過老師進行補充的方式進行。

  本節(jié)課學(xué)習(xí)了哪些內(nèi)容?你有哪些收獲?

  布置作業(yè)

  8、做題:教科書112頁習(xí)題8.2第5、7題。

  9、選做題:教科書112頁習(xí)題8.2第8題。

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)

  1、能根據(jù)教材編寫思路,遵循學(xué)生的心理特點,創(chuàng)造性使用新教材中的問題情境(引入與111頁練習(xí)3屬同種數(shù)學(xué)模型),把教材中不動的問題情境轉(zhuǎn)化為動的問題情境。

  2、真正把課堂還給了學(xué)生,使學(xué)生真正地變?yōu)檎n堂學(xué)習(xí)的主人,老師只是學(xué)生學(xué)習(xí)的引導(dǎo)者和組織者。由于學(xué)生的個體差異,思維方式的不同,為了給學(xué)生創(chuàng)造個性化的學(xué)習(xí)空間,鼓勵學(xué)生們用自己的方式去學(xué)習(xí),把學(xué)習(xí)的主動權(quán)還給他們,讓他們自己去探究不同的解題方法。通過例題分析、啟發(fā)提問、集體討論等形式,使學(xué)生能準(zhǔn)確而迅速地確定解題方法從而突出了本課的重點、難點—選擇適當(dāng)方法求解二元一次方程組。

【初中七年級數(shù)學(xué)教案】相關(guān)文章:

初中七年級數(shù)學(xué)教案12-30

初中七年級下冊數(shù)學(xué)教案01-13

初中七年級數(shù)學(xué)教案11篇12-30

初中七年級數(shù)學(xué)教案(11篇)12-30

初中七年級數(shù)學(xué)教案(通用15篇)07-23

初中數(shù)學(xué)教案08-12

人教版初中數(shù)學(xué)教案12-30

初中數(shù)學(xué)教案:公式12-29

【熱】初中數(shù)學(xué)教案01-12